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Many aspects of a model problem, the Lagrangian of which contains a term depending quadratically
on the acceleration, are examined in the regime where the classical solution consists of two independent
normal modes. It is shown that the techniques of conversion to a problem of Lagrange, generalized
mechanics, and Dirac’s method for constrained systems all yield the same canonical form for the Hamil-
tonian. It is also seen that the resultant canonical equations of motion are equivalent to the Euler-
Lagrange equations. In canonical form, all of the standard results apply, quantization follows in the usu-
al way, and the interpretation of the results is straightforward. It is also demonstrated that perturbative
methods fail, both classically and quantum mechanically, indicating the need for the nonperturbative
techniques applied herein. Finally, it is noted that this result may have fundamental implications for

certain relativistic theories.

I. INTRODUCTION

An extensive analysis, both classical and quantum
mechanical, is presented for a particular model problem,
introduced elsewhere [1] and described by a second-order
Lagrangian, that is, one dependent upon accelerations in
addition to positions and velocities. The purpose of this
work is to examine the details of a completely solvable
model problem in order to determine appropriate
methods of treatment, in particular, the proper quantiza-
tion, the correct interpretation of the results and the ex-
traction of relevant information for such a problem. It is
anticipated that the results of this analysis will also be
valid for a class of second-order Lagrangians and be use-
ful for certain physically interesting problems which can-
not be solved exactly.

Although, in general, there are a number of reasons
[2—-4] for studying second-order Lagrangians, in our
case, it is quite specific. It is the type of Lagrangian that
arises from the conventional treatment of a particular rel-
ativistic action-at-a-distance (AAD) theory of particle dy-
namics, namely, the Fokker-Wheeler-Feynman (FWF)
theory [5,6] of electrodynamics, its revisions and generali-
zations [7-12]. The theory is formulated in close analog
to nonrelativistic particle dynamics, being written only in
terms of the particles’ positions and velocities as func-
tions of the observer’s time. However, in its exact form,
it is multitimed, depending not only on the current time
but also on all relative retarded times. At present, there
is no known procedure to go from a multitimed Lagrang-
ian to a Hamiltonian structure and, hence, to a quantum
version. In order to circumvent this difficulty, the con-
ventional approach [13-19] has been to make the 1/c¢
power-series expansion of the interaction energy about
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the current time of the system. This results in an
infinite-order Lagrangian, the (1/c¢)* term containing ac-
celerations. Now, direct observation, calculations, and
quantum electrodynamics have verified that the first two
terms in this expansion contain considerable physical in-
formation. Since there is only a single interaction, the
same should be true of the third term. All that is re-
quired are the techniques by which to extract this infor-
mation. This work is intended as a first step in this direc-
tion.

The model problem is defined in the next section and
represents the relative motion between two nonrelativis-
tic particles whose interaction consists of the sum of a
harmonic term plus a term quadratic in their relative ac-
celerations. This acceleration dependence was chosen be-
cause it is the simplest that gives a meaningful problem,
the resultant problem can be solved exactly, and the
FWF theory yields a bilinear acceleration dependence.
Now, in general, higher-order Lagrangians have been
considered questionable [3] on the grounds that they may
be nonlocal, that they may violate causality, and that
their Hamiltonians may be unphysical in the sense that
they do not properly represent the total energy of the sys-
tem. Both the FWF theory and the model problem are
local and satisfy causality, by their structure. We are ex-
pressly interested in such systems. The legitimate physi-
cal role that the Hamiltonian plays is seen from the
analysis, at least to the extent that the model problem
reflects the features of more complex problems. Of
course, our model problem will have limitations and will
lack characteristic aspects of more complex systems, such
as a finite limit to a particle’s speed and the distinction
between the center-of-mass and center-of-momentum
reference frames in the nonrelativistic and relativistic
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cases, respectively. Nevertheless, this investigation has
been approached with the philosophy that it is essential
for the first step to be a clear understanding of the
specific second-order properties of certain Lagrangians,
unobscured by other complexities. Such an understand-
ing should provide a useful guide in the treatment of re-
lated problems. Finally, the Lagrangians of the FWF
theory and our model problem are not parameter invari-
ant, a feature generally assumed [2,3,4,20] for physical,
i.e., relativistic, theories. Thus, although the formal
structure is available for the non-parameter-invariant
case, applications to physical systems appear to be nonex-
istent. This may be an unfounded omission.

Section II also contains the exact solution to the classi-
cal equation of motion plus an analysis of the results.
The conversion to the canonical form is given in Sec. III.
Here it is shown that the three methods, conversion to a
problem of Lagrange [2], application of generalized
mechanics [3], and Dirac’s method [21] for constrained
systems, yield the same canonical form. It is also shown
in this section that canonical transformations can be used
in the usual way and result in a precise interpretation of
the Hamiltonian in this case. The resultant Hamiltonian
can be quantized in the usual way and the quantum cal-
culations are given in Sec. IV. In particular, the nonper-
turbative and perturbative calculations are shown to give
different results. Further discussion is given in Sec. V,
along with suggested implications of the results of this in-
vestigation.

II. DEFINITION AND LAGRANGIAN
ANALYSIS OF THE MODEL PROBLEM

As noted in the Introduction, the Lagrangian con-
sidered in this work is taken to be [1]

L=1px?—lkx?—lex? 2.1)
where the symbols have their usual meanings. The equa-
tions of motion can be obtained from a variational princi-
ple in the standard way [2]. First, form the fundamental
integral
b

J=[ Lar. 2.2)
Setting the variations of J with respect to changes in path
equal to zero, subject to fixed end points, generalized in
this case to variations in both x and % being zero at t,
and t,, yields

px+e % +kx=0. (2.3)

Equation (2.3) is a standard from and the solutions are
found by letting

x =a cos(wt +8) . 2.4)
This yields
€0 —paw?+k =0 2.5
with the solutions
21 2 172 ook _
=—[u—(u*—4 , 1 =—=p;, (2.6
@7 e (p—(u €k) "] eli%wl 1 @o 2.6)
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lime3= £ =a)§ .
€e—0 €

w%=51-€—[y+(,u2—~4ek)”2], 2.7)

The possible motions depend upon the value of €. For
0 < € <u?/4k there are two independent harmonic modes.
This is the range of € that will be considered throughout
the remainder of this work. Of course, one also has the
cases € >pu?/4k where only damped or runaway solutions
occur and €<0 where one harmonic and one damped
mode occur. Notice also that as € tends to zero, although

®, goes to the normal limit, ®, diverges. For 0<e
<u?/4k, the general solution is
x (t)=acos(wt+8;)+a,cos(w,t +38,) . (2.8)

The four arbitrary constants a, a,, 8, and 8, are deter-
mined by four boundary conditions. If these are taken to
be the time equal zero values of position, velocity, ac-
celeration, and boost, that is, x,, Xy, X,, and X|;, respec-
tively, then one finds

a%=(w%_1w%)2 (w§x0+x0)2+;%(w§xo+>e'o)2 ,
2.9)
tand,; = —(w3%, +%,) /[0 (03x,+%,)] , (2.10)
a§=(w%_lw%)2 (m§x0+x0)2+wi%(w%xo+xb)2 ,
2.11)
tand,= —(wix,+x)/[wy(@ixy+%,)] . 2.12)

The two modes are independent, because, by choice of
boundary conditions, one can excite either one alone or
any desired mixture. Notice also that the complete
motion is given by the initial conditions and, hence, the
equation of motion is exactly predictive. The only
difference between this case and the usual (e=0) case is
that two modes exist and more initial information is re-
quired.

A first integral, or constant, of the motion can be ob-
tained in the usual way, that is, multiply Eq. (2.3) by x to
obtain a total time derivative. The resultant constant is

h=1pk*+Llhkx>+tex ¥ —lex ? . (2.13)

Substituting the solution, Eq. (2.8), into & yields

h=lo}u*—4ek ) %a? — lol(u’—4ek)%a3 . (2.14)

1
2
Clearly & is a constant of the motion, as noted earlier.
Also h >0 for a,=0 but 4 <0 for a; =0. Now, since we
can excite the second mode alone, in this form it is not
clear how one should interpret the two terms. Thus the
problem needs to be examined in more detail.

Before continuing the analysis, we note that, for € very
small, one might be tempted to treat the terms propor-
tional to € perturbatively in Eq. (2.3). Although it turns
out useful to know the precise consequences of such a cal-
culation, it fails to give the complete solution. This
failure can be understood as follows. In setting up the
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perturbative equations, one makes a very explicit assump-
tion about the mathematical character of the solution,
namely, that it can be represented by its Taylor series in
€. x, satisfies this assumption and the method, not
surprisingly, generates its Taylor series in € exactly. x,
does not satisfy this assumption, through w,, and, again
not surprisingly, the method fails to indicate any trace of
this mode. This establishes the necessity of having non-
perturbative techniques for dealing with this type of
problem. The next step is to determine a canonical for-
malism.

III. CANONICAL HAMILTONIAN FORMULATION

A. Conversion to a problem of Lagrange

The concept behind the conversion [2] to a problem of
Lagrange is quite simple. One starts with a Lagrangian,
e.g., Eq. (2.1), which one does not know how to handle,
and converts it to an identical problem for which exact
methods are known. In this instance, Eq. (2.1) is convert-
ed to a more general problem by setting X =y and X =y.
This more general problem is now made identical to the
original problem by imposing the constraint

G=y—x=0. (3.1

A Lagrangian in the first-order form plus a constraint is
known as a problem of Lagrange and it is known how
treat such problems exactly [2,22]. The Lagrangian is re-
placed by

A=lpy?—Lkx?—Llep?—Ap (y —%) . (3.2)
Now, because of the inclusion of the constraint with the
Lagrange multiplier, A;, x, and y play the role of in-
dependent variables and all the rules of first-order La-
grangians apply.

Of course, for the conversion to be useful, the Legen-
dre transformation relating the velocities to the general-
ized momenta must be one to one. This requires [2] the
determinant

PA 3G
3%;9%; 8%,
p=| .. #0 . (3.3)
=2 o
3%,

Here, we use x|, =x and x, =y. This condition is satisfied
for the model problem. Note that we have relaxed the
condition on D used by Rund [2]. He assumes that A has
a minimal value, whereas we cannot guarantee that a
priori in our case. Thus

p =28y, , (3.4)
ax
JA
=——=—¢y, (3.5)
=5 y
and
H=pxy——1—py2—%,uy2+%kx2 . (3.6)

2€
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H is now in canonical form, with the pairs (x,p,) and
(y,p,) being the canonical variables satisfying the basic
Poisson bracket relations. One can now apply canonical
transformations and quantize in the usual way.

It should be noted that nothing is lost from the original
problem. Hamilton’s canonical equations are

x=y, (3.7
. 1

y===p (3.8)
Py=—"kx , (3.9)
Py=—pxtpuy . (3.10)

Equation (3.7) is the constraint, Eq. (3.8) is the definition
of p,, and, when combined, these equations give the
correct equation of motion, Eq. (2.3). Further, these rela-
tions can be used to write Eq. (2.13) in terms of the
canonical variables. One finds 4 is identical to H. Thus
understanding the role that H plays and its physical in-
terpretation is necessary to complete the analysis of the
model problem and is considered in Sec. III D.

B. Application of generalized mechanics

The formal structure of generalized mechanics can be
discussed either from the point of view of the calculus of
variations [2] or of jet theory [3]. Both approaches are
quite formal and lengthy. In principle, the treatment re-
quires an appropriate identification of a set of generalized
canonical variables, the definition of their generalized
momenta, and the specification of a theoretical structure
that is identical to the canonical form of first-order prob-
lems. The steps are outlined below. Again, the starting
point is Eq. (2.1). The fundamental momenta are the so-
called Jacobi-Ostrogradsky momentum coordinates de-
fined for our problem by

oL

=9oL_d9L_ iiew, (3.11)
ax  droax o
L

Py:%.,;:_f"" (3.12)

where the notation has been chosen to match that of the
preceding section. The equation of motion is

. oL
Pr= 5, - (3.13)
Note that Eq. (3.11) is equivalent to Eq. (3.10), Eq. (3.12)
to Eq. (3.5), or Eq. (3.8) and Eq. (3.13) to Eq. (2.3). Thus
there is a complete duality between the two methods.
Notice also, that for p, to be nontrivial, L must be at
least quadratic in the acceleration. This causes p, to con-
tain X, which, in turn, in order to obtain a meaningful
Legendre transformation between momenta and veloci-
ties, necessitates the definition of a canonical coordinate
for p,. The form of Eq. (3.12) implies y =x for p,. Fur-
ther, Eq. (3.13) implies x for p,. Formally, for the
methods of generalized mechanics to apply, one requires
(see Grasser [20])
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0 0 &,
2
dget|o 2L o |»o0. (3.14)
ajc'ijc'j
8, O O

This is equivalent to Eq. (3.3). Although Grisser’s work
is intended for parameter-invariant problems, his deriva-
tion of this result is quite general.

Now, when one defines the Jacobi-Ostrogradsky vari-
ables (x,y,p,,p,) as the canonical variables, the funda-
mental Poisson brackets in the usual way, and the Hamil-
tonian by

H=p,x+p,y—L, (3.15)

one arrives exactly at Eq. (3.6) in the preceding section.
The remainder of the discussion is then identical.

C. Application of Dirac’s method
for constrained systems

Dirac’s method [21] for constrained systems can also
be applied to this problem. Throughout, we closely fol-
low the definitions and procedures outlined by Even [23],
simply converting his results for field theories or La-
grangian densities to the case of point mechanics. Since
one requires a constrained system, the starting point is
Eq. (3.2) and is defined by the variables x, y, and A; and
the velocities X, y, and A, . Since its Hessian

%A
%, 0%

Det

=0, (3.16)

A is said to be degenerate and Dirac’s method can be ap-
plied.
In this case, the canonical momenta are defined by

dA
== :}\' ,
Px % L
dA
=—=—¢y, (3.17)
py Py 34
14
= - :.0 .
P ai,
The constraints are defined by
dA
¢1:px - . :px )‘L ’
o (3.18)
é,=p —a—A=p .
2 A a}\’L A

For the interim, ¢, and ¢, are not set to zero. Now p,
does not give a constraint because a constraint must be
written in terms of the canonical variables and when one
eliminates the y from p, —dA /9y, zero is obtained.

The Hamiltonian is, as usual,
H=p x+p,y+pi; —A+X ¢, +X,0, . (3.19)

This can be written as

44

H=—p2— 12+ kx4 Ay + X6, + X}, (3.20)

2e
where X|=X,+x and X,=X,+A,. Here X, and X,
are undetermined Lagrange multipliers. Now, since the
Poisson bracket relation {¢,,¢,}=—1, ¢, and ¢, are
second class constraints. Thus one sets

¢1={¢,H}=—X;—kx =0,

. , (3.21)
$={¢pH}=—y+X|=0

in order to obtain constraints on X| and X5.
Finally, evaluate all Poisson brackets between the vari-
ables. The only nonzero ones turn out to be

{x.p.}=1={y.p,} . (3.22)

Hence there are only two pairs of canonical variables.
Thus one can now set

¢,=0=¢, and p, =A[ (3.23)

in H to retrieve exactly Eq. (3.6), in agreement with our
previous procedure. The remaining arguments are again
identical.

D. Canonical transformations

Since Eq. (3.6) has no semblance of the e=0 Hamil-
tonian nor of two independent normal modes, we proceed
by a series of canonical transformations to put it in a
more recognizable and tractable form. Although this
problem can be diagonalized by a single canonical trans-
formation, a series of transformations is used because this
is more illustrative, some of the intermediate results will
be examined further and, finally, one wants to learn how
to deal with more complicated cases.

First, since y is closely related to the €e=0 momentum,
we want y to play the role of a momentum. This can be
simply achieved by interchanging the roles of y and p,.
Now the new momenta are mixed linearly, and also the
new coordinates, in such a way so as to restore the e=0
Hamiltonian. Finally, the roles of those new variables
that now primarily represent y and p, are restored. The
net canonical transformation achieving this result can be
written as

’

’ 1
Px=ap; tpwhix,, x=ayx,+—p,,
Hag
(3.24)

a , 1,
y=—pitox,, p,=payx;+-—pFp, .
7 Do
The constants have been chosen simply to keep the a’s
and ’s dimensionless and for the final coordinates and

momenta to have the usual dimensions. This yields H in
the form

1 1
H=ac1p% +1kC,yx? —qug —1kC,x}
+woCspix; T wyCexp; - (3.25)

The for nontrivial Poisson bracket relations for Eq. (3.24)
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and the four conditions

a,;=1, C,=2a,a,—a3=1,

I ) (3.26)
—_ 2 2 — 1 2 pr2
C,=aj 22 a; , Cs 2r? By=1
where
A=ke/u? (3.27)

are sufficient to define the transformation uniquely. With
this choice [see also Egs. (2.6) and (2.7)],

(1+A%)(1—3A%)
Cc,=p:—2B,B,=—21- 07
s=F 268, AA(1—2%)

’

2\
CS:a1/32+Bla2"azl32=—'(l—_W , (3.28)
—_ ’ ’ 1 ’ ' Av
Cs’“alﬂl_?azﬁz_ (—l—kz)l/z >
and
2 2 2
1 1 ps(1+A%)(1—31%)
H=—p?+lkx?——p2——2L x2
P P 21—y
—20A /(1=A1)2p x, +wh /(1 =21 2x 1 p, .
(3.29)

H is now in a tractable form. Notice that the first term in
Eq. (3.29) comes primarily from the first and third terms
of Eq. (3.6) and represents most of the real kinetic energy
of the system, while the third term of Eq. (3.29) comes
primarily from the second term of Eq. (3.6) and is actual-
ly an interaction term, required to make H a constant of
the motion and with a particular structure. In the limit
€—0, i.e., A—0, the mixed terms drop out and H be-
comes the difference between the zero-order Hamiltoni-
ans of the two modes in this limit.

In this particular model problem a fourth canonical
transformation can be made that diagonalizes the Hamil-
tonian. It is sufficient to set

xy=a§;+B iy pr=aim+BiE,

X, =6, T By, pry=aym B .

(3.30)

In this case the four nontrivial Poisson bracket relations,
the two coefficients of the 17'%,2 terms being set to 1/2u
and —1/2u, respectively, and the two coefficients of the
mixed terms being set equal to zero define the canonical
transformation uniquely. The coefficients of the £ and &3
terms are fixed. One finds

1 1
H= EW%*’%M@%— aﬂg—%#w%ﬁ (3.31)
where ©? and w3 are given by Egs. (2.6) and (2.7). This
result is exact and the entire formalism is consistent.
The two equations of motion give exactly the two solu-

tions,
E=§&sin(w,;t+8;) (i=1,2). (3.32)

Tracing back through the canonical transformations,

x (t) is obtained in the form given by Eq. (2.5) with

§10 520
m, Ay = — > 54 °* (3.33)

( 1 “4A2)1/4
Further, Eq. (2.13) reduces to

1 =

H = uoiéio— tpwil - (3.34)
Apart from the minus sign, this is exactly what one
would expect for two fundamental normal modes.

Nevertheless, the analysis and interpretation for this
model problem are clear. An important point is that the
Hamiltonian, Eq. (3.6), differs from those for the usual
first-order Lagrangian case, being the difference between
the energies contained in the two normal modes. This
character is preserved by the above procedures. In gen-
eral, this particular feature might be considered unac-
ceptable if not properly understood and we come back to
this point in the discussion.

IV. QUANTIZATION OF THE MODEL PROBLEM

A. Exact problem

Once Eq. (3.31) has been derived the quantization is
straightforward and follows the usual rules of first-order
problems. Thus one will set

# 172
= A +4,),
6= |3 | +)
172
ﬁ A
= B_+B,),
= | 300 2
5 1 4.1)
T = —ipw; —_2uw1 (A_—A4,),
172
R # ~ a
72:_”“02% _—B+)

where the 4, and B, are the usual raising and lowering
operators. Therefore

A A

A=1fo(A_A,+A4,4_)—‘#oB_B,+B,B_)
4.2)

and the eigenvalue spectrum of His

Ey(n,N)=1#0,(2n +1)— Hiw,2N +1)=E,—E, ,
4.3)

say. The eigenfunctions are simply the pairwise products
of the individual eigenfunctions. Thus the exact solution
is straightforward. Of course, when one measures the en-
ergy of the system in an experiment one must see the sum
of the two energy spectra, i.e., at least for the excitations.
This is implied by the exact solution, Eq. (2.8), of the
equation of motion, being the sum of the two normal
modes. As noted before, this point is examined further in
the discussion.
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B. Intermediate case

This case is considered because in most realistic prob-
lems exact solutions are not possible and one must resort
to some approximation procedure. Typically, in similar
problems, one starts with a small zero-order Hamiltonian
plus a nonperturbative interaction. Customarily, a
canonical transformation is applied that redefines the
problem so that it separates into a large zero-order part
plus a small perturbative interaction. This step is exact
and the perturbative term is only a remnant of the total,
thus allowing an acceptable solution using standard tech-
niques. For our problem, there is no obvious separation
at the outset. However, after the first canonical transfor-
mation the Hamiltonian as given by Eq. (3.29) does
separate. We are now in a position to determine if, at
this point, the mixed terms can be reasonably treated by
perturbative techniques. This information could be most
useful for more complicated problems.

Therefore, start with Eq. (3.29), proceed as in Sec.
IV A, and write

(4.4)

The @, and the b refer to the (x,,p,) and (x,,p,), re-
spectively, and [see Eq. (3.29)]

, (1+AH)(1—3A2)

3=k /u , 0=, (1—22) , (4.5)
A o 1/2
0
db=——-"—r | — , (4.6)
2(]_%2)1/2 ‘Q’O
2 20192
20 A=A 7)

Q) (1+AH(1-3)3)

The first two terms of Eq. (4.4) will be taken to be the
zero-order part and the last two terms will be treated by
perturbation theory, because of the presence of the §,
which is small.

The zero-order eigenvalue is

EY=1#0y(2n +1)— 1HQ(2N +1) (4.8)

and the power-series expansion in terms of A agrees with
Eq. (4.3) to order A° for the first term and to order A? for
the second term.

It is easy to see that all odd-order eigenvalue contribu-

tions are zero and hence the next contribution is
EZ=(D,|H,|®,) . 4.9)

It is straightforward to find @, from the first-order equa-
tion, namely,

H,®,+H ®,=E,®,+E,, . (4.10)
Setting
Q= 3 a,, 4, Po(m,M) @.11)

m,M

4“4
one finds the nonzero coefficients to be
1 Qo 20y | — —
Ay, N—1=18 Qg—ap VnVN ,
| Q1200 |~ —
an_l,N,IZIS m \/n \/N+1 5
042 (4.12)
. 0T <0 —_—
an+1’N_1=18 m \/n—i-l\/N ,
| Qo209 | ———
an+l’N+1:18 H ‘/n +1\/N+1 .
Now, Eq. (4.9) yields
2
E},:ﬁwo k2(2n +1; .
A (@3/Q3)(3— 403 /Q2)(2N +1)
— 7, (4.13)

4(1—2)(1—wd/Q3)

The power series in A results in the first term of the exact
eigenvalue, Eq. (4.3), being correct to order A% and the
second term being correct to order A*.

In order to get the first term correct to order A* it is
necessary to calculate the fourth-order contribution, that
is, Ef;, which can be written [24,25] as

Ef=(®,|E)—H,|®,)—E}(D,|D,) . (4.14)

In this form one requires only @, in addition to the previ-
ous results. The algebra is straightforward but lengthy.
It does give the correct result. Thus the exact eigenvalue
spectrum of H can be determined using standard tech-
niques when H has not been exactly diagonalized, provid-
ed a satisfactory reduction is implemented.

C. Perturbative treatment of the e-dependent term

In the application of relativistic AAD theories, as indi-
cated in the Introduction, and in quantum electrodynam-
ics, at some point an expansion is made as a power series
in 1/c, or, equivalently, the fine structure constant. It is
always assumed that these series are convergent and,
moreover, that each term in the expansion can be treated
perturbatively. Although a formal perturbative structure
to treat acceleration-dependent terms in a Lagrangian
has effectively existed [15,26] for some time, to date, the
extent to which such a calculation is or is not valid is
completely unknown, simply because exact methods have
been nonexistent. The present analysis and model prob-
lem can be used to advantage, finally, to make a compar-
ison between a perturbative and a nonperturbative
quantum-mechanical solution to this type of problem.

In quantum form the procedure is to set

Lo=1px*—1kx? (4.15)

and

(4.16)
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Thus the Hamiltonian, Eq. (3.7), becomes

D € . € .e

= EPO +%kx2— *ZEP (2)_ ~—PoPo -
At this point additional variables are not introduced.
Rather, one sets

(4.17)

bo=4[H.po] »

(4.18)
Lo @
Po=7%

i
H’ Z[HJ’O]

Notice that it is essential to use the total H in order to
generate the proper series, which will turn out to be in
terms of A, Eq. (3.27). One obtains

Po=—kx+A%kx+ -,

X X (4.19)
5= — —Kz—p 4 -
Po ”Po ubo
Thus
H=——(14+222422% - - )p3
2u
+1k(1—A2 42244 -+ - x2 . (4.20)

It is sufficient to note that the effective frequency is given
by

=@} (1+2A2+20%+ - - - J(1—=A*+20%+ - -+ )
=0 (1+A2 244+ -+ ) . 4.21)

This is exactly the expansion for 3. Thus the perturba-
tive quantum solution fails in precisely the same way as
the classical case. This again demonstrates the need for
nonperturbative techniques.

This particular calculation also illustrates that the in-
troduction of any deviations from the exact canonical
form of a Hamiltonian, such as those arising from the ap-
proximations leading to Eq. (4.20), can result in the loss
of information. Nevertheless, such a calculation may
yield essential information, as discussed in the next sec-
tion.

V. DISCUSSION

In this work, many aspects of a model problem [1] with
a second-order Lagrangian have been examined, both
classically and quantum mechanically. In the classical
case, the solutions of the Euler-Lagrange equations of
motion and of Hamilton’s canonical equations, obtained
after converting to a canonical form, are identical. This
conversion can be effected by either conversion to a prob-
lem of Lagrange [2], application of the methods of gen-
eralized mechanics [3], or the use of Dirac’s method [21]
for constrained systems. At this point, all of the usual
methods of Hamiltonian mechanics apply. The general-
ized Hamiltonian can be studied by canonical transfor-
mations and can be put into diagonal form. In this case,
it appears as the difference between two energy operators
and its interpretation is clear. We elaborate on this point
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below. Once the classical problem has been reduced to
standard first-order form, quantization is straightforward
and the usual methods apply. The quantum results are
consistent with the classical results.

The Hamiltonian arising in AAD theories for physical
systems is normally identified as the total energy of the
system and, hence, one imposes the requirement that its
eigenvalue spectrum be lower bounded. This is in ap-
parent direct conflict with the present case, e.g., Egs.
(3.34) and (4.3), and this situation needs clarification.
There are a number of points that need to be recognized.
First, the above requirement is entirely a Newtonian con-
cept, arising from the structure of the theory and the fun-
damental assumption that nonrelativistic physical La-
grangians must be of first order. There would be no
dispute or alternative if a proof existed for this assump-
tion, however, in fact, just the opposite occurs. The no-
interaction theorems [27-32] prove that the Lagrangians
cannot be of first order for relativistic AAD theories. As
indicated in the Introduction, one possibility is higher-
order Lagrangians. Thus it is clearly prudent to be
unprejudiced and objective on this point. Second, it is an
elementary result of both classical mechanics [22,33] and
quantum mechanics [34] that, like the Lagrangian, the
Hamiltonian of a system is not unique. Consequently,
the Hamiltonian need not represent the total energy, even
if lower bounded, and need not be lower bounded. This
in no way invalidates the formalism. Third, only when
very specific a priori information is available [22], such as
is the case for conservative nonrelativistic systems, can a
particular Hamiltonian be identified as the total energy at
the outset. When such information is not available, as is
the case here, a different procedure must be found.
Fourth, the formalism does not provide this information.
It only guarantees that the Hamiltonian has the same
units as the Lagrangian, energy in the present case, and
that it is a constant of the motion. Fifth, our analysis
demonstrates that, in the present case, the precise inter-
pretation only comes after the complete solution is
known and is unambiguous. The structure of Egs. (3.31),
(3.34), and (4.3) demonstrates that the Hamiltonian asso-
ciated with the present second-order Lagrangian, al-
though it does not represent the total energy of the sys-
tem, does contain all of the information required to iden-
tify the total energy of the system. In this case, the eigen-
values of the Hamiltonian can only be interpreted as the
difference in the actual energies contained in each mode.
The total energy of the system must be the sum of these
two energies and, hence, is properly lower bounded. It
follows that no fundamental physical principles are
violated by this example. Sixth, in principle, the Hamil-
tonian yields only the energy difference and, hence, in
those problems where the identification might not be
clear, one would require some additional information in
order to make the correct interpretation. Our analysis
indicates that, for those problems with a well-defined
solution for € going to zero, the perturbative solution will
suffice for that purpose. Finally, it is clear the Newtonian
concepts and results cannot be applied directly to high-
order Lagrangians. In fact, they must be treated distinc-
tively.
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It is also interesting to make a few comments on the
quantum results. In this formalism the phase space of the
system is enlarged to comnsist of the position coordinate
with its associated generalized momentum plus a velocity
coordinate, or possibly a coordinate for the usual momen-
tum, with its associated generalized momentum. The
lower energy represents a resonance in the usual coordi-
nate space, while the higher energy represents a reso-
nance in this velocity space and is due entirely to the
acceleration-dependent terms. If such terms arise in
physical problems from high-order relativistic effects,
they will be purely relativistic in nature, have no nonrela-
tivistic limit, and will require distinctive treatment.
Furthermore, we are, finally able to compare nonpertur-
bative and perturbative quantum results. It is seen that
the latter method fails in a way similar to that in the clas-
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sical case, losing all trace of the higher mode. Now, al-
though we may have lost some relativistic features by
treating the kinetic energy nonrelativistically, one would
have to be very optimistic to believe that this difference
would be enough to make a perturbative treatment mira-
culously correct. One should expect it to be similarly
inadequate. Thus these results raise some very funda-
mental physical questions, namely, are such higher reso-
nances real, how are they manifested, how are they real-
ized, and how can they be observed? This work lays the
basis for further investigations into these questions.
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