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Exchange and exchange-correlation functionals based on the gradient correction of the electron gas
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We demonstrate that the functional form of the Fade approximant of the second-order density gra-
dient correction of Rasolt and Geldart [Phys. Rev. Lett. 35, 1234 (1975)] for the inhomogeneous electron
gas yields excellent results when applied to atoms. The gradient correction employed by us uses the

7

factor as suggested by Kleinman and Lee [Phys. Rev. B 37, 4634 (1988)] with the constants of Rasolt and
Geldart replaced by an empirically derived set, based upon numerical fits of the exchange and exchange-
correlation energies of the atoms He through Ar. The resulting fitted nonlocal gradient corrections were
then used in the minimization of the Kohn-Sham functional to solve for the exchange-only and
exchange-correlation total energies. The resulting standard deviations in the calculated total energies
were 0.0043 for exchange only and 0.0014 for exchange correlation.

The search for good exchange-correlation energy den-
sity functionals is a major challenge in density-functional
theory [1—3] (DFT). Although there has been success in
this area, much work still remains before we can accu-
rately describe atomic and molecular systems. A popular
and widely used approximation is the local-density ap-
proximation (LDA). However, the LDA functional
sufFers some serious problems when applied to real sys-
tems of interest [1,4]. Nonlocal corrections have been
proposed, but many, such as the formal gradient expan-
sion [1,5 —7], provide only a modest improvement in the
calculated results and introduce unwanted singularities in
the potential.

The orbital-density description of density-functional
theory is given by Kohn-Sham theory. For atoms we
may write

E [[4;]]=T,[IP;]]+Jl p]+E..[pl+ ~NE[p],

where T, is the kinetic energy of a noninteracting system,

is the Coulomb energy, E„, is the unknown exchange-
correlation energy density functional,

and correlation diagrams in the random-phase approxi-
mation and also incorporated higher-order contributions
in an average sense. Their expression, truncated to
second order, is

Vp
p'"

where B„is represented by the Pade approximant

1 +c2r +c3r~
B„,(p)= —1 X 10 ci11+c4r +csr2+c6r,3

and r, =(3/4rrp)'r . The constants c;, as obtained by
Rasolt and Geldart [8—11], are given in the first column
of Table I. This form has proven quite successful when
applied to systems other than atoms and molecules [11].
Recently, Kleinman [12—14] has argued that to preserve
the high-density limit, Eq. (5) should be modified such
that the nonlocal correction is premultiplied by the factor

We too find (at least empirically) that it is appropri-
ate for atoms and have used it in all the calculations
presented below.

Since the coefficients c; were obtained from properties
of electron densities that are far removed from those as-

V,= Z f &—dr (3)

VP; M„,
(4)

Rasolt and Cseldart [8—11] have provided a form for the
unknown E„, that contains nonlocal corrections to the
LDA functional. To derive their nonlocal correction to
E„„they summed up all possible second-order exchange

is the nuclear-electron attraction energy (Z being the nu-
clear charge of the atom), and p is the electron density.
Minimizing E [I/, . ] ] with respect to variations in the P, ,
subject to the constraints p=g, . P,. and (P,. ~P,. ) =1, one
arrives at the following Euler-Lagrange equation:

Cl

C2

C3

C4

Cg

C6

Rasolt-Geldart'

2.568
9.0599
2.877 X 10
8.723
0.472
7.389 X 10

E„, fitb

2.568
—5.9845
10.8527

—2.0801
—9.3206
27.9143

E„ fit'

2.568
8.6847—1.7976
7.7764

—1.6990
0.1710

'Taken from References [8—11].
The standard error of the nonlinear least-squares fit was

0.0012.
'The standard error of the nonlinear least-squares fit was 0.0034.

TABLE I. Coe%cients for the Pade approximant representa-
tion of B„,. Atomic units are used throughout.
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sociated with atoms and molecules, we decided to see
how well the functional form of Eqs. (5) and (6) fared
when applied to atomic systems. We therefore used Eqs.
(5) and (6), with the coefficients of Rasolt and Geldart but
with the —", factor included, to approximate E„, in Eq. (4)
and then solved for the ground-state energies of the
atoms He through Ar. We found that the calculated en-
ergies have a standard deviation of 0.58, when compared
to the correct energies. These correct energies are taken
as the sum of the Hartree-Fock energy [15,16] E " plus
the known correlation energy [17,18] E„see the second
column of Table II. In these calculations we used the
Gunnarsson-Lundqvist [19] parametrization of E„,
The resulting total energies are given in the fourth
column of Table II. This is a slight improvement over
just using E„,=E„, , which has a standard deviation of
0.75. For comparison, we hst the E" total energies in
the fifth column of Table II. We note that using the c,. of
Rasolt and Geldart [8—11],without the —", factor, a much
smaller standard error is obtained, namely, 0.19. Since
the nonlocal correction as defined by Eqs. (5) and (6) pro-
duced improved energies, we believed that its functional
form was suitable for atoms and that by changing the c;,
we could obtain even better results. A new set of c;
(i =2, . . . , 6) was obtained by performing nonlinear
least-squares fits of Eqs. (5) and (6) to E„"+E„where
E„"is the Hartree-Fock exchange energy [15,16]. We
used Hartree-Fock densities [15,16] to evaluate E„, and
minimized the sum of squares,

E..[PHF]
EHF +E

The resulting c; are given in the second column of Table
I. The standard error of this fit was 0.0012, showing that
we have an exceedingly good fit. However, this good fit,
in itself, does not guarantee that solutions of the Kohn-
Sham equation will yield good results. Using this set of
coefficients in Eqs. (6) and (5), we solved the Kohn-Sham
equation, Eq. (4). The standard deviation of the resulting
total energies was 0.0014, showing that we have an
exceedingly good approximation to E„,. We list the re-
sulting total energies in the third column of Table II. En-
ergy difference calculated ionization potentials, as well as
transition state ionization potentials, are also very good.
This is to be expected, since the total energies are well
reproduced. Earlier we stated that the —", factor was also
appropriate for atoms. We came to this conclusion by
looking at a six-term nonlinear least-squares fit, i.e., we
let c& vary. The resulting standard error was essentially
the same as that of the five-term fit and the fitted value of
c, was close to the value 2.568 times —', . This suggests
that the five-term fit with the —', factor is appropriate.
Although we do not give the results, the fitted six-term c;
gave slightly poorer total energies when the Kohn-Sham
equation was solved.

In spite of the fact that scaling arguments would
prevent the nonlocal gradient correction of Rasolt and

TABLE II. Ground-state total energies, in atomic units, of the atoms of He through Ar.

Atom

He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

Eexact

2.9042
7.4781

14.6675
24.6538
37.8163
54.4812
75.0271
99.741

128.937
162.257
200.058
242.357
289.356
341.202
398.113
460.196
527.605

Exc-fit

2.9054
7.4772

14.6745
24.6536
37.8152
54.4941
75.0234
99.736

128.964
162.268
200.075
242.365
289.365
341.232
398.120
460.186
527.586

3.0317
7.6473

14.8911
24.9158
38.1305
54.8681
75.4597

100.235
129.522
162.862
200.705
243.028
290.063
341.967
398.895
461.005
528.452

ELDA

2.8601
7.3704

14.4966
24.4097
37.5095
54.1287
74.5979
99.247

128.403
161.624
199.340
241.533
288.435
340.202
396.993
458.963
526.267

Ex-fit

2.8642
7.4349

14.5888
24.5338
37.6575
54.2970
74.7845
99.450

128.623
161.903
199.637
241.867
288.799
340.595
397.414
459.411
526.743

EHF

2.8617
7.4327

14.5730
24.5291
37.6597
54.2962
74.7692
99.409

128.547
161.859
199.615
241.877
288.835
340.649
397.479
459.482
526.818

'The exact energies are taken as the sum of the Hartree-Fock values (Refs. [15] and [16]) and known
correlation energies (Refs. [17]and [18]).
Total energies calculated using the E„,fitted coefficients in Eqs. (5) and (6).

'Total energies calculated using the Rasolt and Creldart (Refs. [8—11]) coefficients in Eqs. (5) and (6)
with the '7 factor included.
"Total energies calculated using the LDA approximation to E„,.
'Exchange-only total energies calculated using the E„ fitted coefficients.
fHartree-Fock total energies (Refs. [15]and [16]).
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E =E '""+—"JB drV
X X 7 X 2/3

P
(8)

where the E„'"'is the Dirac [20] local approximation for
the exchange energy. Assuming that the form of B„(p)
was given by Eq. (6), we determined a set of c; by per-
forming nonlinear least-squares fits of the Hartree-Fock
exchange energies. The resulting coefficients are given in
the third column of Table I. The standard error of this fit
was 0.0034—not as good as the exchange-correlation fit,
but still quite good. Solving the Kohn-Sham equation
produced exchange-only total energies that had a stan-
dard deviation of 0.0043 when compared to exact
Hartree-Fock energies. These exchange-only total ener-
gies are listed in the sixth column of Table II. For com-
parison, we list the Hartree-Fock energies in the last
column of this table. These numerical results show that
the Rasolt and Geldart [8—11] nonlocal correction can
also be used to improve exchange-only calculations. As
with the exchange-correlation fits, we found that a six-
term fit was not any better than a five-term fit with the —',
factor modifying the Rasolt and Geldart [8—11] value of
C).

We have shown from numerically calculated atomic to-
tal energies that the nonlocal gradient correction of

Geldart [8—11] from being considered as an exchange-
only correction, we decided to see if the functional form
would be adequate for exchange-only calculations. Writ-
ing the exchange energy,

'2

Rasolt and Geldart [8—11], with suitably modified
coe%cients, is an excellent choice for the exchange-
correlation and the exchange-only energy density func-
tionals. We wish to emphasize that these modified
coefficients are not based upon any fundamental many-
body calculations, but that they are empirically derived.
We are not aware of any previous approximate E„,[p]
that has produced as good total energies, when used in
the solution of the Kohn-Sham equation. Although this
nonlocal correction has led to excellent total energies, its
functional derivative suffers from not having the correct
long-range or short-range behavior. This is not serious
when it comes to the energy and its components, but the
singularity at the nucleus destroys the cusp and the in-
correct long-range behavior produces a density that does
have the correct exponential falloff far from the nucleus.
Hopefully, by modifying the current nonlocal gradient
functional, we can maintain the current excellent results
while removing the unwanted long- and short-range be-
haviors of the potential.
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