Resonance transition energies of Li-, Na-, and Cu-like ions

Y.-K. Kim, D. H. Baik,^{*} and P. Indelicato[†]

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

J. P. Desclaux

Département de Recherche Fondamentale/Service de Physique Atomique, Centre d'Etudes Nucléaires de Grenoble, Boîte Postale 85X, F-38041 Grenoble CEDEX, France

(Received 26 December 1990)

Relativistic correlation energies are determined by taking the difference between the energies derived from the relativistic many-body perturbation method and those from the Dirac-Fock method for the resonance transitions of Li-, Na-, and Cu-like ions. These correlation energies are combined with the Dirac-Fock energies and "screened" QED corrections based on approximate methods. The resulting theoretical transition energies are compared with available experimental data along isoelectronic sequences to identify irregularities in the data and to predict transition energies of ions whose values are unknown or uncertain.

I. INTRODUCTION

Reliable theoretical predictions of atomic energy levels require methods that account for electron correlation, relativistic, and quantum-electrodynamic (QED) corrections. At present, we do not have a comprehensive and practical method that accounts for all three corrections on equal footing.

For an atom with a low nuclear charge Z, electron correlation far exceeds both relativistic and QED corrections, and ab initio calculations must take this into consideration. The relativistic multiconfiguration Hartree-Fock method, usually referred to as the multiconfiguration Dirac-Fock (MCDF) method, $^{1-4}$ is one of the most flexible computational schemes to produce self-consistent-field (SCF) wave functions that incorporate major parts of electron correlation and relativistic corrections for atoms with both simple and complex valence-shell configurations, but the method is not precise enough for detailed comparison with experiment unless a very large number of "correlation" configurations are included. MCDF calculations with large-scale configuration mixing are successful for atoms with a few bound electrons,⁵ but such calculations become increasingly difficult for atoms with a large number of bound electrons, such as Cu-like ions.

As the nuclear charge increases, electron correlation remans insensitive to Z while relativistic and QED corrections grow rapidly as high powers of $Z(Z^2-Z^4)$. Since major relativistic corrections that arise from the Dirac Hamiltonian and the Breit interaction are included in the MCDF method, reliable theoretical predictions depend on the theoretical capability to accurately evaluate correlation and QED corrections.

Traditionally, the correlation energy was defined as the difference between the exact nonrelativistic, manyelectron energy eigenvalue of a level and the corresponding theoretical energy derived from a (nonrelativistic) single-configuration Hartree-Fock (HF) wave function. Since it is a routine procedure now to obtain Dirac-Fock (DF) wave functions that are equivalent to the singleconfiguration HF wave functions mentioned above, it is more sensible instead to define relativistic correlation energy $E_{\rm rcor}$ as

$$E_{\rm rcor} = E_{\rm rtot} - E_{\rm DF} , \qquad (1)$$

where $E_{\rm rtot}$ is the relativistic total energy without QED corrections and $E_{\rm DF}$ is the total energy obtained from a DF wave function with the minimum number of relativistic configurations (also without QED corrections). The relativistic counterpart of a single-configuration HF wave function is not necessarily a single-configuration wave function. For instance, the (nonrelativistic) 2s2p configuration of Be is matched by two relativistic configurations, $2s_{1/2}2p_{1/2}$ and $2s_{1/2}2p_{3/2}$. Hence, the definition of $E_{\rm rcor}$ for the 2s2p ¹P₁ and ³P₁ levels requires $E_{\rm DF}$ calculated with linear combinations of the two relativistic configurations, while that for the 2s2p ³P₀ level involves only $2s_{1/2}2p_{1/2}$.

Using a relativistic version of the many-body perturbation theory (MBPT), Johnson, Blundel, and Sapirstein⁶⁻⁸ have calculated relativistic ionization energies of lowlying levels of Li-, Na-, and Cu-like ions $(ns_{1/2}, np_{1/2},$ and $np_{3/2}$). Their values accurately represent the usual relativistic effects as well as the electron correlation. However, quantum-electrodynamic corrections must be added to their values for detailed comparisons with experiment.

The comparison of MBPT and DF results is not straightforward because of their difference in the starting point. In the DF method, all orbitals are made selfconsistent for each level, thus producing slightly different core orbitals for the ground and excited states. In this version of the MBPT, a common closed-shell core is used to generate all real and virtual orbitals for the ground and excited states.

For instance, in the Li sequence, a 1s orbital is generated for the He-like core, and the 2s, $2p_{1/2}$, $2p_{3/2}$, and oth-

Work of the U.S. Government Not subject to U.S. copyright er excited-state orbitals needed in the MBPT are generated in the field of the $1s^2$ core, while the 1s orbital is kept frozen. Thus, in the MBPT, the core contribution to the total energies of the ground and excited states cancels exactly, but not in the DF method.

In the MBPT, any change in the total energy due to the "relaxation" of the 1s orbital is attributed to higherorder corrections to the valence electron energy, i.e., it is counted as part of the "correlation" energy of the valence electron. However, the core relaxation in a minimumconfiguration DF calculation will not be considered as part of "electron correlation."

The core relaxation affects both the nonrelativistic Coulomb interaction and the Breit interaction between bound electrons. The difference in the definition of the "zeroth-order" energy is amplified in the Breit interaction, since it is more sensitive to the details of core orbitals than the Coulomb interaction is. One can avoid these differences and draw meaningful conclusions by using transition energies in Eq. (1) rather than total energies for each level. We have determined the Z dependence of the correlation energy by comparing the MBPT transition energies with the corresponding DF results for the alkali-metal-like ions (Sec. II). Polynomials in Z were fitted to the correlation correction to obtain correlation energies for ions whose MBPT values were not available.

There are two major components in the QED correction. The dominant one is the self-energy. The selfenergy for a hydrogenic ion with a point nucleus, which is precisely known,⁹⁻¹¹ must be corrected for the mutual screening of bound electrons in a many-electron atom. One can attempt to establish upper and lower limits of the self-energy screening by taking the hydrogenic selfenergy values with no screening (i.e., use the bare nuclear charge value Z) and with complete screening (use an effective nuclear charge, Z'=Z-N+1, N being the number of bound electrons). Such limits, however, are too far apart to be of any practical value unless N is small and Z is large.

The leading term of a less-dominant QED correction, the vacuum polarization, can be evaluated with the Uehling potential,¹² which can be used with DF wave functions, thus indirectly allowing for the mutual screening. A combination of the fact that the vacuum polarization is much smaller in magnitude than the self-energy and the possibility of using SCF wave functions makes the "screening" of the vacuum polarization less problematic than the screening of the self-energy.

In order to provide reasonable estimates of the screening of the self-energy, three approximate methods (Sec. III), none of which is based on a rigorous QED procedure, have been used in the MCDF computer codes commonly available. By combining DF energy levels, supplemented by correlation corrections determined from the results of Johnson *et al.*, and these "screened" QED corrections, one can study the Z dependence of the difference between theoretical and experimental values of transition energies and predict energies for ions whose experimental values are unknown or uncertain.

Since the Z dependence of all theoretical terms is expected to vary smoothly along an isoelectronic sequence,

the difference between theoretical results and experiment can be used to identify experimental irregularities and to extrapolate the difference to predict transition energies. This type of comparison was successfully used by Edlén, who used earlier MCDF results to smooth and extrapolate experimental values.¹³ Dirac-Fock results that are available now are more refined than those used by Edlén, mostly in estimating QED corrections. Analyses based on current DF results yield more reliable predictions of expected energy levels, since all leading Z-dependent terms are accounted for in the theory and hence the difference between theory and experiment is smaller and less sensitive to Z.

Experimental wavelengths for highly charged ions of heavy elements of interest here have been measured using tokamaks, laser-generated plasmas, and ion beams and traps as light sources. As will be seen in Sec. IV, some of these experimental results for Z > 50 exhibit irregular behavior when compared to theory, indicating much larger uncertainties than those seen in experimental data on lighter elements.

In this paper, we discuss qualitative features in the Zdependence of relativistic correlation energy and QED corrections of Li-, Na-, and Cu-like ions, and present interpolated and extrapolated transition energies for the resonance transitions $(ns_{1/2} \rightarrow np_{1/2} \text{ and } ns_{1/2} \rightarrow np_{3/2})$, which can be used as guidelines for future experiments (Sec. IV). Similar predictions were made by Seely *et al.* on the same transitions, $^{14-17}$ but the QED corrections we used have smaller systematic deviations from experiment than those used by Seely et al. There are also new experimental data on heavy Cu-like ions (Z > 50) that were not available to Seely et al. The new data remove some confusion in the Z dependence of the difference between theory and experiment in Cu-like ions for 50 < Z < 70, allowing us to draw more definite conclusions about the experimental data above Z = 70 (Sec. IV). Our conclusions and suggestions for future experiments are presented in Sec. V.

II. RELATIVISTIC CORRELATION ENERGY

The relativistic Hamiltonian H_0 we have used to derive our Dirac-Fock wave functions consists of the Dirac Hamiltonian and the Coulomb repulsion:

$$H_0 = \sum_j \left(\boldsymbol{\alpha}_j \cdot \mathbf{p}_j c + \beta_j m c^2 - Z e^2 / r_j \right) + \sum_{j > k} e^2 / r_{jk} , \qquad (2)$$

where α and β are 4×4 Dirac matrices, \mathbf{p}_j is the momentum operator of the *j*th electron, *c* is the speed of light, *m* is the electron rest mass, *e* is the electronic charge, r_j is the distance between the nucleus and the *j*th electron, r_{jk} is the distance between the *j*th and *k*th electrons, and the summations extends over all bound electrons.

The standard practice is to use H_0 with Slater determinants of four-component, one-electron wave functions. For the states of interest in this article, the DF wave functions consist of single determinants, with one electron outside a closed shell. The correlation not well represented by the DF method is the correlation among the core electrons and between the core and valence electrons. The latter is often referred to as the core polarization.

Unlike the HF method, however, the DF method involves some numerical alternatives that must be specified beyond H_0 to make the comparison with other methods meaningful.

A. Nuclear-size parameters

Using a point nucleus, which is common in nonrelativistic calculations, is unsatisfactory because the effect of using an extended nucleus-be it a uniform charge or a Fermi distribution-leads to one of the largest corrections in the binding energies of individual electrons, known as the nuclear-size correction. The nuclear-size correction can be determined simply by solving the SCF equations with an extended nucleus, e.g., with a Fermi distribution of the nuclear charge. However, this correction is sensitive to the choice of nuclear-size parameters, and we must be consistent in choosing these parameters. Johnson and Soff¹⁸ showed that one could choose an appropriate root-mean-square (rms) radius for a uniformly charged nucleus that reproduces the same result as a nucleus with a Fermi distribution. To maintain consistency with the MBPT results, we used Fermi distributions that agreed with the mean radii used by Johnson, Blundel, and Sapirstein⁶⁻⁸ to deduce $E_{\rm rcor}$ using Eq. (1).

However, there are more recent nuclear-size parameters for $Z \ge 90$, and we used the new parameters for these ions in calculating $E_{\rm DF}$ and corresponding QED corrections to be combined with the $E_{\rm rcor}$ deduced using the old parameters. The new nuclear-size parameters produce DF results for inner-shell x-ray wavelengths more consistent with experimental data.¹⁹ The nuclear parameters are not smooth functions of Z; they may cause some irregularity in the Z dependence of theoretical values, though they are less than the usual errors associated with experiment.

B. Breit operator

There are three different forms of the Hamiltonian H_{e-e} to describe the electron-electron interaction (including the nonrelativistic Coulomb repulsion).²⁰

(a) In the Lorentz gauge,

$$H_{e-e} = e^2 \sum_{j>k} (1 - \alpha_j \cdot \alpha_k) / r_{jk} .$$
(3)

(b) In the Coulomb gauge,

$$H_{e-e} = e^2 \sum_{j>k} \left[\frac{1 - \alpha_j \cdot \alpha_k}{r_{jk}} + \frac{(\alpha_j \cdot \nabla_j)(\alpha_k \cdot \nabla_k)r_{jk}}{2} \right].$$
(4)

(c) With the energy-dependent retardation,

$$H_{e-e} = e^2 \sum_{j>k} \left[\frac{1 - \alpha_j \cdot \alpha_k}{r_{jk}} \right] \cos(\omega_{jk} r_{jk})$$
(5)

in the Lorentz gauge, and

$$H_{e-e} = e^{2} \sum_{j>k} \left[\frac{1}{r_{jk}} - \frac{\boldsymbol{\alpha}_{j} \cdot \boldsymbol{\alpha}_{k}}{r_{jk}} \cos(\omega_{jk} r_{jk}) + \frac{(\boldsymbol{\alpha}_{j} \cdot \boldsymbol{\nabla}_{j})(\boldsymbol{\alpha}_{k} \cdot \boldsymbol{\nabla}_{k})}{\omega_{jk}^{2} r_{jk}} [\cos(\omega_{jk} r_{jk}) - 1] \right], \quad (6)$$

in the Coulomb gauge, where

$$\omega_{ik} = |\varepsilon_i - \varepsilon_k| / c \tag{7}$$

is the difference between one-electron energies ε of the interacting electrons divided by the speed of light c. The ω in Eqs. (5) and (6) represents the change in the *total* energy of the interacting system in the original derivation of the Breit interaction using QED in which the unperturbed system consists of *noninteracting* electrons. In such a system, each electron has a definite energy associated with it, and the total energy of the system is the sum of such "one-electron" energies.

In a DF as well as an MBPT calculation, it is customary to use orbital energies for ε , although an orbital energy is not really an energy eigenvalue in the usual mathematical sense but is a Lagrange multiplier introduced to enforce the normalization of each orbital. For instance, the 2s orbital of a Li-like ion has two Lagrange multipliers, a diagonal one for normalization—normally referred to as the orbital energy-and an off-diagonal one to enforce the orthogonality between the 1s and 2s orbitals. The total energy of a Li-like ion is not the sum of orbital energies. Moreover, the difference of orbital energies does not represent the change in the total energy of the system caused by the electron-electron interaction in any theoretical method that includes the nonrelativistic Coulomb repulsion in its zeroth-order Hamiltonian. Hence, the use of orbital energies in Eq. (7) already represents a compromise. We used Eq. (6) with orbital energies to define ω , but without the Coulomb repulsion term, which is already included in H_0 , Eq. (2).

An alternative choice is to start with a set of electrons bound to the nucleus but not interacting with each other, and treat the Coulomb repulsion between them as perturbation. Such a choice may be adequate for highly charged atoms, but it will require extensive perturbation calculations to very high orders for neutral or lightly charged atoms.

C. Projection operator and unperturbed Hamiltonian

Sucher²¹ advocated the use of a projection operator in a relativistic Hamiltonian to exclude negative-energy solutions to avoid difficulties, known as the Brown-Ravenhall disease, arising from the existence of negativeenergy solutions in a relativistic formulation. We did not, however, introduce any projection operator, because it is difficult to construct an explicit yet *practical* projection operator suitable for numerical implementation in an iterative scheme. Existing DF codes (a) select positiveenergy solutions as the trial solutions, (b) permit only small departures from the trial solutions at each step of iteration, and (c) require all solutions to vanish at a large distance from the nucleus (negative-energy solutions os-

Li sequence Na sequence Cu sequence 3s-3p3/2 4s-4p3/2 Coeff. $2s - 2p_{1/2}$ $2s-2p_{3/2}$ $3s - 3p_{1/2}$ $4s - 4p_{1/2}$ a _ 4 -1.50014-1.03515-1.09546[2]8.819 62[3] 9.068 97[3] 1.240 69 7.88628[-1]-1.24214[2]*a* _ 3 2.190 19[1] -8.968 62[2] -9.301 22[2] 2.601 09[-1] *a* _ 2 -4.04043[-1]-2.334 45[-1] - 1.447 64 3.841 08[1] 4.032 58[1] -1.897 84 a_{-1} 8.823 59[-2] 5.611 86[-2] -8.498 26[-1] -9.450 56[-3] 4.713 13[-2] 7.168 48[-2] -9.12840(-1)-1.269 90[-2] a_0 1.108 54[-2] 1.14219[-2]3.717 92[-4] 1.87573[-4] -1.68617[-3]-9.943 63[-4] a_1 8.46683[-6]-6.36940[-5]-7.61733[-5] -1.18307[-5]-5.12511[-6] 1.77273[-5] a_2 7.779 82[-8] 1.58719[-7]-8.09723[-8]-1.95142[-8]1.57050[-7]2.25627[-7] a_3 -1.013 25[-9] -4.255 82[-10] a_4

TABLE I. Fitting coefficients for E_{rcor} in the resonance transitions of Li-, Na-, and Cu-like ions. Numbers in square brackets denote powers of 10, e.g., 7.886 28[-1]=7.886 28×10⁻¹. See Eqs. (1) and (8).

cillate there). However, it is uncertain whether these numerical constraints used in an SCF procedure would automatically satisfy all the properties of a projection operator, as was claimed by Mittleman.²²

Both Breit²³ and Bethe and Salpeter²⁴ stated that the Breit operator should not be included in the unperturbed Hamiltonian because the approximations used in deriving the operator is consistent with treating it as a first-order perturbation only. Although Sucher²¹ states that such a restriction is unnecessary provided that an appropriate projection operator is used, we have used the Breit operator in the first-order perturbation because we did not explicitly use a projection operator. The unperturbed Hamiltonian we have used consists of a sum of the Dirac Hamiltonian and the nonrelativistic Coulomb repulsion.

D. Correlation energy

We have compared transition energies calculated by Johnson, Blundel, and Sapirstein⁶⁻⁸ using the MBPT and our DF results to deduce relativistic correlation energies

FIG. 1. Relativistic correlation energy, $E_{\rm reor}$ defined by Eq. (1), of Li-like ions as a function of atomic number Z in atomic units. Curve I: $ns \rightarrow np_{1/2}$ transition. Curve II: $ns \rightarrow np_{3/2}$ transition. Curve III: $np_{1/2} \rightarrow np_{3/2}$ transition. For Li-like ions, n = 2. Curves are fitted values [Eq. (8) and Table I] and open symbols represents the actual correlation energies calculated from Refs. 6-8.

 $E_{\rm rcor}$ according to Eq. (1). The $E_{\rm rcor}$ thus deduced were then fitted to a power series in Z:

$$E_{\rm rcor} = a_{-4}/Z^4 + a_{-3}/Z^3 + a_{-2}/Z^2 + a_{-1}/Z + a_0 + a_1 Z + a_2 Z^2 + a_3 Z^3 + a_4 Z^4 , \qquad (8)$$

where the coefficients a_i were determined by a leastsquare fitting. The fitted correlation energy agrees with the original data within 5×10^{-5} hartree. Only $E_{\rm rcor}$ for the $ns \cdot np_{1/2}$ and $ns \cdot np_{3/2}$ transitions in each sequence were fitted and the $E_{\rm rcor}$ for the $np_{1/2} \cdot np_{3/2}$ fine-structure splitting was deduced from the other two to avoid conflict among fitted values. The fitted coefficients are listed in Table I.

As is shown in Figs. 1-3, $E_{\rm rcor}$ is less than 0.03 hartree (~0.8 eV) in magnitude for all transitions considered in the present work. In the hydrogenic limit, $ns_{1/2}$ and $np_{1/2}$ are degenerate in energy, and hence we can regard curves I for the $ns \cdot np_{1/2}$ transition as representing the Coulomb repulsion between bound electrons and accompanying relativistic corrections, which grow rapidly as Z increases. Curves II for the $ns \cdot np_{3/2}$ transition are relatively flat (i.e., Z independent) for intermediate values of Z. The flat trend reflects the prediction of the nonrela-

FIG. 2. Relativistic correlation energy of Na-like ions in atomic units. See Fig. 1 caption for legend with n = 3 for Na-like ions.

0.03

0.02

Cu seq.

FIG. 3. Relativistic correlation energy of Cu-like ions in atomic units. See Fig. 1 caption for legend with n = 4 for Cu-like ions.

tivistic Z-expansion theory that the leading nonrelativistic correlation energy for such transitions be independent of Z. Curves III for the $np_{1/2}$ - $np_{3/2}$ transition mainly represent the difference in the correlation energies of the $np_{1/2}$ and $np_{3/2}$ levels.

The DF transition energies without QED corrections are listed in Tables II-VII. We did not include the mass polarization in our calculation, since it is smaller than the uncertainties in the way we estimate QED corrections. Hence, mass polarization, which is included in the MBPT calculation, will appear as part of our correlation energy. The resulting relativistic correlation energies are also listed in Table II-VII. The sum of our DF results (without QED) and $E_{\rm rcor}$ should match the transition energies derived from the MBPT results.⁶⁻⁸ For Cu-like U⁶³⁺, however, the nuclear parameters used in Ref. 8 were different from those used in Ref. 18 and the present DF calcula-

TABLE II. Energy for the $2s-2p_{1/2}$ transition of Li-like ions (in cm⁻¹).

Z	DF no QED	$\begin{array}{c} \mathbf{QED} \\ \mathbf{\rho} \end{array}$	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
6	65 118	-14	-613	64 491	64 484±1	a	64 483	64 484	a
7	81 21 5	-27	-718	80470	80463 ± 1	a	80 464	80 463	a
8	97 224	-48	- 797	96 379	96375 ± 1	a	96 375	96 374	a
9	113 199	-76	-859	112 264	112 261±2	a	112 262	112 261	a
10	129 176	-116	- 909	128 151	128151 ± 2	a	128 151	128 151	a
11	145 180	-168	-951	144 061	144062 ± 3	a	144 063	144 063	a
12	161 229	-235	-987	160 008	160012 ± 3	a	160 012	160 012	а
13	177 338	-318	-1018	176 002	176012±4	a	176 008	176 008	a
14	193 521	-421	-1045	192 056	192062±5	b	192 064	192 063	a
15	209 790	- 544	-1070	208 176	208 204±25	с	208 185	208 184	a
16	226 154	-691	-1093	224 371	224 366±15	d	224 381	224 380	a
17	242 625	-864	-1114	240 648	240659 ± 12	a	240 659	240 657	a
18	259 213	-1065	-1134	257014	257020±7	a	257 026	257 024	a
19	275 926	-1296	-1153	273 476	273 500±10	e	273 489	273 489	a
20	292 774	-1560	-1172	290 041	290057±20	е	290 055	290 057	а
21	309 767	-1861	-1190	306716	$360700{\pm}300$	е	306 731	306 735	а
22	326 913	-2199	-1209	323 506	323 541±10	f	323 521	323 530	а
23	344 224	-2578	-1227	340 420	$340470{\pm}60$	e	340 435	340 451	а
24	361 708	-3000	-1245	357 462	357 489±30	g	357 476	357 491	h
25	379 372	-3469	-1263	374 640	374 700±50	e	374 654	374 665	h
26	397 230	-3987	-1282	391 961	392012±20	g	391 975	391 986	h
27	415 288	-4 556	-1301	409 432		0	409 445	409 454	h
28	433 560	-5180	-1320	427 060	427 068±20	g	427 073	427 082	h
29	452 048	-5860	-1339	444 848	444 850±20	g	444 861	444 873	h
30	470 769	-6602	-1359	462 809		U	462 821	462 837	h
31	489 733	-7406	-1379	480 948			480 960	480 979	h
32	508 946	-8276	-1400	499 269	499276±30	g	499 281	499 307	h
33	528 424	-9216	-1421	517 787		U	517 798	517 828	h
34	548 173	-10228	-1443	536 502	536 552±45	g	536 513	536 550	h
35	568 214	-11315	-1465	555 434		•	555 445	555 482	h
36	588 541	-12481	-1488	574 572	574 594±85	g	574 582	574 626	h
37	609 182	-13729	-1511	593 942		•	593 952	593 997	h
38	630 146	-15062	-1535	613 549			613 559	613 601	h
39	651 441	-16483	-1559	633 399			633 408	633 443	h
40	673 075	- 17 994	-1585	653 496			653 505	653 534	h
41	695 061	- 19 603	-1610	673 848			673 857	673 884	h
42	717 399	-21310	-1637	694 452	$694454{\pm}100$	g	694 460	694 499	h
43	740 146	-23 119	-1664	715 363			715 371	715 393	h
44	763 265	-25035	-1692	736 538			736 546	736 570	h

	DF	QED	Relativistic	Theory		Expt.	Present	Other	Predictions
Z	no QED	ρ	correlation	total	Experiment	Ref.	predictions	predictions	Ref.
45	786 804	-27060	- 1721	758 023			758.030	758 041	h
46	810 768	-29199	-1751	779 818			779 825	779 820	h
47	835 172	-31456	-1782	801 935			801 942	801 916	h
48	859 994	-33834	-1813	824 346			824 352	824 338	h
49	885 320	-36338	-1846	847 137			847 143	847 100	h
50	911 107	-38970	-1880	870 256			870 262	870 213	h
51	937 375	-41729	- 1915	893 731			893 736	893 688	h
52	964 097	-44635	- 1951	917 511			917 516	917 538	h
53	991 504	-47680	- 1989	941 834			941 839	941 779	h
54	1019311	-50874	-2028	966409	967 590+800	i	966 413	966 424	h
55	1 047 799	-54233	-2069	991 497	907 990±000	-	991 501	200 424	11
56	1 076 793	-57718	-2111	1016965			1016969		
57	1 106 412	-61378	-2155	1 042 879			1 042 882		
58	1 1 36 631	-65220	-2200	1069211			1 069 214		
59	1 167 495	- 69 201	-2266	1 096 046			1 096 048		
60	1 198 994	-73373	- 2297	1 123 324			1 123 326		
61	1 231 091	-77 727	-2349	1 151 016			1 125 520		
62	1 263 789	-82267	-2403	1 179 120					
63	1 297 360	- 86 996	-2459	1 207 905					
64	1 331 512	-91 885	-2518	1 237 110					
65	1 366 541	- 97 009	-2579	1 266 953					
66	1 402 457	-102386	-2643	1 200 933					
67	1 438 435	-107891	-2710	1 327 833					
68	1 476 326	-113650	-2780	1 359 896					
69	1 514 152	- 119 645	-2853	1 391 654					
70	1 552 906	- 125 869	- 2033	1 424 107					
71	1 592 700	-132320	-3010	1 457 404					
72	1 633 144	-139036	- 3094	1 491 014					
73	1 674 701	-145992	3182	1 525 526					
74	1 716 605	-153212	-3274	1 560 119					
75	1 760 108	- 160 690	- 3370	1 596 048					
76	1 804 131		3471	1 632 216					
77	1 849 030	-176478	- 3576	1 668 976					
78	1 894 932	- 184 798	- 3686	1 706 448					
79	1 941 695	-193412	-3801	1 744 481					
80	1 988 967	-202332	- 3922	1 782 714					
81	2 037 678	-211558	-4048	1 822 072					
82	2 086 949	-221105	-4179	1 861 665					
83	2 136 921	-230979	-4317	1 901 625					
84	2 188 163	-241182	-4461	1 942 520					
85	2 239 218	-251393	-4611	1 983 214					
86	2 290 295	-262271	-4768	2 023 257					
87	2 343 527	-273486	-4931	2 065 109					
88	2 396 716	-285 070	-5102	2 106 543					
89	2 451 049	-297.017	- 5281	2 148 751					
90	2 499 108	- 309 419	- 5467	2 184 222					
91	2 553 462	-322141	- 5661	2 225 661					
92	2 604 989	-335311	- 5863	2 263 815	2 264 100+700	i			
	,,		2002		220.100	J			

 TABLE II. (Continued).

^aB. Edlén, Ref. 13.

^bW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).

^cW. C. Martin, R. Zalubas, and A. Musgrove, J. Phys. Chem. Ref. Data 14, 751 (1985).

^dW. C. Martin, R. Zalubas, and A. Musgrove, J. Phys. Chem. Ref. Data 19, 821 (1990).

^eJ. Sugar and C. Corliss, Ref. 41.

^fJ. Sugar (private communication).

^gE. Hinnov et al., Ref. 51.

^hJ. Seely, Ref. 14.

ⁱS. Martin et al., Ref. 37.

^jJ. Schweppe et al., Ref. 38.

-

TABLE III. Energy for the $2s-2p_{3/2}$ transition of Li-like ions (in cm⁻¹).

	DF	QED	Relativistic	Theory		Expt.	Present	Other	Predictions
Z	no QED	ρ	correlation	total	Experiment	Ref.	predictions	predictions	Ref.
((5.220	14	(0)	(1 500	(4 501 + 1		(4.501	64.501	
07	65 220 81 467	-14 -27	608	64 598 80 720	64591 ± 1	a	64 591 80 724	64 591 80 721	a
8	07 714 07 714	-27	- 712	06 01 1 06 01 1	$\frac{60722\pm1}{96906\pm1}$	a	80 / 24 96 908	80 721	a
Q	114 158		- 844	113 240	113237+2	a	113 230	113 236	a
10	130 804	-112	889	129 803	113237 ± 2 129800+2	a	179 804	129 801	a
11	147 776	-162	-925	146 689	125000 ± 2 146693 ± 5	a	146 692	146 689	a
12	165 169	-225	- 955	163 989	140095 ± 3 163987+3	а а	163 994	163 992	a
13	183 086	-304	-979	181 803	$183 907 \pm 5$ 181 808 + 5	a	181 810	181 806	a
14	201 637	-401	- 999	200 236	200238+5	b	200 245	200 241	a
15	220 938	-517	-1017	219 404	219430 ± 25	c	219415	219411	a
16	241 115	655	-1031	239 428	239 429±15	d	239 441	239 438	a
17	262 303	-817	-1044	260 442	260 429±15	a	260 457	260 452	a
18	284 646	-1005	- 1054	282 587	282 592±10	a	282 603	282 598	a
19	308 297	-1220	-1063	306 013	306020±9	e	306 030	306 028	a
20	333 420	-1466	- 1071	330 883	330918±20	e	330 901	330 901	а
21	360 189	-1745	-1078	357 367	$357400{\pm}300$	e	357 386	357 389	а
22	388 787	-2058	- 1084	385 646	385 660±10	f	385 666	385 675	а
23	419 410	-2407	- 1089	415 914	416020 ± 90	e	415 935	415 951	а
24	452 261	-2797	- 1093	448 372	$448410{\pm}40$	g	448 394	448 404	h
25	487 556	-3227	- 1097	483 233	483 320±50	e	483 255	483 266	h
26	525 525	-3 702	- 1099	520 724	520 800±60	g	520 745	520756	h
27	566 404	-4223	-1102	561 080		-	561 101	561 111	h
28	610 44 7	-4 792	-1104	604 551	604 610±40	g	604 572	604 582	h
29	657 910	-5413	-1105	651 392	651 436±90	g	651 412	651 427	h
30	709 074	-6087	-1106	701 881			701 901	701 922	h
31	764 227	-6818	-1107	756 302			756 322	756 347	h
32	823 664	-7607	-1107	814 949	$814963{\pm}100$	g	814 968	815 004	h
33	887 706	-8458	-1107	878 141			878 160	878 201	h
34	956 674	-9373	-1106	946 194	946199±200	g	946 213	946 267	h
35	1 030 921	- 10 355	-1105	1 019 461			1 019 479	1019 539	h
36	1 110 785	-11 405	-1104	1 098 276	$1098300{\pm}300$	g	1 098 294	1 098 370	h
37	1 196 656	- 12 529	-1102	1 183 025			1 183 043	1 183 126	h
38	1 288 915	-13727	-1100	1 274 087			1 274 104	1 274 191	h
39	1 387 962	-15004	- 1098	1 371 861			1 371 878	1 371 964	h
40	1 494 211	-16359	-1095	1 476 756			1 476 773	1 476 858	h
41	1 608 097	-17801	- 1092	1 589 204			1 589 220	1 589 308	h
42	1 730 061	-19330	- 1088	1 709 642	1709400 ± 600	g	1 709 658	1 709 758	h
43	1 860 619	-20 949	-1085	1 838 585			1 838 601	1 838 677	h
44	2 000 207	-22 661	- 1081	1976465			1 976 480	1 976 549	h
45	2 149 371	-24 471	-1076	2 123 824			2 123 839	2 123 882	h
46	2 308 629	-26 381	-10/2	2 281 177			2 281 192	2 281 202	h
4/	2478531	-28 395	-1067	2 449 070			2 449 084	2 449 052	h
48	2 0 5 9 6 1 1	-30518	- 1061	2 6 2 8 0 3 2			2 628 046	2628007	h
49 50	2 852 533	- 32 / 51	- 1056	2818726			2818740	2818658	h
50	3037833	- 35 100	- 1050	3 0 2 1 7 0 3			3021716	3 0 2 1 6 2 4	h
51	3 2 / 0 2 1 0	-37300 -40152	- 1044	3 2 3 / 011			3 2 3 / 024	3 2 3 / 3 4 9	n L
52 52	3 306 241	-40132 -42870	- 1038	340/031			3 40 / 004	340/111	n L
55	3734830 4016413	-42870 -45721	-1032	3 710 934	3 971 000+5000	:	3 / 10 940	3 / 11 009	n h
55	4 010 413		- 1023	3 909 007	3971000±3000	. 1	3 909 079	3 909 978	n
56	4 588 173	-51 835	- 1013	4 525 276			4 535 787		
57	4 899 740	- 55 109	1005	4843676			4843627		
58	5229627	- 58 534	2001	5 170 005			5 170 106		
59	5 578 676	-62 115	_ QQ 1	5 5 1 5 570			5 515 580		
60	5 947 762	-65 857	- 984	5 880 921			5 880 031		
61	6 337 763	69 769	- 977	6267017			5 000 951		
62	6749637	-73852	- 970	6 674 814					
63	7 184 658	-78114	- 964	7 105 580					

Z	DF no QED	QED ρ	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
64	7 643 560	- 82 522	-957	7 560 081					
65	8 127 725	- 87 155	-951	8 039 619					
66	8 638 285	-92032	-945	8 545 308					
67	9 175 546	-97 027	-939	9 077 579					
68	9 742 660	- 102 269	-934	9 639 458					
69	10 338 825	- 107 740	- 929	10 230 156					
70	10 966 403	-113 437	-924	10852041					
71	11 626 934	-119 369	-920	11 506 645					
72	12 321 311	-125 547	-917	12 194 848					
73	13 051 662	-131 975	-914	12 918 772					
74	13 818 698	-138 673	-912	13 679 114					
75	14 625 383	- 145 634	-910	14 478 838					
76	15 472 287	-152883	-910	15 318 495					
77	16 361 577	-160 425	-910	16 200 243					
78	17 295 263	- 168 269	-911	17 126 083					
79	18 275 153	- 176 429	-914	18 097 811					
80	19 302 927	- 184 921	-917	19 117 089					
81	20 381 731	- 193 755	-922	20 187 055					
82	21 512 883	- 202 947	-927	21 309 009					
83	22 698 898	-212 508	-935	22 485 455					
84	23 942 881	-222 446	-943	23 719 491					
85	25 245 861	-232412	-953	25 012 496					
86	26 610 810	-243 141	-965	26 366 703					
87	28 042 942	-254 275	-979	27 787 689					
88	29 542 904	- 265 859	- 994	29 276 051					
89	31 115 207	- 277 894	-1011	30 836 302					
90	32 755 019	- 290 498	-1030	32 463 490					
91	34 479 810	- 303 523	-1051	34 175 236					
92	36 283 247	-317112	- 1075	35 965 059					

TABLE III. (Continued).

^aB. Edlén, Ref. 13.

^bTable II, footnote b.

^cTable II, footnote c.

^dTable II, footnote d.

^eJ. Sugar and C. Corliss, Ref. 41.

^fJ. Sugar (private communication).

- ^gE. Hinnov et al., Ref. 51.
- ^hJ. Seely, Ref. 14.

ⁱS. Martin, et al., Ref. 37.

TABLE IV. Energy for the $3s-3p_{1/2}$ transition of Na-like ions (in cm⁻¹).

Z	DF no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
14	70 6 1 8	-30	705	71 292	71 288	a	71 287		
15	88 201	-47	523	88 677	88 652±1	b	88 652		
16	105 624	-69	346	105 901	105 874±2	c	105 873		
17	122 947	-97	182	123 032	123 001	d	123 007		
18	140 208	-130	33	140 110	140 093±6	e	140 090		
19	157 437	-171	- 99	157 166	157 152±3	e	157 152		
20	174 656	-219	-217	174 220	174213±3	e	174 213		
21	191 885	-276	-321	191 288	191288±4	е	191 287		
22	209 136	-342	-413	208 381	208 385±4	e	208 385		
23	226 422	-417	- 496	225 509	225 519±5	e	225 516		
24	243 754	- 503	- 570	242 681	242 688±2	е	242 690		
25	261 140	-600	-637	259 904	259 920±30	e	259 914		
26	278 591	- 709	-698	277 184	277 192±3	е	277 194		
27	296 114	-832	-754	294 528	294 540±20	е	294 538		
28	313 715	-967	- 805	311 943	311 949±6	e	311 953		
29	331 403	-1118	-853	329 432	$329442{\pm}11$	e	329 442		

TABLE IV. (Continued).

7	DF	QED Welton	Relativistic	Theory	Experiment	Expt. Ref	Present	Other	Predictions Pef
		enon	correlation	total	Experiment		predictions	predictions	K (1).
30	349 183	-1284	- 898	347 002	347008 ± 12	e	347 012		
31	367 064	-1465	-941	364 658	364681 ± 13	e	364 668		
32	385 050	-1664	-981	382 405	382409 ± 15	e	382 415		
33	403 150	-1881	-1020	400 249	400253 ± 16	e	400 259		
34	421 367	-2116	- 1056	418 194	418195 ± 17	e	418 204		
33 26	439/11	-23/1	- 1092	430 248	436256±19	e	436 258		
30 27	438 183	-2 047	-1120	454 412	454 428±20	e	454 422		
31	4/0/98	- 2 944	-1159	4/2 095			4/2/05		
20	493 330	-3204	-1191	491 101	500 645 + 26		491111	500 625	c
39 40	522 528	-3000	- 1223	528 202	509 045±20 528 326±28	e	509 045	528 207	l f
40	552 754	-4365	- 1283	547 106	$528 320 \pm 28$ $547 115 \pm 30$	c	547 116	547 121	I f
41	572 147	-4 303	-1313	566.051	547115 ± 30 566040+32	c	566.061	566 078	l f
42	501 777	- 5 229	-1313	585 152	500040±52	С	585 162	585 180	I f
43 44	611 476	-5702	-1370	604 404			604 414	604 449	I F
45	631 423	-6205	- 1397	623 820			623 830	673 877	f
46	651 567	6 738	-1425	643 404			643 414	643 468	I F
40	671.016	-7303		663 162	663 220+200	۹	663 172	663 240	I f
48	692.469	- 7 800	- 1478	683 092	683.027 ± 70	f	683 102	683 181	I f
40	713 250	-8529	1504	703 217	003021±10	1	703 227	703 314	I F
50	734 253	-9193	-1530	703 217	723 856+79	f	703 539	703 514	f
51	754 486	-9893	-1556	744 037	123 030±17	1	723 533	723 050	f
52	776 947	-10629	-1582	764 736			764 746	764 883	I F
53	798 695	-11403	-1607	785 684			785 694	785 830	f
54	830 667	-12217	-1633	806 817	806 970+200	σ	806 827	806 985	f
55	842.933	-13070	-1658	828 205	000 770 1200	5	000027	828 377	f
56	865457	-13965	- 1684	849 809				849 986	f
57	888 271	-14902	-1709	871 660				871 847	f
58	911 374	-15882	-1735	893 757				893 967	f
59	934 782	-16902	- 1760	916113				916 338	f
60	958 496	-17981	-1786	938 730				938 958	ŕ
61	982 513	-19100	-1812	961 601				961 862	f
62	1 006 839	-20268	-1839	984 732				985 008	f
63	1 0 3 1 5 4 4	-21487	-1865	1 008 192				1 008 481	f
64	1 056 563	-22756	-1893	1031914				1 032 205	f
65	1 081 973	-24079	-1920	1 055 974				1 056 267	f
66	1 107 784	-25457	- 1948	1 080 379				1 080 625	f
67	1 133 794	-26887	- 1977	1 104 929				1 105 314	f
68	1 160 472	-28378	- 2007	1 1 3 0 0 8 7				1 1 30 3 1 4	f
69	1 187 330	-29 925	-2037	1 155 367				1 155 682	f
70	1 214 620	-31532	-2068	1 181 021				1 181 335	f
71	1 242 391	-33200	-2100	1 207 090				1 207 394	f
72	1 270 515	- 34 930	-2133	1 233 452				1 233 761	f
73	1 299 150	-36725	-2167	1 260 259				1 260 525	f
74	1 328 098	-38583	-2202	1 287 313				1 287 648	f
75	1 357 683	-40511	-2238	1 314 934				1 315 184	f
76	1 387 639	-42506	- 2275	1 342 858				1 343 021	f
77	1418064	- 44 569	-2314	1 371 181				1 371 328	f
78	1 448 997	-46 705	-2354	1 399 938				1 399 992	f
79	1 480 411	-48 913	-2396	1 429 101				1 429 123	f
80	1 512 223	-51 194	-2439	1 458 590				1 485 576	f
81	1 544 681	-53 553	-2484	1 488 643				1 488 427	t
82	1 5 / / 568	- >> 988	-2530	1519049				1 518 695	t
65 01	1 010 929		- 2579	1 549 850				1 549 451	I £
04 05	1 044 921	61 094	- 2029	1 381 197				1 380 /33	I c
0J 86	10/91/0	-66517	- 2081	1 644 512				1 642 574	1 F
87	1 749 747	- 69 357	-2730	1677003				1 675 968	ı f
07	1 / 7 / 242	166 60	<i>4174</i>	10//073				1010 200	1

Z	DF no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
88	1 785 054	-72 280	-2851	1 709 923				1 708 555	f
89	1 821 521	-75 291	-2912	1 743 318				1 741 675	f
90	1 856 731	- 78 365	-2975	1 775 391				1774717	f
91	1 893 957	-81 550	-3041	1 809 366				1 808 776	f
92	1 930 847	- 84 815	-3109	1 842 923				1 842 028	f

TABLE IV. (Continued).

^aTable II, footnote b

^bTable II, footnote c.

^cTable II, footnote d.

^dC. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) Circ. No. 35 (U.S. GPO, Washington, DC, 1971), Vol. 1.

^eJ. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).

^fJ. F. Seely et al., Ref. 17.

^gJ. F. Seely and R. A. Wagner, Ref. 15.

TABLE V. Energy for the $3s-3p_{3/2}$ transition of Na-like ions (in cm⁻¹).

Z	DE no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
14	71.070	- 29	710	71 751	71 749	a	71 750		
15	88 985	-45	533	89473	89447+1	h	89 448		
16	106 872	66	360	107 166	107138+2	C	107 138		
17	124.818	- 92	200	124 926	124 891	d	124 897		
18	142 804	- 123	55	142 826	127810+6	e e	142 804		
10	161 164	- 161	-73	160.930	142010 ± 0 160013+3		160 914		
20	179 688	-206		179 296	179288+3	e	179 288		
21	198 523	- 259	285	197 979	197981+4	e	197 979		
21	217 727	- 320	-371	217.036	217042+5	e	217 039		
23	217 727	- 390	-448	236 521	236525 ± 6	e	236 527		
23	257 358		- 515	256 492	256500 ± 2	e	256 501		
25	278 141	- 559	574	277 008	230300 ± 2 277.026+8	e	277 019		
26	270 141	- 660	-626	298 133	298143+3	e	298 146		
27	321 376	- 772	-673	319931	319950+20	e	319 945		
28	344 080	- 896	-715	342 469	342480+20	e	347 484		
20	367 605	-1034	752	365 818	$342 + 30 \pm 20$ 365 829 + 13	e	365 834		
30	392 025		- 786	390.053	390.061 ± 15	P	390.070		
31	417 420	- 1351	817	415 252	415265 ± 17	e	415 270		
32	417 420	-1531	845	413 232	441507 ± 19	e	413 270		
22	471 466	- 1729	- 871	468 866	468878+22	e	468 886		
34	500 293	- 1943	894	400 000	40007488+25	ر م	408 808		
35	530 447	-2175	916	527 357	527365+28	e	527 377		
36	562 023	- 2474	-936	558 663	527505 ± 20 558690+31	e c	558 683		
37	595 126	- 2693	- 954	501 479	550 070±51	C	591 499		
38	629 861	2093	971	625 908	625 900+20	A	625 928		
30	666 337	- 3201	- 986	669,060	662.098 ± 44	e	662 080	662 107	f
40	704 669	-3622	- 1001	700 047	700089+49	C P	700.067	700.060	f
40	744 977	- 3975	-1014	739 988	739 984+55	e	740.008	740.001	f
42	787 382	-4352	-1025	782 004	7377026 ± 61	e	782 024	782 026	f
43	832 023	-4752	-1025	826234	702020±01	C	826253	826 276	ŕ
44	879 024	5178	-1046	872 800	872 936+110	P	872 818	872 859	f
45	928 534	- 5630	-1054	921 849	921880 ± 130	e	921 866	921 939	f
46	980 696	-6109	-1062	973 525	973610+140	e	973 540	973 653	ŕ
47	1 035 661	-6616	-1068	1 027 977	$1028\ 100\pm160$	e	1 027 990	1 028 426	f

z	DE no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
48	1 093 578	-7151	- 1074	1 085 353	1085600±180	f	1 085 364	1 085 564	f
49	1 1 5 4 6 2 9	-7716	-1078	1 145 834	1146000 ± 200	f	1 145 842	1 146 079	f
50	1 218 969	-8312	- 1081	1 209 575	1 209 700±220	f	1 209 580	1 209 863	f
51	1 286 776	- 8940	-1084	1 276 752	$1277000{\pm}400$	g	1 276 754	1 277 090	f
52	1 358 224	-9601	-1085	1 347 538		U	1 347 536	1 347 945	f
53	1 433 556	-10297	-1085	1 422 174	1 423 000±400	g	1 422 168	1 422 617	f
54	1 512 897	-11027	-1084	1 500 786	1502000 ± 700	ĥ	1 500 776	1 501 276	f
55	1 596 518	-11794	-1082	1 583 641	$1584600{\pm}400$	g	1 583 626	1 584 184	f
56	1 684 586	- 12 598	-1080	1 670 908		U	1 670 888	1 671 514	f
57	1 777 349	-13 441	-1075	1 762 832			1 762 807	1 763 482	f
58	1 875 028	-14 325	-1070	1 859 633			1 859 602	1 860 327	f
59	1 977 870	-15249	-1064	1 961 556			1 961 519	1 962 323	f
60	2 086 119	-16217	- 1057	2 068 845			2 068 802	2 069 665	f
61	2 200 021	-17228	- 1049	2 181 744			2 181 694	2 182 691	f
62	2 319 841	-18284	- 1039	2 300 518			2 300 461	2 301 496	f
63	2 445 926	- 19 388	-1029	2 425 509			2 425 445	2 426 537	f
64	2 578 490	-20540	-1017	2 556 933	2 559 200±1300	f	2 556 862	2 558 003	f
65	2717907	-21742	-1004	2 695 161			2 695 083	2 696 363	f
66	2 864 493	-22 996	-990	2 840 507			2 840 422	2 841 636	f
67	3 0 1 8 3 5 7	-24301	-975	2 993 081			2 992 989	2 994 460	f
68	3 180 322	-25665	-959	3 153 698			3 153 599	3 1 5 4 9 7 2	f
69	3 350 222	-27082	-942	3 322 198			3 322 092	3 323 695	f
70	3 528 685	-28 558	-924	3 499 203			3 499 090	3 500 665	f
71	3716135	- 30 095	905	3 685 136			3685016	3 686 772	f
72	3 912 834	-31 692		3 880 258			3 880 131	3 881 988	f
73	4 1 19 3 58	-33355	-863	4 085 140			4 085 006	4 086 804	f
74	4 335 924	-35 082	-840	4 300 002			4 299 861	4 302 000	f
75	4 563 325	-36880	-817	4 525 628			4 525 480	4 527 550	f
76	4 801 743	- 38 747	- 792	4 762 204			4 762 049	4 764 173	f
77	5 051 772	-40 684	-766	5 010 322			5010160	5012280	f
78	5 313 965	-42 698	-739	5 270 528	5 270 300±440	i	5 270 359	5 272 593	f
79	5 588 826	-44 788	-711	5 543 326				5 545 697	f
80	5 876 826	-46956	-682	5 829 187				5 831 584	f
81	6 178 816	-49211	-652	6 128 953				6 131 208	f
82	6 495 178	- 51 548	-621	6 443 008				6 445 375	f
83	6 826 602	- 53 972	- 589	6772040				6 774 150	f
84	7 173 934	- 56 488	-556	7 116 889				7 119 465	f
85	7 537 482	- 59 092	-522	7 477 868				7 480 551	f
86	7 918 060	-61 788	-487	7 855 785				7 857 929	f
87	8 317 067	- 64 589	-451	8 252 026				8 254 912	f
88	8 734 713	-67488	-414	8 666 810				8 669 267	f
89	9 172 219	- 70 495	-376	9 101 347				9 104 151	f
90	9 628 358	- 73 579	-337	9 554 442				9 558 402	f
91	10 107 746	- 76 802	-298	10 030 647				10 034 116	f
92	10 608 766	- 80 127	-257	10 528 382				10 532 968	f

TABLE V. (Continued).

^aTable II, footnote b.

- ^bTable II, footnote c.
- ^cTable II, footnote d.
- ^dTable IV, footnote d. ^eTable IV, footnote e.
- ^fJ. F. Seely et al., Ref. 17.

^gJ. F. Seely, U. Feldman, C. M. Brown, M. C. Richardson, D. D. Dietrich, and W. E. Behring, J. Opt. Soc. Am. B 5, 785 (1988).

÷

^hJ. F. Seely and R. A. Wagner, Ref. 15.

ⁱT. E. Cowan et al., Ref. 42.

TABLE VI. Energy for the $4s-4p_{1/2}$ transition of Cu-like ions (in cm⁻¹).

7	DF	QED	Relativistic	Theory	• ••	Expt.	Preent	Other	Predictions
<u></u>	no QED	Welton	correlation	total	Experiment	Ref.	predictions	predictions	Ref.
32	79 154	-105	2201	81 250	81 315	а	81 320		
33	95 336	-141	1869	97 064	97 135	a	97 144		
34	111 255	-184	1610	112 681	112 762	a	112 766		
35	127 008	-232	1404	128 180	128 274	a	128 268		
36	142 660	-286	1230	143 604	143 695±2	b	143 694		
37	158 253	-346	1079	158 986	159075±2	с	159 077		
38	173 820	-414	945	174 351	$174445{\pm}2$	d	174 444		
39	189 383	-488	826	189 721	189811±3	e	189 815		
40	204 962	-570	717	205 110	$205202{\pm}3$	f	205 205		
41	220 572	-659	618	220 531	$220624{\pm}4$	g	220 627		
42	236 225	- 757	527	235 994	$236085{\pm}4$	h	236 091		
43	251 932	-864	442	251 509			251 606		
44	267 700	-980	362	267 082	267 175±7	i	267 180	267 189	р
45	283 539	-1105	288	282 721	$282834{\pm}8$	i	282 819	282 824	р
46	299 455	-1240	218	298 432	298 520±4	j	298 531	298 528	р
47	315 456	-1386	151	314 221	$314330{\pm}5$	j	314 320	314 311	р
48	331 546	-1542	88	330 091	$330196{\pm}5$	j	330 191	330 177	р
49	347 733	-1710	28	346 051	346156 ± 6	j	346 151	346 131	р
50	364 020	-1888	-29	362 102	362 195±7	j	362 202	362 178	р
51	380 413	-2079	- 84	378 251	$378367{\pm}7$	j	378 351	378 325	р
52	396 915	-2281	-136	394 498			394 598	394 572	р
53	413 542	-2496	-185	410 860	$410949{\pm}8$	j	410 960	410 932	р
54	430 283	-2724	-233	427 326	427 425±9	j	427 426	427 402	р
55	447 156	-2965	-279	443 913	$444022{\pm}10$	j	444 013	443 989	р
56	464 158	-3220	-322	460 616			460 716	460 696	р
57	481 298	- 3489	-365	477 444	477 550±70	k	477 544	477 530	р
58	498 579	-3773	-405	494 401			494 501	494 494	р
59	516007	-4073	-444	511 491			511 591	511 598	р
60	533 587	-4387	-482	528718	528 790±10	j	528 818	528 835	р
61	551 319	-4719	-518	546 082			546 182	546 221	р
62	569 207	- 5067	-553	563 587	563 540±30	1	563 687	563 749	р
63	587 273	-5432	-588	581 253	$581460{\pm}100$	k	581 353	581 433	р
64	605 502	-5815	-621	599 066	599 230±110	k	599 166	599 265	р
65	623 919	-6216	-654	617 049			617 149	617 273	р
66	642 526	-6636	-685	635 205	635 268±20	j	635 305	635 441	р
67	661 276	- 7074	-716	653 485			653 585	653 783	р
68	680 293	-7533	-747	672 013			672 113	672 305	р
69	699 453	-8012	-777	690 664			690 764	691 009	Р
70	718 824	-8511	-807	709 507	709 490±100	m	709 607	709 895	р
71	738 423	-9031	-836	728 557			728 657	728 975	р
72	758 219	-9572	-865	747 782			747 882	748 245	р
73	778258	-10136	- 894	767 228	768050 ± 600	m	767 328	767 731	р
74	/98 488	-10/22	-923	786 843	787464±93	n	786 943	787 414	р
15	819002	-11331	-952	806 719			806 819	807 311	р
/0	839729	-11964	981	826 /84			826 884	827 417	р
70	860 700	-12 620	-1010	84/0/0			847 170	847 759	р
70	881 929	-13 301	- 1039	86/389	000.007 100		867 689	868 319	р
19	903 412	-14007	-1068	888 337	88900/±120	0	888 43 /	889110	р
0U 01	923 130	- 14 / 39	- 1098	909 293			909 393	910125	р
01 01	74/174 060/20		-112/	930 331	052 025 - 140	_	930631	931 376	Р
02 82	909 429 001 040	- 10 281	-115/	931 991	932923±140	0	952 091	952 8/1	P
8J	771 707 1 017 877		- 10/	7/3 09U 005 676	973134±140	0	9/3/9U	9/4 040	P
04 85	1 014 024	- 18 705	- 1218	7730/0 1017947			995 //0 1017047	770 081	P
86	1061 100		1249 	101/04/			101/94/	1018984	P
87	1 084 804	- 20 610	- 1311	1 040 223			1 040 323	1041203	P
88	1 108 840	-21 561	12/2	1 002 973			1 003 073	1 004 043	p
89	1 133 129	- 22 541	-1375	1 100 212			1 100 212	1 1 1 0 2 2 2	p
07	1 133 127	22 541	1373	1 107 213			1 107 513	1 110 322	р

<u>44</u>

Z	DF no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
90	1 157 188	-23 544	- 1407	1 132 236			1 132 336	1 133 723	р
91	1 182 006	-24584	-1440	1 155 982			1 1 56 0 82	1 157 582	р
92	1 206 879	-25650	-1484	1 179 745	$1180700{\pm}3000$	m	1 179 845	1 181 377	p

TABLE VI. (Continued).

^aC. E. Moore, *Atomic Energy Levels*, Natl. Bur. Stand. Ref. Data Ser., Natl. Bur. Stand (U.S.) Circ. No. 35, (U.S. GPO, Washington, DC, 1971), Vol. II.

1

^bJ. Reader, J. Acquista, and V. Kaufman (unpublished).

^cS. Goldsmith, J. Reader, and N. Acquista, J. Opt. Soc. Am. B 1, 631 (1984).

^dN. Acquista and J. Reader, J. Opt. Soc. Am. 71, 569 (1981).

^eJ. Reader and N. Acquista, J. Opt. Soc. Am. 69, 1285 (1979).

^fJ. Reader and N. Acquista, J. Opt. Soc. Am. 69, 1659 (1979).

^gJ. Reader and N. Acquista, J. Opt. Soc. Am. 70, 317 (1980).

^hJ. Reader, G. Luther, and N. Acquista, J. Opt. Soc. Am. 69, 144 (1979).

ⁱJ. Reader, N. Acquista, and D. Cooper, J. Opt. Soc. Am. 73, 1765 (1983).

^jJ. Sugar et al., Ref. 49.

^kJ. F. Seely et al., Ref. 16.

¹M. Finkenthal, H. W. Moos, A. Bar-Shalom, N. Spector, A. Zigler, and E. Yarkoni, Phys. Rev. A 38, 288 (1988).

^mD. R. Kania et al., Ref. 48.

ⁿJ. F. Seely, C. M. Brown, and W. E. Behring, Ref. 46.

^oJ. F. Seely, et al., Ref. 44.

^pJ. F. Seely, C. M. Brown, and U. Feldman, Ref. 47.

Z	DF no QED	QED Welton	Relativistic correlation	Theory total	Experiment	Expt. Ref.	Present predictions	Other predictions	Predictions Ref.
32	81 761	- 99	2419	84 08 1	84 103	a	84 103		
33	99 237	-133	2108	101 212	101 245	a	101 250		
34	116717	-172	1870	118 415	118 462	а	118 463		
35	134 325	-216	1693	135 802	135 854	а	135 851		
36	152 151	-265	1538	153 424	$153476{\pm}2$	b	153 474		
37	170 268	-321	1411	171 359	$171410{\pm}2$	с	171 409		
38	188 742	-382	1302	189 661	$189714{\pm}2$	d	189712		
39	207 627	-450	1207	208 384	$208433{\pm}3$	e	208 436		
40	226 979	-524	1124	227 578	$227627{\pm}3$	f	227 630		
41	246 848	-606	1051	247 294	$247344{\pm}4$	g	247 346		
42	267 288	-695	986	267 579	$267632{\pm}4$	ĥ	267 632		
43	288 349	- 791	929	288 486			288 540		
44	310 081	- 896	877	310 062	$310140{\pm}10$	i	310116	310110	р
45	332 539	-1010	831	332 361	332 372±11	i	332 415	332 411	p
46	355 776	-1132	790	355 434	$355473{\pm}6$	i	355 489	355 486	p
47	379 847	-1264	754	379 337	379 386±7	j	379 393	379 390	p
48	404 808	-1405	721	404 124	404 166±8	j	404 180	404 178	p
49	430 719	-1556	693	429 856	429 884±9	j	429 913	429 912	p
50	457 640	-1718	668	456 591	$456640{\pm}10$	j	456 648	456 646	p
51	485 633	-1889	647	484 391	484 522±12	j	484 448	484 449	p
52	514 762	-2072	629	513 319		-	513 377	513 381	p
53	545 104	-2266	614	543 452	543 508±15	j	543 510	543 520	p
54	576714	-2472	603	574 845	574917±17	j	574 904	574 917	p
55	609 679	-2689	594	607 584	$607652{\pm}18$	j	607 643	607 659	p
56	644 064	-2920	588	641 733	$641972{\pm}62$	k	641 793	641 816	p

TABLE VII. Energy for the $4s-4p_{3/2}$ transitions of Cu-like ions (in cm⁻¹).

tions. The $E_{\rm rcor}$ for U⁶³⁺ we used were corrected for this difference.

III. QUANTUM ELECTRODYNAMIC CORRECTIONS

As was mentioned earlier, screening of the self-energy is a source of major uncertainty in estimating QED corrections. There are three approximations commonly used in DF codes—to be referred to as the $\langle r \rangle$ method, the ρ method, and the Welton method, for brevity.

A. The $\langle r \rangle$ method

In this method, the expectation value of r of a DF orbital is matched with that of a hydrogenic, point-nucleus ion with the same quantum numbers and an effective Z_{eff} whose $\langle r \rangle$ value is the same as the DF value. Then, Mohr's self-energy⁹⁻¹¹ is interpolated for this Z_{eff} to provide a "screened" self-energy for the DF orbital. This approximation fitted well the screened self-energy of the 1s orbitals of neutral heavy elements calculated by

	DF	QED	Relativistic	Theory		Expt.	Present	Other	Predictions
Ζ	no QED	Welton	correlation	total	Experiment	Ref.	predictions	predictions	Ref.
57	679 954	-3163	586	677 377	677 780±100	1	677 438	677 465	р
58	717 427	-3419	585	714 593			714 654	714 694	p
59	756 570	- 3689	588	753 468			753 530	753 585	p
60	797 469	- 3974	593	794 088	794 155±30	i	794 150	794 212	p
61	840 212	-4274	601	836 539		5	836 601	836 687	p
62	884 893	-4589	611	880 915	880987±78	m	880 978	881 088	p
63	931 628	-4921	624	927 331	927 470±300	1	927 394	927 523	p
64	980 499	-5268	639	975 869	976000±140	m	975 933	976 086	p
65	1 031 632	-5633	656	1 026 655			1 026 719	1 026 905	p
66	1 085 137	-6015	676	1 079 797	1079900±60	i	1 079 862	1 080 054	p
67	1 141 073	-6414	697	1 135 355		5	1 135 421	1 135 680	p
68	1 199 686	-6834	722	1 193 574	1 193 100±210	k	1 193 640	1193 887	p
69	1 260 965	-7271	748	1 254 442			1 254 508	1 254 815	p
70	1 325 107	- 7729	776	1 318 155	$1318500{\pm}300$	n	1 318 222	1 318 583	p
71	1 392 259	-8206	807	1 384 859			1 384 927	1 385 329	p
72	1 462 523	- 8705	840	1 454 658			1 454 726	1 455 180	p
73	1 536 090	-9225	875	1 527 740	$1528400{\pm}400$	n	1 527 809	1 528 304	p
74	1 613 053	-9767	912	1 604 199	1605000 ± 390	0	1 604 268	1 604 853	p
75	1 693 665	-10333	951	1 684 284	1 685 600±430	0	1 684 354	1 684 948	p
76	1778012	-10921	993	1 768 084			1 768 154	1 768 847	p
77	1 866 294	-11533	1037	1 855 797			1 855 867	1 856 631	p
78	1 958 702	-12 171	1082	1 947 613			1 947 684	1 948 482	p
79	2 0 5 5 4 1 6	-12834	1130	2 043 712	2 043 800±630	р	2 043 784	2 044 697	p
80	2 156 606	-13 524	1181	2 144 264		-	2 144 336	2 145 278	p
81	2 262 554	-14241	1233	2 249 547			2 249 619	2 250 630	p
82	2 373 407	-14 986	1288	2 359 709	$2360400{\pm}840$	р	2 359 782	2 360 829	p
83	2 489 404	-15 760	1346	2 474 990	$2475600{\pm}920$	q	2 475 063	2 476 290	p
84	2 610 829	-16 563	1405	2 595 671		•	2 595 745	2 597 065	p
85	2 737 812	-17 396	1468	2 721 884			2 721 958	2 723 460	p
86	2 870 631	-18259	1532	2 853 904			2 853 979	2 855 430	p
87	3 009 740	- 19 155	1600	2 992 185			2 992 260	2 993 833	p
88	3 1 5 5 2 4 5	-20084	1670	3 136 831			3 136 907	3 138 535	p
89	3 307 549	-21047	1743	3 288 245			3 288 322	3 290 123	p
90	3 466 325	-22036	1819	3 446 108	3 449 500±1800	q	3 446 185	3 448 514	p
91	3 633 004	-23 068	1897	3 611 833			3611911	3 614 414	p
92	3 807 141	-24133	1975	3 784 983	$3787000{\pm}2000$	n	3 785 061	3 787 735	p

TABLE VII. (Continued).

^aTable VI, footnote a.

^bTable VI, footnote b.

^cTable VI, footnote c.

^dTable VI, footnote d.

^eTable VI, footnote e.

^fTable VI, footnote f.

^gTable VI, footnote g.

^hTable VI, footnote h.

ⁱTable VI, footnote i.

^jJ. Sugar et al., Ref. 49.

^kJ. Reader and G. Luther, Ref. 43.

¹J. F. Seely et al., Ref. 16.

^mG. A. Doschek et al., Ref. 45.

ⁿD. R. Kania et al., Ref. 48.

^oJ. F. Seely, C. M. Brown, and W. E. Behring, Ref. 46.

^pJ. F. Seely, C. M. Brown, and U. Feldman, Ref. 47.

^qJ. F. Seely et al., Ref. 44.

Desiderio and Johnson²⁵ and Cheng and Johnson.²⁶ These two calculations and a recent theoretical work by Indelicato and Mohr,²⁷ which introduces screening as a perturbation to the nuclear Coulomb field, remain the only treatment of the self-energy screening based on a QED procedure while using approximate wave functions for a many-electron atom. As is shown later, the $\langle r \rangle$ method, which is the default in the DF codes by Grant *et al.*,^{1,2} still leaves out a significant number of Z-dependent terms.

B. The ρ method

In this approximation, the square of a DF orbital ψ_{DF} is integrated from the origin to a short distance r_0 , usually a fraction of the Compton wavelength λ_0 (~ Bohr radius/137), and the integral is compared to a similar integral calculated with a point-nucleus, hydrogenic wave function ψ_{hvd} with the same quantum numbers:

$$\rho = \int_0^{r_0} |\psi_{\rm DF}|^2 d\tau / \int_0^{r_0} |\psi_{\rm hyd}|^2 d\tau .$$
⁽⁹⁾

This ratio ρ (≤ 1) is then used to scale Mohr's hydrogenic self-energy.⁹⁻¹¹ We chose $r_0 = 0.3\lambda_0$ because this value reproduced known inner-shell x-ray wavelengths well, although *transition energies* are rather insensitive to the choice of r_0 .

C. The Welton method

Welton²⁸ proposed to treat the self-energy as fluctuations in the classical trajectory of a bound electron due to the nuclear field. This method uses an effective potential to correct the lowest-order contribution (in $Z\alpha$, where α is the fine-structure constant) to the one-electron selfenergy from two-electron interaction by adjusting the potential for the changes in the electronic charge density at the nucleus. This potential can be derived, for example, from Welton's semiclassical arguments.²⁸ It has been shown by Dupont-Roc, Fabre, and Cohen-Tannoudji²⁹ that for self-energy, the effective Hamiltonian based on the Welton model leads to the proper nonrelativistic limit.

For an *ns* orbital, this method leads to a screening correction

$$\delta \varepsilon_{ns} = \frac{\langle ns | \nabla^2 U_N | ns \rangle_{\rm DF}}{\langle ns | \nabla^2 U_N | ns \rangle_{\rm hyd}} \varepsilon_{ns} , \qquad (10)$$

where the subscript hyd stands for a hydrogenic wave function, U_N is the nuclear potential, and ε_{ns} is Mohr's point-nucleus, hydrogenic self-energy⁹⁻¹¹ corrected for finite nuclear-size effects.¹⁸ For orbitals with $l \ge 1$, the above correction, which is proportional to the square of the wave function at the origin, vanishes, and the g-2correction provides the leading screening correction

$$\delta \varepsilon_{nl} = \frac{\langle nl | \beta \boldsymbol{\alpha} \cdot \mathbf{E} | nl \rangle_{\mathrm{DF}}}{\langle nl | \beta \boldsymbol{\alpha} \cdot \mathbf{E} | nl \rangle_{\mathrm{hvd}}} \varepsilon_{nl} \quad \text{for } l \ge 1 , \qquad (11)$$

where **E** is the nuclear electric field. This approximation was checked against experiments and was found to provide reasonable estimates.^{4,5,30,31}

The ρ and Welton methods produce very similar numerical results on transition energies for low-Z ions, but they begin to depart from each other at $Z \sim 80$ and above. Of the three approximations presented above, the $\langle r \rangle$ method was found to lead to transition energies with the poorest agreement with known experimental data, particularly for high-Z ions, in many comparisons we have made. The predictions by Seely *et al.*¹⁴⁻¹⁷ are based on QED corrections using the $\langle r \rangle$ approximation. In addition to the hydrogenic self-energies for n = 1 and 2 by Mohr,⁹⁻¹¹ preliminary values for n = 3-5 and $|\kappa| = 1$ and 2, where κ is the Dirac quantum number, have been reported recently.³² We used these new hydrogenic selfenergies for n = 3 and 4 instead of scaling n = 2 values by n^{-3} , as is commonly done. The hydrogenic self-energy for $\kappa = -3$ (= $d_{5/2}$) is not available. We used the $3d_{5/2}$ result for Z = 0 by Klarsfeld and Maquet³³ after scaling it by $(Z\alpha)^4$.

For the vacuum polarization, we also included corrections³⁴⁻³⁶ of the order of α and $(Z\alpha)^2$ compared to the Uehling potential, but contributions from these terms are smaller than the uncertainties in the screening of the self-energy. The sum of the "screened" self-energy based on the ρ or Welton method and the above-mentioned vacuum polarization corrections is listed in Tables II–VII.

IV. COMPARISON WITH EXPERIMENTAL DATA

A large collection of experimental data is available for the resonance transitions reported in this article, mostly for ions with low to moderate Z. Since most experimental values are for transitions $ns \cdot np_{1/2}$ and $ns \cdot np_{3/2}$, we concentrate on comparing theory and experiment for these transitions.

Both theoretical results and experimental data are listed in Tables II-VII. In these tables, the first column lists the atomic number, the column marked "DF no QED" lists theoretical transition energies obtained from singleconfiguration DF wave functions (solutions of H_0) and the energy-dependent Breit operator, Eq. (7), without the Coulomb repulsion (which is included in H_0). The column marked "QED" lists QED corrections with the self-energy screened by either the ρ or Welton method as noted. The relativistic correlation $E_{\rm reor}$ defined by Eq. (1) is listed in the column marked "Relativistic correlation" while the sum of the second, third, and fourth columns is listed in the column marked "Theory total."

Experimental values and their sources are listed in the columns marked "Experiment" and "Expt. Ref." respectively. Our predicted values, which are based on our "Theory total" minus the difference between the theory and experiment after adjusting the difference to have "smoothly varying" first and second derivatives, are listed in the column marked "Present predictions" Standard fitting methods such as the least-square fitting or a simple polynomial do not work well in this case because we are interested in extrapolating the fitted results to higher Z, for which either experimental data are inaccurate or unavailable. Standard methods tend to introduce higher-order derivatives that eventually render extrapolations useless for Z too far from the last data point used. The

last two columns list predictions by others and their sources. The difference between our theoretical transition energies, "Theory total," and experimental values are plotted in Figs. 4-9.

A. Li isoelectronic sequence

It is difficult to decide any preference among the three "screening" schemes based on the comparison with the experimental data for $Z \leq 42$ (see Figs. 4 and 5). The experimental data—which are included in Tables II and III—seem to have more scatter for heavier ions (Z > 20) than lighter ones, particularly for the $2p_{3/2}$ transition for Z > 30. The close agreement between the values based on the ρ and Welton methods shown in Figs. 4 and 5 also holds for Na- and Cu-like ions. The wavelengths for the $2p_{1/2}$ and $2p_{3/2}$ transitions of Xe^{51+} were measured by Martin *et al.* using the beam-foil method³⁷ (Tables II and III). Their transition energies are too large to be compatible with the trend seen in the experimental data for $Z \leq 42$, though the large uncertainty in their $2p_{3/2}$ result encompasses our theoretical and predicted values.

Recently Schweppe *et al.*³⁸ reported an experimental value for the $2p_{1/2}$ transition in U⁸⁹⁺. Our result with the ρ method, 280.68 eV, comes closest to the experimental value, 280.59±0.10 eV (see Fig. 6). There are, however, several higher-order corrections that are missing in our theory, such as the nuclear polarization³⁹ and the exchange of two virtual photons between bound electrons, which are expected to be of the order of a few tenths of an electron volt. A simple change in the rms radius of the uranium nucleus—from 5.751 fermi used in Ref. 18 to our value of 5.863 fermi—reduced the transition ener-

FIG. 4. Difference between theory and experiment for the $2s \rightarrow 2p_{1/2}$ transition energies ΔE of Li-like ions. Filled circles used theoretical values based on the ρ method for QED screening, while the triangles used theoretical values based on the Welton method. The solid curve is the smoothed difference that was used to obtain our predicted values in Table II. Error bars attached to the circles represent experimental uncertainties only. The same error bars also apply to the triangles. Experimental uncertainties for the ions with no visible error bars are smaller than the size of the circles.

FIG. 5. Difference between theory and experiment for the $2s \rightarrow 2p_{3/2}$ transition energies ΔE of Li-like ions. The solid curve is the smoothed difference that was used to obtain our predicted values in Table III. See Fig. 4 caption for other explanations.

gies of U^{89+} by about 1 eV. Recently, Blundell, Johnson, and Sapirstein⁴⁰ recalculated the $2p_{1/2}$ transition energy using the MBPT and a nonspherical nuclear charge distribution; their value is 281.023 eV, which includes an empirical estimate of the "screened" QED correction of -41.225 eV to be compared with our value of -41.574 eV. This QED correction was also estimated by Indelicato and Desclaux⁵ using the Welton method with extensive MCDF wave functions and a nonspherical nuclear charge distribution; their "screened" QED correction is -41.100 eV and the $2p_{1/2}$ transition energy is 281.6±0.9 eV. Although none of these estimates can be justified from a rigorous QED procedure, it is clear that the uncertainty in QED corrections in this case could be as

FIG. 6. Difference between theory and experiment for the $2s \rightarrow 2p_{1/2}$ transition energies ΔE of Li-like ions. Filled circles used theoretical values based on the ρ method for QED screening. Experimental data for Xe⁵¹⁺ and U⁸⁹⁺ were measured using the beam-foil method (Refs. 37 and 38). See Fig. 4 caption for other explanations.

FIG. 7. Differece between theory and experiment for the $3s \rightarrow 3p_{1/2}$ transition energies ΔE of Na-like ions. Filled circles used theoretical values based on the Welton method for QED screening, while the square used theoretical values based on the $\langle r \rangle$ method. The solid curve is the smoothed difference that was used to obtain our predicted values in Table IV. See Fig. 4 caption for other explanations.

much as $\pm 0.5 \text{ eV}$, or about $\pm 4000 \text{ cm}^{-1}$.

As is shown in Fig. 6, the $2p_{1/2}$ transition energy of Xe^{51+} by Martin *et al.*³⁷ is larger than our theoretical value, while that of U^{89+} by Schweppe *et al.*³⁸ is smaller than ours. The trend apparent in the data for $Z \le 42$ in Fig. 6 seems to be more compatible with the U^{89+} result than the Xe^{51+} value.

Since there are no experimental data for 54 < Z < 92, it is difficult for us to reliably extend the trend observed at lower Z in the difference between theory and experiment to $Z \sim 50$ and above. Experimental data to fill this gap are sorely needed, not only to establish the systematics of missing terms in the theory, but also because more

FIG. 8. Difference between theory and experiment for the $3s \rightarrow 3p_{3/2}$ transition energies ΔE of Na-like ions. The solid curve is the smoothed difference that was used to obtain our predicted values in Table V. The data for Pt⁶⁷⁺ was measured in an EBIT (Ref. 42), while other experimental data above Z = 50 used spectra from laser-generated plasmas. See the captions for Figs. 4 and 7 for other explanations.

FIG. 9. Difference between theory and experiment for the $4s \rightarrow 4p_{1/2}$ transition energies ΔE of Cu-like ions. Filled circles used theoretical values based on the Welton method for QED screening, while the squares used theoretical values based on the $\langle r \rangle$ method. The solid curve is the smoothed difference that was used to obtain our predicted values in Table VI. Triangles represent the difference between theoretical values based on the Welton method and experimental data from the Texas experimental tokamak (TEXT) (Ref. 49). Experimental data for $Z \geq 70$ used spectra from laser-generated plasmas.

rigorous theoretical results are likely to be first obtained for ions with a few bound electrons. Experimental data with a relative accuracy of one part in 10^4 or better would be most useful.

The difference between our theoretical transition energies ("Theory total") and our predicted values for some ions are plotted as solid curves in Figs. 4 and 5 and are listed in Tables II and III. We note that the relatively large uncertainty of $\pm 300 \text{ cm}^{-1}$ in the expermental 2s-2p transition energies listed⁴¹ for Sc¹⁸⁺ is too pessimistic-the actual uncertainty is more likely to be $\pm 40 \text{ cm}^{-1}$. The transition energies predicted by Seely¹⁴ have rapid changes in Z dependence between Z=40 and 50, a trend not supported by the comparison of our results with experiment, shown in Figs. 4 and 5.

B. Na isoelectric sequence

The theoretical results and experimental data are presented in Tables IV and V. For Na-like ions with $Z \leq 40$, theoretical transition energies based on the ρ and Welton methods agree with experiment within 100 cm⁻¹ for both the $3p_{1/2}$ and $3p_{3/2}$ transitions. However, transition energies based on the $\langle r \rangle$ method not only differ from the experiment by several hundred cm⁻¹ but also the difference steadily increases with Z, although the percentage difference does not increase as much (Figs. 7 and 8). The rapidly growing gaps between the theory based on the Welton method and experiment for $50 \geq Z \geq 70$ in Figs. 7 and 8 are likely to be experimental artifacts because we do not expect terms missing in our theory to have such a sudden strong Z dependence there.

Cowan *et al.* recently measured⁴² the wavelength for the $3p_{3/2}$ transition of Pt⁶⁷⁺ using an electron beam ion

trap (EBIT). Their value is in close agreement with our values based on either the ρ or Welton method but not with the value from the $\langle r \rangle$ method. This agreement is consistent with the trend seen in Fig. 8 for Z < 45, suggesting that the experimental transition energies for ions between Z = 52 and 64 are probably too large. We note that the experimental transition energies obtained from spectra of laser-generated plasmas tend to be too large (i.e., blue-shifted) compared to the trend observed for ions with lower Z. We will return to this point again for Cu-like ions.

The difference between our theoretical transition energies and our predicted values are plotted as solid curves in Figs. 7 and 8 and are compared to those predicted by Seely *et al.*¹⁷ in Tables IV and V. The energies for the $3p_{1/2}$ transition predicted by Seely *et al.* are smaller than our theory for Z > 80, while those for the $3p_{3/2}$ transition continue to be larger than our theory. There is no apparent theoretical reason to expect these opposite trends.

C. Cu isoelectronic sequence

This is a sequence for which experimental values are available all the way to U^{63+} . Our theoretical values are presented in Tables VI and VII. Unlike the QED corrections based on the Welton or ρ method, the difference between our theory with the $\langle r \rangle$ method and experiment rises rapidly to 2000 cm⁻¹ or more for Z > 70, as is shown in Figs. 9 and 10. Also, the scatter and trend seen in the experimental data for Z > 70 indicate that such data have larger uncertainties in magnitude-though relative accuracy deteriorates slowly—for both the $4p_{1/2}$ and $4p_{3/2}$ transitions. Experimental values for 55 < Z < 92 obtained from spectra of laser-generated plas mas^{43-48} exhibit a tendency for the difference between theory and experiment for the $4p_{3/2}$ transition (Fig. 10) to be increasingly negative (i.e., experimental energies are too high) from $Z \sim 55$. More recent experimental values⁴⁹ for ions with 46 < Z < 70 generated in the Texas experimental tokamak (TEXT) are in excellent agreement

FIG. 10. Difference between theory and experiment for the $4s \rightarrow 4p_{3/2}$ transition energies ΔE of Cu-like ions. The solid curve is the smoothed difference that was used to obtain our predicted values in Table VII. See Fig. 9 caption for other explanations.

with our values based on the Welton and ρ methods, clearly establishing a trend with almost no Z dependence (see triangles in Figs. 9 and 10). It is likely that the existing experimental energies from spectra of laser-generated plasmas in general are too high, as is the case for the Nalike ions. The data from laser-generated plasmas seem to have systematic problems that make the measured transition energies too high.

Our predicted transition energies are plotted as solid curves in Figs. 9 and 10 and are compared to those predicted by Seely, Brown, and Feldman⁴⁷ in Tables VI and VII. We emphasize, however, that the correct Z dependence of the solid curves in Figs. 9 and 10 for Z > 80 is unlikely to be as simple as we have assumed, since we expect higher-order relativistic corrections omitted in our theory to grow rapidly beyond $Z \sim 80$. The energies predicted by Seely et al. for both the $4p_{1/2}$ and $4p_{3/2}$ transitions continue to be larger than our theoretical values, reaching differences of $1500-2700 \text{ cm}^{-1}$, or 0.1-0.02 Åin wavelength for U^{+63} . Some of these differences can be attributed to the use of different nuclear parameters in the DF codes^{1,2} used by Seely et al.¹⁴⁻¹⁷ and us,^{3,4} but most of the difference is due to the different Z dependence of the QED corrections in the DF codes.

V. CONCLUSION

We have shown that the theoretical transition energies based on the ρ and Welton methods to "screen" the selfenergy agree well with experimental data for ions with net charges of about 40 or less, while the theoretical values based on the $\langle r \rangle$ method tend to depart from experiment almost linearly with Z. Moreover, we find the experimental transition energies from spectra of lasergenerated plasmas have a tendency to be too high at Z > 70. One possibility is that the red wing of a line profile is severely attenuated by self-absorption and other plasma effects, thus shifting the apparent peak toward the blue wing. To establish a clear Z dependence in the difference between theory and experiment and verify the data collected by using laser-generated plasmas, more experimental data are needed for ions with Z > 70, obtained from sources other than laser-generated plasmas. Heavy Cu-like ions can be produced by existing ion traps or large tokamaks, and wavelength measurements with such sources with relative uncertainties less than one part in 10⁴ are highly desirable. In addition, accurate experimental values for high-Z (50 < Z < 92) Li-like ions are indispensable for testing future theories for the "screening" of the self-energy and other higher-order relativistic effects based on a rigorous QED formalism. Meanwhile, we offer our predicted transition energies in Tables II-VII to serve as "road signs" for experimentalists.

After our manuscript was submitted, Knize⁵⁰ published data on selected Li-like ions with $24 \le Z \le 34$, which were reinterpretations of the experiments reported by Hinnov, Denne, and co-workers.⁵¹ Some of the reinterpreted data agree better with our predicted values and some agree worse than that reported earlier, indicating no clear preference for either set of transition energies.

ACKNOWLEDGMENTS

Work done by one of us (Y.-K.K.) was in part supported by the Office of Fusion of the U. S. Department of Energy. We are indebted to P. J. Mohr for enlightening discussions on various aspects of QED, to W. R. Johnson for providing us with additional MBPT results, and to D. Dietrich, H. Gould, J. Reader, J. Seely, and J. Sugar for providing us with advance copies of their experimental results. We thank W. C. Martin for many helpful comments on our manuscript.

- *Permanent address: Korea Atomic Energy Research Institute, Taejon 302-353, Korea.
- [†]Present address: Laboratoire de Physique Atomique et Nucléaire, Université P&M Curie, 75252 Paris CEDEX 05, France.
- ¹I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comput. Phys. Commun. **21**, 207 (1980).
- ²B. J. McKenzie, I. P. Grant, and P. H. Norrington, Comput. Phys. Commun. **21**, 233 (1980).
- ³J. P. Descleaux, Comput. Phys. Commun. 9, 31 (1975).
- ⁴P. Indelicato, O. Gorceix, and J. P. Desclaux, J. Phys. B **20**, 651 (1987).
- ⁵P. Indelicato and J. P. Desclaux, Phys. Rev. A 42, 5139 (1990).
- ⁶W. R. Johnson, S. A. Blundel, and J. Sapirstein, Phys. Rev. A **37**, 2764 (1988).
- ⁷W. R. Johnson, S. A. Blundel, and J. Sapirstein, Phys. Rev. A **38**, 2699 (1988).
- ⁸W. R. Johnson, S. A. Blundel, and J. Sapirstein, Phys. Rev. A 42, 1087 (1990).
- ⁹P. J. Mohr, Ann. Phys. (N.Y.) 88, 26 (1974).
- ¹⁰P. J. Mohr, Ann. Phys. (N.Y.) 88, 52 (1974).
- ¹¹P. J. Mohr, Phys. Rev. A 26, 2338 (1982).
- ¹²E. A. Uehling, Phys. Rev. 48, 55 (1935).
- ¹³B. Edlén, Phys. Scr. 28, 51 (1983).
- ¹⁴J. F. Seely, Phys. Rev. A **39**, 3682 (1989).
- ¹⁵J. F. Seely and R. A. Wagner, Phys. Rev. A **41**, 5246 (1990).
- ¹⁶J. F. Seely, U. Feldman, A. W. Wouters, J. L. Schwob, and S. Suckewer, Phys. Rev. A **40**, 5020 (1989).
- ¹⁷J. F. Seely, C. M. Brown, U. Feldman, J. O. Ekberg, C. J. Keane, B. J. MacGowan, D. R. Kania, and W. E. Behring, At. Data Nucl. Data Tables 47, 1 (1991).
- ¹⁸W. R. Johnson and G. Soff, At. Data Nucl. Data Tables 33, 405 (1985).
- ¹⁹R. D. Deslattes, E. G. Kesseler, Y.-K. Kim, and P. Indelicato, J. Phys. (Paris) Colloq. 48, C9-293 (1987).
- ²⁰J. P. Desclaux, in Atomic Theory Workshop on Relativistic and QED Effects in Heavy Atoms (National Bureau of Standards in Gaithersburg, Maryland), Proceedings of the Atomic Theory Workshop on Relativistic and QED Effects in Heavy Atoms, edited by Hugh P. Kelly and Yong-Ki Kim, AIP Conf. Proc. No. 136 (AIP, New York, 1985).
- ²¹J. Sucher, Phys. Rev. A 22, 348 (1980).
- ²²M. H. Mittleman, Phys. Rev. A 24, 1167 (1981).
- ²³G. Breit, Phys. Rev. 34, 553 (1929).
- ²⁴H. A. Bethe and S. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 173.
- ²⁵A. M. Desiderio and W. R. Johnson, Phys. Rev. A 3, 1267 (1971).
- ²⁶K. T. Cheng and W. R. Johnson, Phys. Rev. A 14, 1943 (1976).
- ²⁷P. Indelicato and P. J. Mohr, in Abstracts, XII International

Conference on Atomic Physics, edited by W. E. Baylis, G. W. F. Drake, and J. W. McConkey (University of Windsor, Windsor, Canada, 1990), p. I-23.

- ²⁸T. A. Welton, Phys. Rev. 74, 1157 (1948).
- ²⁹J. Dupont-Roc, C. Fabre and C. Cohen-Tannoudji, J. Phys. B 20, 651 (1987).
- ³⁰P. Indelicato, J. Phys. (Paris) Colloq. 50, C1-239 (1989).
- ³¹P. Indelicato, O. Gorceix, and J. P. Desclaux, J. Phys. (Paris) Colloq. 48, C9-591 (1987).
- ³²P. J. Mohr and Y.-K. Kim, in *Abstracts, XII International* Conference on Atomic Physics (Ref. 27), p. I-24.
- ³³S. Klarsfeld and A. Maquet, Phys. Lett. **43B**, 201 (1973).
- ³⁴G. Källen and A. Sabry, Danske Vidensk. Selsk. Mat.-Fis. Medd. 29, 17 (1955).
- ³⁵E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 (1956).
- ³⁶G. Soff and P. J. Mohr, Phys. Rev. A 38, 5066 (1988).
- ³⁷S. Martin, J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, M. Druetta, J. P. Grandin, D. Hennecart, X. Husson, and D. Lecler, Europhys. Lett. **10**, 645 (1989).
- ³⁸J. Schweppe, A. Belkacem, L. Blumenfeld, N. Claytor, B. Feinberg, H. Gould, V. E. Kostroun, L. Levy, S. Misawa, J. R. Mowat, and M. H. Prior, Phys. Rev. Lett. 66, 1434 (1991).
- ³⁹G. Plunien, B. Müller, W. Greiner, and G. Soff, Phys. Rev. A 39, 5428 (1989).
- ⁴⁰S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 41, 1698 (1990).
- ⁴¹J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. No. 2 (1985).
- ⁴²T. E. Cowan, C. L. Bennett, D. D. Dietrich, J. Bixler, C. J. Hailey, J. R. Henderson, D. A. Knapp, M. A. Levine, R. E. Marrs, and M. B. Schneider, Phys. Rev. Lett. 66, 1150 (1991).
- ⁴³J. Reader and G. Luther, Phys. Scr. **24**, 732 (1981).
- ⁴⁴J. F. Seely, J. O. Ekberg, C. M. Brown, U. Feldman, W. E. Behring, J. Reader, and M. C. Richardson, Phys. Rev. Lett. 57, 2924 (1986).
- ⁴⁵G. A. Doschek, U. Feldman, C. M. Brown, J. F. Seely, J. O. Ekberg, W. E. Behring, and M. C. Richardson, J. Opt. Soc. Am. B 5, 243 (1988).
- ⁴⁶J. F. Seely, C. M. Brown, and W. E. Behring, J. Opt. Soc. Am. B 6, 3 (1989).
- ⁴⁷J. F. Seely, C. M. Brown, and U. Feldman, At. Data Nucl. Data Tables **43**, 145 (1989).
- ⁴⁸D. R. Kania, B. J. MacGowan, C. J. Keane, C. M. Brown, J. O. Ekberg, J. F. Seely, U. Feldman, and J. Reader, J. Opt. Soc. Am. B 7, 1993 (1990).
- ⁴⁹J. Sugar, V. Kaufman, D. H. Baik, Y.-K. Kim, and R. W. Rowan, J. Opt. Soc. Am. (to be published).
- ⁵⁰R. J. Knize, Phys. Rev. A 43, 1637 (1991).
- ⁵¹H. Hinnov and the TFTR Operating Team, B. Denne and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).