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For a many-particle system with a spherically averaged single-particle density p(r) of a kth-order
monotonic nature (i.e., a function whose successive derivatives up to that of order k alternate in sign),
rigorous inequalities that involve the central values of p(r) and its derivatives as well as the radial expec-
tation values are derived. These inequalities become optimal in the completely monotonic case, that is
for k ~ ~ ~ Then, it is argued that for atomic systems the electron density is completely monotone to
quite a good approximation except in hydrogen, where it is rigorous. In this approximation, the corre-
sponding atomic inequalities produce the following: (i) the famous tight upper bound to the electron
density at the nucleus p(0) ~(Z/2a)(r ) obtained by Hoffmann-Ostenhof, Hoffmann-Ostenhof, and
Thirring [J. Phys. B 11, L571 (1978)] by assuming an infinite nuclear mass, (ii) the lower bound
p(0) ~ (r ) /(4~(r ')), (iii) lower bounds to the values of any kth-order derivative of the electron
density at the nucleus, and (iv) some inequalities involving two and/or three radial expectation values.
These bounds and/or inequalities improve all the corresponding ones known at present. Finally, for
completeness, the accuracy of these atomic bounds and/or inequalities are analyzed in the framework of
the Hartree-Fock approximation.

I. INTRODUCTION

The single-particle density p(r) is the fundamental
quantity of the density-functional theory of many-body
systems [1—5]. However, rigorous information about this
quantity is very scarce, almost unexisting. Even for the
ground state of electronic systems, which is the best stud-
ied case, the only known rigorous property of the elec-
tron density is its behavior near the origin [6] and at large
distances [7]. Indeed, still today there is no rigorous
proof of any structural properties (e.g. , monotonically de-
creasing, convexity) of the ground-state electron density,
although some numerical hints are known [8—11]. This
situation is especially striking since the density-functional
theory is presently one of the fundamental theories of
matter that has been used to explain successfully
numerous ground-state properties of fermionic systems
(atoms, molecules, solids, nuclei) [1—5, 12,13] and is being
extended to excited states [14—17].

Here we will first describe some rigorous conditions
that the spherically averaged single-particle density p(r),
0 & r ( ~, defined by

p(r) = J p(r)dA,l

4~ n

must necessarily fulfill to be a monotone function of kth
order, that is, a function whose successive derivatives up
to that of order k alternate in sign, i.e.,

( —1)"p'"'(r) ~0 for n =0, 1,2, . . . , k .

For k ~~, one says that p(r) is completely monotonic in
agreement with the same definition in the mathematical
literature [18,19]. Notice that for k =0, 1, and 2 this
property indicates that the density function is non-
negative definite, monotonically decreasing, and convex,

respectively. Let us also say that p(r), as well as p(r), is
normalized to the number of particles N of the system.

This paper is structured as follows. In Sec. II we ex-
plain how the above-mentioned conditions will be given
and we state the "Stieltjes-moment-problem technique, "
which is the mathematical basis of our approach. This
technique is applied in Sec. III to any density function
p(r) with a monotonicity of kth degree, from zero
through infinite. Therein, specific inequalities among ra-
dial expectation values and/or central values of p(r ) and
its derivatives are given in a simple, rigorous, and com-
pact way, starting (i) only from the positivity property or
monotonicity of zero degree of p(r), (ii) from the mono-
tonically decreasing behavior or monotonicity of first de-
gree, (iii) from the convexity property or monotonicity of
second degree, and so on. All these inequalities apply to
any physical system provided that the corresponding
monotonicity condition is satisfied. Particularly remark-
able are those inequalities corresponding to the complete-
ly monotonic case, i.e., for k —+ oo.

In Sec. IV, the latter inequalities are applied to atomic
systems and their accuracy is analyzed in a Hartree-Fock
framework. We found that, although complete monoton-
icity is not a rigorous property for ground-state neutral
atoms, it is however a reasonably good approximation,
except for hydrogen, where it is rigorous. Then,
numerous and interesting atomic relationships are en-
countered within such an approximation. Finally, some
concluding remarks are given.

II. METHOD

The above-mentioned conditions will be given by
means of the radial expectation values

(r ) = Jr p(r)dr
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and to find them we will apply the so-called "Stieltjes mo-
ment problem" technique [20] to the function

calculation shows that the moments of this function,
defined by

v (k, m)= I r f"~(i )d»

where m is any non-negative integer. A straightforward have the values

( 1)k —a —m —i (k —a —m —1)(0)(a+m)! if a= —m, rn —+1, . . . , k —m —1

v (k, m)=, I (a+m+1) ( a+m k —2)
4nl (a+m —k+1)

6'". ~0 for i =0, 1 and j =0, 1, . . . ,

where 5"denotes

(3)

V!'+ 1

vi+1

vi+2

l+J
v) +j+ i

A Stieltjes theorem [20] states that, since f'"'(r)) 0,
the quantities I v (k, rn ), a =0, 1,2, . . . ] must necessarily
fulfill the following two types of inequalities:

~(0) & 2 [P
(» ')

for a convex single-particle d nsity, as recently shown by
Ref. [11].

Third: m =k —n —1, n ~2. The central value of the
nth derivative of th= sing)=-article density is bounded
from below by means of the corresponding values of the
derivatives of the two previous orders as

t+J 1+J+1 V! +2j
P P k ( )

P~"-2~(0) ~"~(o)) " "
[ ~"-'~(0)]'

which is the so-called Hadamard determinant associated
to the moments given by Eq. (2).

n =2, 3, . . . , k =n+1,n+2, . . . . (7)

III. GENERAL RESULTS

Here the Stieltjes theorem shown in the preceding sec-
tion is applied to the function f '"'(r) for various choices
of the parameter m. This application produces several
rigorous inequalities to be fulfilled by a kth-order mono-
tone function, which involve radial expectation values
and/or the central values of the function and its deriva-
tives. We will only shown those inequalities coming from
the non-negativity of the Hadamard determinants 6', '

and/or b,I" because they are nontrivial, physically in-
teresting, and specially simple.

First: m =k —1. The single-particle density at the ori-
gin is bounded from below as

4m k+1 (r ') (4)

This inequality reduces to the known lower bounds
[11,21,22] to the central single-particle deisity p(0) for
the cases k =1 (monotonically decreasing density) and
k =2 (convex density). Even more, such lower bounds
get naturally improved for higher values of k in (4).

Second: m =k —2. The value of the first derivative of
the single-particle density at the origin satisfies the in-
equality

—p'(0) )4', , k =2, 3, . . . .) k —1 [p(0)]
r

In particular, for k =2 one has that

It is worthwhile to rema. rk that the combination of ine-
qualities (4), (5), and (7) allows one to find rigorous
bounds to any central derivative p'"'(0) in terms of the
radial expectation values ( r ) and ( r ' ) .

Fourth: m =k+n anQ n ) —1. The radial expecta-
tion values (r") with a =n, n —1, and n —2 fulfill

(k +n + 1)(n +2)
(

(k +n +2)(n +1)
with n& —1, k=0, 1, . . . .

(rn)(rn —2) ) (rn —1)2 (9)

(ii) k =1. A monotorically decreasing single-particle
density, that is, a d-nsity-function unimodal with mode at
the origin, satisfies not only (9) but also

i' g'2
( n)( n —2) & &n -i

( n —1)2
(n +1)(n +3) (10)

(iii) k =2. A single-particle density with the convexity
property satisfies

( n)( n —2) & (n+ )(n+3)
( n —1)2

(n +1)(n +4)
which is better than the inequalities (9) and (10).

(iv) n =0. Then, a kth-order monotonic density fulfills

These inequalities considerably generalize and improve
all the corresponding ones known up to now [23—27].
Let us show some particular ™ases.

(i) k =0. Then, any single-particle density, because of
its positive definiteness, satisfies
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TABLE I. Comparison of the upper bound iUB), U=lZ/2~)(r ), and the lower bound (LB), L =ll/4m)((r ') 2/(r ')i, of
Hoffmann-Ostenhof et a1. with the value of p(0) for all neutral atoms with Z ~ S4 in the Hartree-Fock approximation. Ratios be-
tween bounds and p(0) are given in percent. Numbers in parentheses denote the corresponding power of 10, i.e., 3.1831(—1) means
3.1831X 10 '. Atomic units are used throughout.

Z LB UB LB(%} UB{%)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.0000
1.1992(+1)
3.0217(+ 1)
5.7624(+ 1)
9.3663(+ 1)
1.3877(+2)
1.9322(+ 2)
2.5726(+ 2)
3.3107(+2)
4.1490(+2}
5.0949(+2)
6.1482(+2)
7.3035(+2)
8.5623(+2)
9.9256(+2}
1.1409(+3)
1.2967(+ 3)
1.4650(+ 3)
1.6442(+ 3)
1.8344(+ 3)
2.0343(+ 3)
2.2446(+ 3)
2.4655(+ 3)
2.6960(+ 3)
2.9391(+3)
3.1922(+3)
3.4560(+ 3)
3.7305(+3)
4.0144(+3)
4.3120(+3}
4.6200(+ 3)
4.9396(+3)
5.2704(+ 3)
5.6128(+3)
S.9662(+ 3)
6.3305(+3)
6.7057(+ 3)
7.0936(+3)
7.4917(+3)
7.9002{+3)
8.3206(+ 3)
8.7521(+3)
9.1956(+3)
9.6488(+ 3)
1.0114(+4)
1.0589(+4)
1.1078(+4)
1.1579(+4)
1.2090(+4)
1.2612(+4)
1.3146(+4)
1.3692(+4)
1.4250(+ 4)
1.4818(+4}

1.0000
3.3747
5.7156
8.4087
1.1379(+1)
1.4689(+ 1)
1.8336(+1)
2.2260(+ 1)
2.6519(+1)
3.1113(+1)
3.5430(+ 1)
3.9920(+ 1)
4.4soo(+1}
4.9243(+ 1)
5.4148(+1)
5.9497(+ 1)
6.4372(+ 1)
6.9725(+1)
7.4894(+ 1)
8.0159(+1)
8.5709(+ 1)
9.1420(+ 1}
9.7273(+ 1)
1.0346(+2)
1.0941(+2)
1.1565(+2)
1.2205(+ 2)
1.28S8(+2)
1.3S48(+2)
1.4206{+2)
1.486S(+2)
1.5533(+2)
1.6209{+2)
1.6892{+2)
1.7584(+ 2)
1.8285(+ 2)
1.8967(+2)
1.9657(+2)
2.0362(+2)
2.1090(+2)
2.1817(+2)
2.2552(+ 2)
2.3281(+2)
2.4046(+ 2)
2.4805(+ 2}
2.5590(+2}
2.6350(+2)
2.7111(+2)
2.7880(+2)
2.8651(+2)
2.9427(+ 2)
3.0208(+ 2)
3.0995{+2)
3.1787(+2)

3.1831(—1)
3.5973
1.3834(+ 1)
3.5428(+ 1)
7.1985(+1)
1.2756(+ 2)
2.0613(+2)
3.1197(+2)
4.4871(+2)
6.2015(+2)
8.3383(+2)
1.0937(+3)
1.4029(+ 3)
1.7657(+ 3)
2.1863(+3)
2.6701(+3)
3.2180(+3)
3.8402(+ 3)
4.5385(+3)
5.3199(+3)
6.1836(+3)
7.1339(+3)
8.1783(+3)
9.3152(+3)
1.0560(+4)
1.1912(+4)
1.3371(+4)
1.4943(+4)
1.6627(+ 4)
1.8449(+4)
2.0388(+4)
2.2470(+ 4)
2.4690(+4)
2.7061(+4)
2.9572{+4)
3.2228(+ 4)
3.5024(+ 4)
3.8009(+4)
4.1153(+4)
4.4462(+ 4)
4.7949(+4)
5.1613(+4)
5 ~ 5466(+ 4)
S.9491(+4)
6.3716(+4)
6.8129(+4)
7.2755(+ 4)
7.7609(+4)
8.2644(+ 4)
8.7899(+4)
9.3371(+4)
9.9074(+4)
1.0501(+5)
1.1116(+5)

3.1831(—1)
3.3911
1.2713(+1)
3.1424(+ 1)
6.1351{+1)
1.0433(+2)
1.6203(+2)
2.3660(+2)
3.2891(+2)
4.4029(+ 2)
S.83O3(+ 2)
7.5352(+2)
9.5388(+2)
1.1847(+3}
1.4478(+ 3)
1.7410(+3)
2.0786(+ 3)
2.4495(+ 3)
2.8724(+ 3)
3.3406(+ 3}
3.8423(+ 3)
4.3856(+ 3)
4.9729(+3)
5.5906(+3)
6.2829(+ 3)
7.0117(+3)
7.7875(+ 3)
8.6129(+3)
9.4658(+ 3)
1.0415{+4)
1.1426(+4)
1.2500(+ 4)
1 ~ 3637(+4)
1.4841(+4)
1.6109{+4)
1.7441(+4)
1.8866(+4)
2.0371(+4)
2.1935(+4)
2.3550(+4)
2.5253(+4)
2.7029(+4)
2.8903(+4}
3.0810(+4)
3.2817{+4)
3.4868(+4)
3.7062(+ 4)
3.9354(+4)
4.1721(+4)
4.4179(+4)
4.6734(+4)
4.9386(+4)
5.2135(+4)
5.4969(+4)

3.1831(—1)
3.8172
1.4428(+ 1)
3.6685(+ 1)
7.4535(+ 1)
1.3252(+ 2)
2.1526(+2)
3.2755(+ 2)
4.7422{+2)
6.6033(+2)
8.9197(+2)
1.1742{+3)
1.5111(+3)
1.9078(+ 3)
2.3696(+3)
2.9053(+3)
3.5084(+ 3)
4.1969(+3)
4.9720(+ 3)
5.8391(+3)
6.7991(+3)
7.8593(+3)
9.0251(+3)
1.0298(+4)
1.1694(+4)
1.3209(+4)
1.4851(+4)
1.6624(+ 4)
1.8528(+ 4)
2.0588(+4)
2.2794(+4)
2.5157(+4)
2.7681(+4)
3.0372(+4)
3.3234(+4)
3.6271(+4)
3.9488(+4}
4.2901(+4)
4.6501(+4)
5.0294(+4)
5.4295(+ 4)
5.8503(+4)
6.2932(+4)
6.7569(+4)
7.2436(+ 4}
7.7523(+4)
8.2867(+4)
8.8457(+ 4)
9.4285(+ 4)
1.0036(+5)
1.0670(+ 5)
1.1332(+5)
1.2020(+ S)
1.2735(+ 5)

100.0
94.3
91.9
88.7
85.2
81.8
78.6
75.8
73.3
71.0
69.9
68.9
68.0
67.1

66.2
65.2
64.6
63.8
63.3
62.8
62.1

61.5
60.8
60.0
59.5
58.9
58.2
57.6
56.9
56.5
56.0
55.6
55.2
54.8
54.5
54.1

53.9
53.6
53.3
53.0
52.7
52.4
52.1

51.8
51.5
51.2
50.9
50.7
50.5
50.3
50.1

49.8
49.6
49.5

100.0
94.2
95.9
96.6
96.6
96.3
95.8
95.2
94.6
93.9
93.5
93.1
92.8
92.6
92.3
91.9
91.7
91.5
91.3
91.1
90.9
90.8
90.6
90.5
90.3
90.2
90.0
89.9
89.7
89.6
89.4
89.3
89.2
89.1

89.0
88.9
88.7
88.6
88.5
88.4
88.3
88.2
88.1

88.0
88.0
87.9
87.8
87.7
87.7
87.6
87.5
87.4
87.4
87.3
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TABLE II. Hartree-Fock study of inequalities (22) and (23) as well'as the cusp condition for all neutral atoms with Z & 54. The ra-
tios Co& =(—2Z)p(0)/p'(0) Cp2 =( 2Z) p(0)/p"(0), and CI2 =( —2Z)p'(0)/p"(0) are given. See text for further details. Atomic
units are used throughout.

Z p(0) —p'(0) p"(0) Coi C02 C)2

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.1831(—1)
3.5973
1.3834(+ 1)
3.5428(+ 1)
7.1985(+1)
1.2756(+2)
2.0613(+2)
3.1197(+2)
4.4871(+2)
6.2015(+2)
8.3383(+2)
1.0937(+3)
1.4029(+ 3)
1.7657(+ 3)
2.1863(+3)
2.6701(+3)
3.2180{+3}
3.8402(+ 3)
4.5385(+3)
5.3199(+3)
6.1836(+3)
7.1339(+3)
8.1783(+3)
9.3152(+3)
1.0560(+4)
1.1912(+4)
1.3371{+4)
1.4943(+4)
1.6627(+4)
1.8449(+4)
2.0388(+4)
2.2470(+ 4)
2.4690(+4)
2.7061(+4)
2.9572(+4)
3.2228(+ 4)
3.5024(+ 4)
3.8009(+4)
4.1153(+4}
4.4462(+ 4)
4.7949(+4)
5.1613(+4)
5.5466(+4)
5.9491(+4)
6.3716(+4)
6.8129(+4)
7.2755(+4)
7.7609(+4)
8.2664(+ 4)
8.7899(+4)
9.3371(+4)
9.9074(+4)
1.0501(+5)
1.1116(+5)

6.3662(—1)
1.4420(+ 1)
8.3479(+ 1)
2.8479(+2)
7.226O(+2)
1.5357(+3)
2.8950(+3)
5.0099(+3)
8.1019(+3)
1.2425(+4)
1.8365(+4)
2.6274(+ 4)
3.6511(+4)
4.9490(+4)
6.5638(+4)
8.5545(+4)
1.0942(+ 5)
1.3837(+5)
1.7254(+ 5)
2.1294(+5)
2.5995(+5)
3.1411(+5}
3.7653(+5)
4.4745(+ 5)
5.2813(+5)
6.1997(+5)
7.2271(+5)
8.3728(+ 5)
9.6482(+ 5)
1.1073(+6)
1.2633(+6)
1.4373(+6)
1.6286(+ 6)
1.8401(+6)
2.0701(+6)
2.3199(+6)
2.5877(+6)
2.8844(+ 6)
3.2053(+6)
3.5521(+6)
3.9267(+ 6)
4.3300(+6)
4.7643(+6)
5.2288(+ 6)
S.728O(+6)
6.2610(+6)
6.8316(+6)
7.4448(+ 6)
8.0979(+6)
8.7822(+ 6)
9.5153{+6)
1.0295(+7)
1.1122(+7)
1.1996(+7)

1.2732
6.1251(+1)
5.2892(+ 2)
2.3778(+3)
7.4775(+ 3)
1.8968(+4)
4.1581{+4)
8.2180(+4)
1.4907(+ 5)
2.5299(+5)
4.1023(+5)
6.3933(+5}
9.6168(+5)
1.4029(+ 6)
1.9911(+6)
2.7691(+6)
3.7530(+6)
5.0320(+6)
6.6136(+6)
8.5922(+ 6)
1.1016(+7)
1.3934(+7)
1.7464(+ 7)
2.1638(+7)
2.6576(+7)
3.2480(+ 7)
3.9319{+7)
4.7190(+7)
5.6296(+7)
6.6813(+7)
7.8596(+7)
9.2300(+7)
1.0782(+ 8)
1.2564(+ 8)
1.4549(+ 8)
1.6761(+8)
1.9167(+8)
2.1942(+8)
2.5025(+ 8)
2.8444(+ 8)
3.2231{+8)
3.6408(+ 8)
4.1014(+8)
4.6057(+8}
5.1604(+8)
5.7659(+8)
6.4281(+8)
7.1568(+8)
7.9519(+8}
8.7919(+8)
9.7156(+8)
1.0718(+9)
1.1802(+9)
1.2970(+9)

1.00000
0.997 85
0.994 32
0.995 19
0.996 19
0.996 70
0.996 85
0.996 35
0.996 91
0.998 22
0.998 88
0.99905
0.99902
0.998 99
0.999 25
0.998 81
0.999 92
0.99909
0.999 56
0.999 33
0.99907
0.999 29
0.999 12
0.99929
0.999 71
0.99909
0.99905
0.999 40
0.999 51
0.999 61
1.000 59
1.000 55
1.000 61
1.00003
0.999 98
1.000 24
1.001 56
1.001 47
1.001 43
1.001 37
1.001 30
1.001 26
1.001 20
1.001 22
1.001 13
1.001 09
1.001 07
1.000 76
1.000 39
1.000 88
1.000 90
1.000 85
1.000 79
1.000 80

1.00000
0.93969
0.941 61
0.953 56
0.962 69
0.968 37
0.971 66
0.971 84
0.975 26
0.980 49
0.983 78
0.985 39
0.986 16
0.986 72
0.988 26
0.987 39
0.991 22
0.989 05
0.99092
0.990 66
0.990 22
0.991 17
0.99090
0.991 89
0.993 34
0.991 65
0.991 63
0.99301
0.993 53
0.99404
0.997 15
0.997 17
0.997 48
0.995 95
0.995 96
0.996 77
1.000 65
1.000 52
1.000 51
1.00040
1.000 31
1.000 27
1.000 21
1.000 28
1.000 12
1.00009
1.00009
0.99940
0.998 38
0.999 77
0.999 87
0.999 78
0.999 68
0.999 73

1.00000
0.941 72
0.946 98
0.958 17
0.966 37
0.971 57
0.974 72
0.975 40
0.978 29
0.982 25
0.984 88
0.986 32
0.987 12
0.987 72
0.989 00
0.988 56
0.991 31
0.989 95
0.991 35
0.991 32
0.991 14
0.991 87
0.991 77
0.992 60
0.993 63
0.992 55
0.992 57
0.993 60
0.99402
0.99443
0.996 57
0.996 63
0.996 87
0.995 92
0.995 98
0.996 52
0.999 10
0.99905
0.99908
0.99904
0.99901
0.99901
0.999 00
0.99907
0.99900
0.998 99
0.99902
0.998 64
0.997 99
0.998 90
0.998 97
0.998 93
0.998 88
0.998 93
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'»2 ( ') k=0, 1, . . . .@+2
(v) n = 1. In this case, the inequality

(12)
TABLE III. Hartree-Fock study of inequalities (16), (17), and

(18) for all neutral atoms with Z ~ 54. The ratios R;, i =0, 1,2,
defined in text are given in percent. Atomic units are used
throughout.

N(r ) & — (r), k =0, 1, . . .
3 /+4. (13)

Z R() Ri R2

is also valid for any monotone density of order k.
An important observation about inequalities (4) —(8) is

that they are optimal in the completely monotonic case,
i.e., for k = &x&. Then one obtains that for a completely
monotone single-particle density, the following two sets
of rigorous inequalities are satisfied.

(i) Inequalities involving p(0) or p'"'(0):

1 (r ')'
p(0) & (,)

—p (0) & 4~ [P
(r ')

(14)

(15)

(n —2)(0) (n)(()) & [ (n —1)(0)]2 & 2

(ii) Inequalities involving ( r ):
&r" &(r" '& " &r" '&' n & —1-n+1 "

Some particular cases are

N&. -') &2&.-'&',

N&") &-', &.)'.

(17)

(18)

(19)

(20)

IV. APPLICATION TO ATOMIC SYSTEMS

Now let us apply some of the inequalities found in the
preceding section to the atomic systems. First of all, one
should say that among inequalities (4)—(20) the only
rigorous one is (9). However, it is known from near
Hartree-Pock calculations that p(r) is not only monotoni-
cally decreasing [8,9] but also, to a very good approxima-
tion, convex [11]. Even more, these numerical calcula-
tions performed in neutral atoms with Z ~ 54 show [28]
that the monotone behavior of order higher than 2 is only
weakly violated, and the violation is so that its effects on
measurable and/or fundamental quantities of the system
are extremely small since the electron density always ap-
pears within an integral kernel in evaluating those quanti-
ties. So, although the only known many-electron system
with a rigorous completely monotonic electron density is
the hydrogen atom, one may assume that the electron
density of any neutral atom is completely monotone to
quite a good approximation.

To illustrate the goodness of this approximation, let us

Inequalities (4)—(20) can still be improved by taking
into account Hadamard determinantal inequalities (3) of
order k 2. This implies that the resulting inequalities
involve a higher number of radial expectation values
and/or p'"'(0) values, making them much more compli-
cated.

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1.50
1.85
5.02
6.13
6.81
7.14
7.35
7.61
7.78
7.89

10.84
12.25
13.72
14.48
14.97
15.36
15.82
16.07
19.45
21.25
21.48
21.60
21.68
20.48
21.79
21.86
21.91
21.95
21.06
22.00
23.40
24.20
24.78
25.40
25.87
26.24
29.80
31.81
32.35
31.49
31.69
31.85
33.32
32.37
32.56
31.37
32.88
33.99
35.51
36.47
37.20
37.96
38.57
39.06

3.00
2.37

18.63
17.32
15.85
13.79
12.08
11.17
10.24
9.38

27.15
29.57
33.45
32.25
30.26
28.98
27.64
26.04
51.19
56.58
53.16
50.18
47.52
37.62
43.08
41.14
39.41
37.80
32.28
34.99
40.91
41.57
41.05
41.15
40.50
39.52
68.19
76.05
73.22
61.23
58.49
56.13
63.15
53.88
52.67
42.08
50.44
S4.34
61.43
63.04
63.06
63.75
63.45
62.64

100.0
95.0
72.1

61.4
55.3
51.8
49.7
48.2
47.2
46.7
44.8
43.2
41.7
40.5
39.4
38.8
37.6
36.9
35.9
35.0
34.4
33.8
33.4
33.1
32.6
32.2
31.9
31.7
31.5
31.2
30.9
30.5
30.2
29.9
29.6
29.3
29.0
28.7
28.4
28.2
27.9
27.7
27.4
27.2
27.0
26.9
26.7
26.4
26.2
26.0
25.8
25.6
25.4
25.3

100.0
95.9
47.1

46.6
48.4
51.5
54.5
56.7
58.9
61.1
47.2
44.2
41.5
41.2
41.6
42.0
42.6
43.4
37.2
35.2
35.9
36.8
37.6
40.8
39.3
40.1

40.9
41.7
44.2
43.2
41.5
40.9
40.7
40.4
40.4
40.5
36.3
34.6
34.6
36.1
36.5
36.8
35.8
37.3
37.6
39.5
38.3
37.5
36.4
35.9
35.6
35.4
35.2
35.2

100.0
96.8
60.1

72.3
78.0
82.2
85.2
86.4
87.5
88.6
52.5
56.4
57.7
61.9
65.8
67.8
71.1
73.5
51.9
53.2
55.1

56.3
57.3
61.9
58.8
59.6
60.2
60.7
63.2
61.5
57.5
58.7
60.4
61.5
62.9
64.5
46.9
46.7
48.9
54.0
55.9
57.4
54.5
58.9
59.6
67.8
60.8
59.1

55.9
56.3
57.4
58.0
59.0
60.1
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analyze the quality of inequalities (14)—(20), which supply
interesting relationships between values of the electron
density and its derivatives at the nucleus and the radial
expe'ctation values for atomic systems. First, inequality
(15) together with the so-called atomic cusp condition [6]
p'(0) = —2Zp(0), Z being the atomic number, produces

(21)

p"(0) (
—2Z)p'(0),

p"(0) ( —2Z)'p(0) .

(22)

(23)

The quality of these inequalities for all ground-state neu-
tral atoms up to xenon is illustrated in Table II, where

This is the famous upper bound for the electron density
at the nucleus obtained in 1978 by HofFmann-Ostenhof,
Hoffmann-Ostenhof, and Thirring [29], in the electrostat-
ic approximation for the atomic Hamiltonian, which as-
sures that the nuclear mass is infinite. Just recently, an
approximate expression for p(0), which coincides with
this bound, has also been found by Cioslowski [30] with
assumptions on the electron density stronger than the
complete monotonicity.

Second, the inequality (14) gives a lower bound to p(0)
that is better by a factor —,

' than the best corresponding
one known up to now, namely that obtained with the
convexity condition [11]. Other similar, but less accu-
rate, lower bounds to p(0) have been also published
[21,27,31—33]. In Table I, the qualities of both the lower
and upper bounds given by (14) and (21), respectively, are
investigated by means of the near Hartree-Fock wave
functions [34] for all neutral atoms with Z & 54. Here we
should point out that the near Hartree-Fock values of
p(0) were previously calculated by Westgate et al. [35].
It is found that the upper bound (21) is very accurate not
only for very light atoms, as is already known [25], but
also for all the atoms up to Xe. The lower bound (14) is
very accurate for light atoms but its quality decreases to
about 50% in the region of atoms with 35 ~ Z & 54.

Third, inequality (16) with n =2 together with the
above-mentioned cusp condition leads to the following
two lower bounds for the central second derivative p"(0)
of atomic systems:

again the near Hartree-Fock atomic wave functions of
Clementi-Roetti [34] have been used. Remark that in
Table II the atomic cusp condition p'(0)= —2Zp(0) is,
for the sake of completeness, also numerically studied in
the same Hartree-Fock framework. A careful examina-
tion of this table allows us to conclude that the accuracy
of the two inequalities (22) and (23) is similar to that of
the cusp condition. So, the lower bounds (22) and (23)
may be considered as the computational value ofp"(0).

Finally, we study the quality of the atomic inequalities
(18), (19), and (20) in Table III. Therein the Hartree-
Fock values of the ratios

3N
2

are given for all the neutral atoms with Z ~ 54. One no-
tices that the quality of inequality (20) is higher than that
of the other two inequalities (18) and (19), being always
bigger than —50%%uo for all atoms with Z & 54. Inequali-
ties (18) and (19) are reasonably accurate only for atoms
with Z ~10.

V. CONCLUDING REMARKS

To summarize, we have found several sets of rigorous
inequalities that involve the values at the origin of the
single-particle density p(r) and its derivatives as well as
the radial expectation values. They are valid for any
many-particle system characterized by a single-particle
density function p(r) with a monotone nature of finite or
infinite order.

The application of these inequalities to atomic systems
in the approximation of complete monotonicity allows to
extend considerably and improve the accuracy of the
known inequalities among three expectation values as
well as that of the bounds to the electron density p(r) and
its derivatives at the nucleus. Particularly remarkable
are the upper bound given by (21) and the lower bound
given by (14) of Hoffmann-Ostenhof et al. to the atomic
electron density at the nucleus, p(0), as well as the com-
putational values for the second derivative of the electron
density at the nucleus, p"(0).
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