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Exact correspondence relationship for the expectation values of r for hydrogenlike states
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An exact correspondence relationship between the classical and quantum-mechanical expectation
values of r for arbitrary hydrogenic states with quantum numbers n and I is established. The
quantum-mechanical result for arbitrary powers of k is explicitly expressed in terms of relatively simple
orthogonal polynomials which are intimately related to the Legendre polynomials and which consist of
only the minimum of n —I or k +1 terms. The correspondence between the sets of polynomials, and the
complete formal analogy of the classical and quantum results, are found to originate in the fact that the
correspondence limit of the Pasternack-Kramers recursion relation for the (r ") is the three-term re-
cursion for the Legendre polynomials.

I. INTRODUCTION

The derivation of a general expression for the expecta-
tion values of r for an arbitrary hydrogenlike state
characterized by quantum numbers n and I and for arbi-
trary k has been pursued throughout the history of quan-
tum mechanics. Perhaps the earliest such work was that
of Wailer [1],who was mainly interested in the polariza-
tion potential ( k =4 ), in connection with the second-
order Stark effect of two-electron atoms. A derivation of
(r ") by Van Vleck [2] was corrected and replaced by a
simpler approach by Pasternack [3]. The main result of
Pasternack is a recursion relation for the (r ") that is
computationally very convenient. Since it was found in-
dependently by Kramers [4], it is known as the
Pasternack-Kramers recursion relation. Bockasten [5]
used these relations to compute explicit expressions for
the range —5~k ~8 that have been very valuable for
many applications like the magnetic susceptibility of
atoms in the independent-particle model (k = —2) or the
mean lifetimes of hydrogenlike states [6—8] (k =3 or 4).
Furthermore, polarization models of excited states of
helium [9] and optical potential analyses of Rydberg
states of helium [10] call for values of k up to 8 as do rel-
ativistic and other second-order corrections of multipole
polarizabilities of hydrogenic ions [11]. Similar applica-
tions are provided by a whole class of retarded or long-
range potentials [12,13] such as the interaction of an
atom with a wall (k =3) or the Casimir-Polder interac-
tion between two neutral atoms at Uery large distances
(k =7) (as opposed to the usual van der Waals interac-
tion with k =6). More examples for the appearance of
positive powers of r up to 6 are given by a variational ap-
proach to quadrupole polarizabilities of ions [14], and
variational estimates of such expectation values for atoms
have been developed [15]. However, recent refinements
in the measurement of Rydberg states of helium [16]have
lead Drake and Swainson [17] to extend the tabulation to
values of —13 ~ k ~ 16. The results are given in terms of

a series expansion in powers of n with the l-dependent
coeffI[cients determined by a set of recursions derived
from the Pasternack-Kramers recursion. Finally, semi-
classical expectation values of r have been used to de-
scribe spectroscopic term energies of many-electron
atoms [18],and recently Curtis [19] also succeeded in es-
tablishing a mnemonic connection of the quantum result
for (r ") with the classical result, whereby the angular
momentum quantum number l is replaced by certain
functions of I given in terms of the above-mentioned
coefficients from the work of Drake and Swainson.
(Purely classical expectation values are of interest in the
study of, for example, relativistic corrections of the kinet-
ic energy or gravitational corrections in perturbed Kepler
problems [20].) The above-mentioned examples for the
use of expectation values of r are, of course, far from
being physically or historically complete, and are recalled
only to give the reader an impression of the very broad
and important range of applications.

It would seem, however, that despite the many fruitful
efforts, a simple exact correspondence between the classi-
cal and quantum results for the (r ") still calls for a
more rigorous foundation. The purpose of this work is
therefore to establish an analytical connection between
these results in terms of certain generalizations of Legen-
dre polynomials. In this way the formally complete anal-
ogy between the classical and quantum-mechanical re-
sults becomes transparent, allowing one to study the tran-
sition from the quantum to the classical domain in full
detail, whereas common applications of the correspon-
dence principle, on the other hand, yield only asymptotic
results, usually in terms of an asymptotic series in inverse
powers of the relevant quantum numbers [7,8]. In Sec.
II A we first recapitulate the classical result and discuss
an ambiguity inherent to any use of the correspondence
principle. The quantum-mechanical result is recalled in
Sec. II 8, and generalized Legendre polynomials that
yield explicit expressions for the (r ") are derived in
Sec. IIC. Some more general remarks in Sec. III con-
clude the derivation.

1543 1991 The American Physical Society



1544 HERMANN MARXER

II. AN EXACT CQRRESPGNDENCE REI.ATION

A. The classical and sen~iclassical results
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where E is the energy and L tee total angular momentum
of the electron with respect to the nucleus. The polar
equation of the orbit,

1+@cosy=
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where r is the separation between the two charges and y
is the polar angle measured with one of ".he charges at the
origin, allows or.e to express the average value of r
over a period of motion
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Here we have added the index cl to indicate a classical
average. Pk is a Legendre polynomial, and since
P „,(x)=Pk(x), the formula can be used for all k, pos-
itive as well as negative. The argular integral involved in
Eq. (5) is an integral representation of the Legendre poly-
nomials known as Laplace's first integral and the similar
representation with k replaced by —k —1 in the in-
tegrand as Laplace's second integral [22]. So far this sim-
ply reproduces the formula given by Curtis (in terms of
the semimajor axis and the semiminor axis, rather than e)
[18].

The interest in classical expectation values of r is, of
course, much older than quantum-mechanical and semi-
classical applications suggest. Probably the earliest gen-
eral work was done by Laplace to determine the shape of
the earth [21]. His method of computing these expecta-
tion values in polar coordinates can easily be adapted to
the problem of two particles of charge —e (an electron)
and Ze (a nucleus), respectively, moving in a Keplerian
orbit. Applications of this method to obtain a semiclassi-
cal formula for the expectation val res of r have been
studied in detail by Curtis [18], and a fairly historical ac-
count on the connection to the old quantum theory is
given in that work. To establish a reference for laker
comparison, we briefly recap~. tu ate the derivation of the
classical expectation values. The geometry of the elliptic
orbit of the two particles of reduced mass p can be deter-
mined by the semimajor axis

Zc
2~El

and the eccentricity
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and the angular momentum

L =l(1+1)fi (7)

of a state with quantum numbers n and l in Eq. (5). In-
cidentally, we note that the eccentricity thereby becomes

l(l+1)E'=
n

(8)

which even in the case of maximal l, l = n —1, commonly

The derivation of a semiclassical result, however, en-
counters a difhculty that is inherent to any method based
on the correspondence principle: the replacements of
classical quantities by quantum-mechanical expressions,
by virtue of which one usually converts a classical formu-
la into a semiclassical result depending on quantum num-
bers, are by no means unique. This intrinsic ambiguity
has been discussed by Marxer and Spruch [7,8] in connec-
tion with a semiclassical derivation of mean lifetimes of
excited hydrogenlike states and of Landau states in a uni-
form magnetic field based on the correspondence princi-
ple and a treatment of the rate of loss of angular momen-
tum. For example, in the case of hydrogenlike states,
mentioned in the Introduction, various semiclassical re-
placements for the angular momentum lead to different
possible semiclassical formulas for the mean lifetimes of
states specified by their appropriate quantum numbers n
and l. The point is that the correspondence principle
rigorously justifies only the leading order of a semiclassi-
cal expression in inverse powers of the quantum numbers.
(Generically, such an expression will, at best, represent
an asymptotic series. In other words, if one considers, for
mathematical purposes only, Planck's constant as a small
parameter, then an expansion of a quantum-mechanical
result in terms of this parameter around zero will have a
vanishing radius of convergence. ) Anything beyond the
leading order is a matter of choice and convenience. To
be specific, consider again the mean lifetime of a hydro-
genlike state, where the use of the well-known Langer
modification of the angular momentum quantum number
l~l+ —,

' (the modification —,
' can be interpreted more

rigorously as a Maslov index) does not give quite as good
a result (more than 50% off) for low-lying states [6] as
another substitution for /, equally well justified by the
correspondence principle, which yields results accurate to
at least 6% even for the lowest possible states [7]. (For
large quantum numbers, both results are equally good
and accurate. ) The choice then is dictated by the desire to
obtain a convenient formula for the mean lifetime that
holds reasonably well for as many states as possible, even
though the correspondence principle by itself justifies
only a statement for highly excited states.

In the present problem, the same ambiguity arises. To
obtain a semiclassical result for the expectation values ofr, one possible choice is to substitute the quantum-
mechanical values for the energy (the modified Bohr ra-
dius is denoted by ao and fi is Planck's constant divided
by 2m)
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referred to as a circular orbit, does not vanish. An alter-
native procedure would be to express (r ")„in terms of
the energy E and the angular momentum L and to use
the semiclassical substitution L ~(l + —,

' )R throughout.
Obviously, one would obtain a different expression for the
eccentricity and thus for (r "). The semimajor axis
poses no difficulty here, since the use of Eq. (6) in Eq. (1)
yields

ao

Z

B. The quantum-mechanical result

The quantum-mechanical expectation values of r
carrying the index QM to distinguish it from the classical
averages, are given for all k by the Pasternack-Kramers
recursion relation [3—5]

(
—k —2)

(2l+1) —k

2k —1 Z( k i)
QM

l
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2 1/2

n
(10)

To leading order, the semiclassical result for (r "),
denoted by the index sc, then reads

' k+2
1 n

n lk+3 k+i k
Z

(
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without any higher-order terms in 1/n. Since the above
discussion of mean lifetimes, for example, shows that the
correspondence principle does not uniquely favor any
specific semiclassical substitution, we choose to keep only
the leading order of the semiclassical expressions for
(1—e )'~ that result from the mentioned various possi-
bilities, that is,

—k, ( )g
n ao

(12)

which holds for k ~ 0, together with the inversion formu-
la

(2l +k +2)! «0
M (2l —k —1)! 2Z

2k+3

(r —k —3) (13)

From this relation, an explicit formula for low n can be
easily computed [5]. To point out the well-known close
analogy between the classical and the quantum results,
mentioned already by, among others, Curtis [18,19], it
may suKce to consider, for example,

)gM
Z
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valid for l & 1. Comparison with the semiclassical result
of Eq. (11),

(r') =
6

Z 35n —30n2l +31
sn'l'ao

(15)

shows clearly how the coeKcients of the Legendre poly-
nomials appear in the quantum-mechanical expression;
one simply neglects terms of order 1/n and 1/l. Howev-
er, this observation has thus far not given rise to a closed
and simple analytical correspondence.

C. Generalized Legendre polynomials

Instead of replacing l in the semiclassical formula for
(r ") by the angular momentum operators, as suggested
by Curtis [19],we here pursue a somewhat complementa-
ry approach. We so modify the Legendre polynomials in
Eq. (11) that the classical and quantum results are ex-
pressed in the same way and the analogies mentioned
above thereby become obvious. The advantage of
Curtis's procedure is that it allows one to retain the usual
Legendre polynomials. However, this is achieved at the
expense of introducing substitutions for the angular
momentum quantum number that depend on the power
k. At variance, the approach presented here uses the

2k —1 k —1
Pk(x) = xPk, (x)— Pk 2(x), k ~ 1,

Po(x) =1,
(16)

into the semiclassical result from Eq. (11). This immedi-
ately yields the recursion relation

( k 2) 1 2k —1 Z
( k ))

SC k ao
SC

Z k

n ao
(17)

Apart from the overall factor 1/l this is obviously the
same as the Pasternack-Kramers recursion relation given
by Eq. (12). Put differently, since for high quantum num-
ber l we have

same simple angular momentum quantum number, name-
ly, l itself, in any event. To begin, we derive the recursion
relation that is obeyed by the semiclassical expectation
values. To this end, we simply insert the three-term re-
cursion relation for the Legendre polynomials, which we
write in the form
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4 1

(2l + 1) —k l
(18)

2k —1 k —1
Pk(x) dkxPk —1(x) dkPk —2(x)~
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QM
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Of course, these polynomials will depend parametrically
on l, and we have introduced a corresponding index for
the sake of clarity in the above formula. However, to
simplify the notation, we will suppress that index in the
following. A polynomial Pk (and correspondingly any
collection of coefficients with index k) thus is meant to
belong to a set of orthogonal polynomials I Pk & J ~ &

with l
held fixed. In this notation, then, the set IPk] is a
different set of orthogonal polynomials for every fixed l.
Furthermore, due to their orthogonality, the Pk will

satisfy a three-term recursion relation of the form

kPk(x) (l3k + Ykx )Pk —1(x) ~kPk —2(x

with ak, pk, yk, and 5k independent of x. Due to a
theorem ascribed to Favard [24], this kind of recursion
guarantees the orthogonality of the polynomials Pk. If
we now demand that the Pasternack-Kramers recursion
relation follows from recursion Eq. (20) for the Pk in the
same way as the classical recursion Eq. (17) followed
from the recursion for the Legendre polynomials (with x
assumed not yet determined), we are led to the condition

2
k+2 k " k+1 k —1n l = n l

2k —1 k —1

we recognize that the correspondence limit of the
Pasternack-Kramers recursion can be interpreted as the
three-term recursion for the Legendre polynomials.

This result strongly suggests [23] the existence of or-
thogonal generalized Legendre polynomials, to be denot-
ed by Pk, such that the quantum-mechanical result for
(r ") agrees formally with the semiclassical result in Eq.
(11). Let us thus assume that there exist orthogonal poly-
nomials Pk &

such that

(r ')Q
2aon

(25)

from which we infer, using Eq. (13) for k = —1 and Eq.
(19) for k =0, that

Po X
2l l

2l +1 l+ —,
' (26)

(It is interesting to observe that Po differs from unity only
by the ratio of l and l +—„which is a standard semiclassi-
cal replacement for l. It is here that the Lan ger
modification —or better the topological Maslov index—
makes its appearance. ) Since for fixed k we have

and

lim d, =1
I~ oo

lim Po(x) =1,
l~ oo

(27)

(28)

the recursion Eq. (24) becomes exactly the recursion for
the Legendre polynomials, Eq. (16), in the correspon-
dence limit. It is therefore clear that the correspondence
limit of the Pk are the Legendre polynomials:

lim Pk(x)=Pk(x) .I~ oo
(29)

(Note the correct meaning of this equation; in letting l
tend to infinity we consider a sequence of Pk &

for fixed k;
this sequence then runs through every different set of or-
thogonal polynomials characterized by a fixed 1). Of
course, we can derive a simple recursion for the
coefficients of the power-series representation for the Pk
by assuming the ansatz

(24)

The initial value for this recursion can be readily derived
from ( r ' )QM thus, for example, from the virial
theorem we immediately obtain

k+3lk+1 (21)
[(2l+1) —k ]

which has to be true for all k ~ 1. Fortunately, the solu-
tion of this condition is obvious and reads

k

Pk(x)= g ak x',

from which we obtain

2k+1 k
k+1, k+1 k+1 k, —1 k+1 k+1 k —1,

(30)

yk =(2k —1)dk, 5k =(k —1)dk, (22)
2l

21+1' ' ' "'"' 0
(31)

nX=
l

where we have introduced

4l
(2l+1) —k

(23)

[Note, that if we keep the argument of Pk 1 undetermined
in Eq. (19), condition (21) yields what we have anticipated
in Eq. (19).] The generalized Legendre polynomials P„
can thus be de6ned by the three-term recursion relation

k ~0, v=0, . . . , k+1 .

Since the (r ") are given by the Pk with argument
x =n /l, these coefticients give, after multiplication by I,
the l-dependent coef5cients of the power series in n in the
quantum result for ( r "). A solution of this recursion
therefore leads to a result analogous to the representation
of (r ") given by Drake and Swainson [17] and we will
not pursue this matter further here. For later reference,
however, let us record the coefBcient of the leading power
ill X 111 Pk.
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(32)

P„(x)=2F, k, k+1;—1;
2

(33)

It now becomes rather transparent how the typical
denominators of the quantum results, as seen, for exam-
ple, in Eq. (14) and in the tabulation of Bockasten [5],
emerge from the modified normalization of the polynomi-
als due to the dk.

Instead of explicitly solving the recursion Eq. (31), we
infer the explicit form of the PI, from certain properties
of generalized hypergeometric series and from an argu-
ment of analogy with the classical result. To start with,
we recall that the representation of the Legendre polyno-
mials in terms of hypergeometric series is

Fk (z)=,F, —k, k+1, 1+pl +z ;l, m +1;1, (38)

and found that they satisfy the recursion

k ( k + m )Fk (z) = —(2k —1 )zFk, (z)

+(k —1)(k —1 —m)Fk 2(z) . (39)

A comparison with the recursion Eq. (24) then shows that
the Pk(x) satisfy Eq. (39) if we choose m =2l+1 and
z =2lx. Finally, the correct normalization can be in-
ferred from Eq. (32) and, using Fk (z) =( —I )"Fk ( —z),
we end up with the explicit representation

The close analogy of the recursions for the Pk and the Pk
suggests that the latter may be written as a generalized
hypergeometric series of the form

(2l)" '(2l —k)!
(2l +1)!

X3F2( k, k+ 1, l—+1—lx;1,2l+2;1), (40)

+2F (
—k, k + l, a „.. . , a;c„.. . , c;z), (34)

with one of the entries a linear function of x. Most of the
ambiguity in this form can be ruled out by using a
theorem due to Al-Salam [25], who proved that any gen-
eralized hypergeometric series of the form

+2F ( —k, k +y, a „.. . , a;c„.. . , c;x ), (35)

~+,F~( k, k+1,ax+P—,a„.. . , a;c„.. . , c;1), (36)

Another theorem of Al-Salam [25] finally narrows down
the degrees of freedom in the pattern given by (36). In
order that a generalized hypergeometric series of the kind
given by (36) satisfies a three-term recursion relation, and
thus in order that it may possibly represent orthogonal
polynomials, it is necessary that p =0 and q =2. We
conclude that the PI, (x) are of the form

where all the parameters are independent of x, are either
Jacobi or Bessel polynomials. The correspondence limit
stated in Eq. (29) thus eliminates the possibility of z in the
form (34) being a function of x. The only choice left to
ensure a representation of Pk(x) according to the scheme
given in (34) is therefore that the argument x appears in
the set of parameters, that is, that the Pk(x) are of the
form

where, for clarity, we have reintroduced the index l on
the left-hand side. This, in connection with Eq. (19), then
gives a simple and most convenient explicit representa-
tion of the expectation values (r " ). Note that these
expectation values are evaluated with x = n /l; the third
entry in the generalized hypergeometric series in Eq. (40)
then becomes l + 1 —n = —n„, that is, the negative of the
radial quantum number n„. Therefore, although the Pk
are generally polynomials of order k, for the evaluation of
expectation values the series in Eq. (40) actually ter-
minates after the minimum of n —l or k + 1 terms. Thus,
for example, for l = n —1 the ( r " ) are given by just
one term. The usual restrictions on the angular momen-
tum quantum number l are rejected in the factor
(2l —k)! in Ey. (40); the quantum-mechanical expectation
values of r diverge for l ((k/2) —1. Furthermore,
since for x =n/l the fact that the generalized hyper-
geometric series in Eq. (40) terminates at all does not de-
pend on k, the formula for ( r " ) given by Eqs. (19)
and (40) can be analytically continued and the result is
good for arbitrary (complex) values of k [except at the
poles caused by (2l —k)!]. The generalization of the
equality Pk (x ) =P k, (x ) can also be derived from Eq.
(40). Since the 3F2 series is still invariant under the trans-
formation k ~—k —1, we easily find

3F2( —k, k+ l, ax+P;c„cz,'1) . (37)
(2l +k +1)!P k & i(x) Pk I(x)

(2l) "+'(21—k)!
(41)

The remaining parameters could, of course, be deter-
mined directly from the recursion relation Eq. (24).
However, Pasternack [26] has already studied series of
this kind, namely the polynomials

in agreement with the quantum-mechanical inversion for-
mula stated in Eq. (13). Finally, the correspondence limit
shows up in Eq. (40) via the limiting relations



1548 HERMANN MARXER

(2l )"+'(2l lc—)!
11m =1

(2l +1)! (42)

lim 3F2( —k, k + l, l +1—Ix;1,2l +2;1)
I—+ oo

=zFi —k, k +1;1; 1 —x
(43)

confirming the result stated in Eq. (29).

III. CONCLUDING REMARKS

We wish to stress the fact that the analytical results ob-
tained here and by others are contained, essentially, in
the later work of Pasternack [26]. However, Pasternack's
work was primarily a purely mathematical investigation
of various properties of certain series, apparently without
any reference to the fact that they represent interesting
sets of orthogonal polynomials. Furthermore, we have
pointed out an independent alternative and simpler
derivation, and have clarified the close relation to the
classical result, which does not seem to have been fully
appreciated before. For example, we have interpreted the
recursion relation of the Legendre polynomials as the
correspondence limit of the Pasternack-Kramers recur-
sion relation and have traced back the typical denomina-
tors appearing in tabulations of quantum-mechanical re-
sults to the modified normalization of generalized Legen-
dre polynomials. Furthermore, the semiclassical and
quantum-mechanical expectation values of r " can be ex-
pressed in terms of these polynomials without introduc-
ing modifications of the angular momentum quantum

number, which, in any event, are not rigorously justified
by the correspondence principle. Another point we want
to emphasize here is that it is apparently possible to gen-
eralize classical results that correspond to matrix ele-
ments in the quantum-mechanical domain in such a way
that the results are in formal analogy and that important
properties, such as the orthogonality of the involved po-
lynomials in the present case, are preserved. Such a situ-
ation then allows one to study the correspondence limit
in its full analytical beauty and not only in terms of
asymptotic results, as may be obtained from, say, the
Wentzel-Kramers-Brillouin method. In the present work
this has been achieved for diagonal matrix elements only,
whereas many quantities of great interest, for example,
mean lifetimes, linewidths, or transition rates in general,
are given in terms of o6'-diagonal matrix elements. It will
therefore be interesting to see whether such relationships
can be extended to the oA-diagonal case, thus furnishing
a semiclassical interpretation of o6'-diagonal matrix ele-
ments, and the mentioned derivations of the lifetimes of
excited hydrogenlike states [7] or of Landau states in a
uniform magnetic field [8] from the classical radiation re-
action force give two examples that such an interpreta-
tion is possible. This point is being investigated.
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