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Itano and co-workers [Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev.
A 41, 2295 (1990)] have recently reported the experimental verification of the quantum Zeno effect,
which is the inhibition of a quantum transition by frequent measurements. In this article, we offer an al-
ternative interpretation of the quantum Zeno effect. We show that an analysis of the dynamics of the full
three-level system gives the same result. There is no need to assume explicitly that the wave function has
collapsed, nor even to assume that an ideal measurement has been made. In addition, we differentiate
between what has been referred to as the quantum Zeno effect and what has been termed the quantum
Zeno paradox. The former is the inhibition of induced transitions, and the latter is the, as yet experi-
mentally unobserved, inhibition of spontaneous decay. Our interpretation, which emphasizes the
"measurement"-induced interruption of atomic-state coherences as the cause of inhibited quantum tran-
sitions, suggests a resolution to the quantum Zeno paradox. The theoretical limit of continuous observa-
tion is discussed.

In a recent paper, Itano et al. [1] demonstrate the
quantum Zeno effect, which is the inhibition of quantum
transitions by frequent measurements. The authors con-
sider the probability that a transition from an atomic
ground state (level 1) to an excited metastable state (level
2) is induced by a resonant "vr" pulse (signal pulse), a
pulse that, in the absence of any other applied fields and
neglecting spontaneous decay, produces unit probability
of excitation of level 2. The atom is simultaneously sub-
jected to a number of additional pulses, equally spaced in
time, which strongly couple the ground state to a second
level (level 3), from which there is spontaneous decay to
level 1. (See Fig. 1.) The claim is that these short pulses
constitute true measurements on the 1-2 system [1]. If
photons are seen to scatter by spontaneous decay from
level 3, then it can be deduced that the system is in state
1 prior to the short pulse. If, however, no scattered pho-
tons are produced, then the system must be in the meta-
stable state 2. The authors compute the final transition
probability to state 2 by assuming that each strong pulse
in this way constitutes an ideal measurement. The wave
function is said to "collapse" to one of the unperturbed
levels, 1 or 2, hence the coherence that describes the de-
gree of superposition of these states is identically zero. In
this way the transition probability is seen to decrease as
the number of "measurements" increases.

The purpose of this article is twofold. In the first part,
we carry out a direct calculation of p22( T), the probabili-
ty to be in the metastable state, following the pulse se-
quence described above. It is assumed that the system
evolves unobserved up to time T (as in the actual experi-
ment [1]) and that, a time T, the population p22(T) is
measured by the application of a probe pulse. The results
of Itano et al. [1]are recovered, but our interpretation of
the results differs from theirs. They argue that the
Iluorescence photons emitted from state 3 (which bring
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the atom back to state 1) are recorded in the electromag-
netic field and constitute a measurement whether or not
they are actually observed. We adopt the point of view
that a measurement occurs only at the time some irrever-
sible process has been used to record the state of the sys-
tem. In the second section of the paper, we discuss the
related but not identical quantum Zeno paradox. The
quantum Zeno paradox, as originally discussed in rela-
tion to bubble-chamber experiments, refers to the seem-
ingly contradictory fact that the "continuous" observa-
tion of an unstable particle in no way modifies the
particle's lifetime. We introduce an atomic analog to this
bubble-chamber experiment and are able to resolve the
paradox by a careful examination of the atomic-state
coherence. This key role played by atomic-state coher-
ence also provides a link between the quantum Zeno
effect and the quantum Zeno paradox.

The full density-matrix equations of motion for this
three level atom interacting with two resonant cw fields
are
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matrix elements representing the strong transition alone,
this solution is [2]
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FIG. 1. The three-level configuration considered by Itano
et al. Levels 3 and 2 have resonance frequencies co2O and cu&o

and spontaneous decay rates y3 and y2, respectively. The Rabi
frequencies y2 and y& are proportional to the amplitudes of the
applied fields. We assume that g2 p3 )+pl
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Integrating by parts, we obtain the solution

&1) —(1)(t) p(P)(t)l+2 i+i

where we have transformed to a field interaction repre-
sentation,
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and the usual rotating-wave approximation has been
made. The Rabi frequencies for the weak and strong
transitions are g, and y2, the spontaneous decay rates
from states 2 and 3 are y2 and ) 3, y,"=(y, +y )/2, and
co, and co2 are the laser frequencies, which are equal to
the level separations cpip and cp2p. (In the experiment de-
scribed by Itano et al. [1], the 1-2 transition is in the rf
rather than in the optical range; however, this does not
change the level dynamics of the problem). In the closed
system considered here, there are five independent equa-
tions, characterized by four parameters. A full, analyti-
cal solution is not easily obtained. However, the fact that

where the terms dependent on time derivatives of p2& and

p, 3 are very small as p2] and p» are, on the time scales
considered, seen to be in the quasistatic regime. The
quantity of interest is p22(t), the population, of the meta-
stable state, to second order in the signal field. From
Eqs. (1) this clearly depends on the coherence p, 2, which
in turn depends on the coherence p23.

To first order in g„ the equation for p, 2 is
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leads to a great simplification. Treating g& as a perturba-
tion, and using an adiabatic elimination procedure to
reexpress density-matrix elements which evolve rapidly
to a quasisteady state, one obtains simple rate equations
for the level populations. This derivation is in analogy
with that of Kimble, Cook, and Wells [2], who solve the
resulting equations in steady state in order to describe in-
termittent atomic fluorescence. Here we retain the time-
dependent solutions for the populations pii(t), p22(t), and

p33( t ), and for the coherence p, 2( t ).
If we consider time scales long compared with y3

' but
short compared with y& ', we may solve for the density-
matrix elements describing the strong transition in steady
state, to zeroth order in y, . In terms of the density-

where Eq. (6) or p23 has been substituted into Eq. (ld).
The key point is that p, 2 now relaxes with the effective
rate

1 Xzr, =—y+

which is much greater than the usual transverse rate
y2/2. From the above analysis it is clear that the rapid
transverse decay enters from the coupling of the two
transitions through p23. This fast transverse relaxation
fulfills the consistency requirement that p2& terms may be
neglected in Eq. (6) for the solution for p23(t). Finally,
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This is in agreement with Kimble, Cook, and Wells [2] in
the limit of zero detuning. The time-dependent solutions
for the populations are
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the quasi-steady-state solution for p, z is substituted into
Eqs. (la) —(lc), and the rate equations governing the evo-
lution of the populations are found to be

(13) are given by

pzz
= [1—cos(~/n) ] /2,

p» = [1+cos(vrjn) ]/2,
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where we have assumed that the atom is initially in its
ground state, B(to=0)=(0,0, —1). After the first "mea-
surement pulse" of length ~ we have, for the popula-
tions,
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The coherences p1z and pz1 are obtained from the quasi-
steady-state solution of Eq. (7),

Taking the following as plausible values of the parame-
ters consistent with Eq. (3), y3 = 10 sec ', y, = 10 sec
yz= 10 sec ', y2-0, and ~ = 10 sec, we have
(R l+Rz)TP= ylr Ir,—ff=-yly3rply2=10 ". Clearly the
populations do not evolve significantly over ~, and Eq.
(15) can be simply rewritten as

and the corresponding time-dependent equations for the
coherences P1z and Pz, are easily obtained since, for
r,ff)&g„yz, they adiabatically follow the populations.

In the free-evolution periods, during which the signal
field only acts, the development of Pzz, p», p, z is most
easily stated in terms of the rotation of the Bloch vector
B(u, v, w) in state space, where
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The solution is simply B(t)=MB(to), where
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where t =~/ng, +r . The last two terms reAect the slowP'
adiabatic following of the populations. These terms are
small, of order y, /I, ff. The important result is in the
first term; any coherence that had developed so far is rap-
idly damped in the short time I,ff'. After the next free-
evolution time, the solution for pzz(ran+2~ jny, ) is

[1—cos (m. /n)]/2+0 (yi~ /I, ff) . (18)
1 0
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The rate yz is so small that it is neglected over these time
scales. To solve the general problem posed by this exper-
iment in which a number n of equally spaced strong
pulses resonant with the 1-3 transition are superimposed
on the long m' pulse resonant with the 1-2 transition, we
simply consider the two solutions above, and match
boundary conditions.

At the end of a free-evolution period of length m/ny„
the density-matrix elements computed with the use of Eq.

It is clear that after any number of such pulses, the solu-
tion is [1 cos"(m/n)]/2+, w—hich is .the solution de-
rived by Itano et al. [1], up to small terms of the order
X1&P/I .ff

Although the results are essentially identical to those
obtained by Itano et al. [1],this does not necessarily sup-
port their contention that the "measurement" pulses re-
sult in wave-function collapse. We prefer to interpret the
results solely in terms of the dynamics of the atom plus
field system. Rather than wave-function collapse, it is the
rapid decay of the coherence p1z that is caused by each
strong pulse which results in the dramatic reduction in
population for state 2 following the m pulse.
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FIG. 2. The atomic analog of a bubble chamber. An initially
excited atom moving with velocity v passes through an array of
"detectors", which are atoms excited very near to ionization.
The detectors eject photoelectrons as the excited atom passes
them, but not if a ground-state atom passes.

assume that the atom under investigation has two levels
separated in frequency by cop, and that it is initially
prepared in excited state 2 with some translational kinet-
ic energy. This atom decays to state 1 owing to its in-
teraction with the vacuum field. As the excited-state par-
ticle moves by the detectors it provides the small
amounts of energy required to ionize the detector atoms
and the energy of state 2 is perturbed. (See Fig. 2.) We
assume that interaction with the ground state is not
sufhcient to cause ionization. The analogy with a particle
in a bubble chamber is clear. The excited atom corre-
sponds to an unstable particle, and spontaneous emission
to the ground state corresponds to particle decay into its
stable by-products.

The Hamiltonian describing the system is

atom +Hfield I vac+ +int (19)

Having obtained this dynamical solution it is instruc-
tive to examine the limiting case as intermittent measure-
ments go over to continuous observation. Misra and Su-
darshan [3] have defined the appropriate limit for observ-
ing the Zeno effect as a succession of instantaneous mea-
surements in the limit that the intervals between mea-
surements approach zero. In other words, this is the lim-
iting case in which periods of free evolution are separate
from periods of measurement. Applying our result that
the strong field causes a fast relaxation of p12 at each
strong pulse, it is clear that the population of the meta-
stable state does remain zero so long as the measurement
field is strong enough.

One might expect that the limit of continuous observa-
tion can also be reached discontinuously, that is, when
both the measurement and signal fields are applied for the
duration of the m pulse. This certainly seems plausible
from a qualitative standpoint, assuming that observations
of Auorescence continuously collapse the wave function;
however, such a conclusion is not warranted. If the inhi-
bition of induced transitions were caused by wave-
function collapse, then for two cw fields, this inhibition
should persist indefinitely. Yet, it is shown in "quantum
jump" experiments [4] performed in similar three-level
configurations, that in steady state the metastable level
may be occupied for a significant fraction of the time.
Kimble, Cook, and Wells [2] have shown that a steady-
state population p22 equal to —,

' can be achieved in this
limit [5].

The quantum Zeno effect refers to the inhibition of in-
duced transitions by repeated measurement, whereas the
quantum Zeno paradox refers to the analogous inhibition
of spontaneous decay. In order to discuss the quantum
Zeno paradox and its relation to the quantum Zeno
effect, we construct an atomic analog of the bubble-
chamber experiment analyzed by Misra and Sudarshan.
Consider the "bubble chamber" to consist of an array of
"detector" atoms excited very nearly to ionization. We

where Ha«m is the free-atom Hamiltonian, Hfield is the
free-field Hamiltonian, —p E„, is the atom-vacuum
(field interaction ) Hamiltonian, and V;„, is the Hamil-
tonian describing the interaction of the atom with the
detectors. We model this interaction, which affects only
the upper state, as

V,„,= g V»(n)f (t t„), — (20)

where f (r) is sharply peaked at r=0, V22(n) is some ar-
bitrary function of n, and atom-detector collisions occur
at instants t„, which are separated by some average inter-
val T.

The probability amplitudes b2 for the atom to be in
state 2 with no photons in the field and b, k for the atom
to be in state 1 with a photon of type k present in the field
obey the evolution equations in the interaction represen-
tation

I' ( cok Cl)p ) t
b2 =(iA') ' g H2 ,ke.

k

Xexp i f V;„,(t')dt—' b, k,
L

i(~„—~p)~

Xexp i f V;„,(t')dt' b2 .

(2 la)
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We first solve Eqs. (21) in the limit V;„,=0. So long as
the emitted photons do not act back on the system an ap-
proach such as that of Weisskopf and Wigner [6] can be—12'
used to obtain the approximate solution b2(t) =e
Inserting this result in Eq. (21b) and integrating,

'H, „.e"" "'e '"""dt-,
0

(22)

where the initial conditions are b2(0)=1 and b, k(0) =0.
The emission probability I(t) is found by squaring this
amplitude and summing over all photon modes:

I(t)= ~ ~b, k~
= ~ ~H .

~

dt'e " e '"~ ~' f dt"eik ~ ~2 lk;2
0

(23)
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Replacing the summation over k by an integral, we have, after some rearrangement

I(t)= f dco1,2)(coI, )~Hi1, .2(coI, )~ f dt'e ' f dre " ' e'" (24)

where X)(col, ) is the density of final states V~i, l(rr c ), and where t) t') 0. As in the usual Weisskopf-Wigner ap-
proach [7], we assume that 2)(co& ) and H(co& ) vary little about coo for which the integral is large, giving

I(t)= 2)(coo)~Hil, .z(coo)~ f dcoI, f dt'e "'f dre " ' e' (25)

Performing the frequency integral first, one finds a delta
function in time 6(r)=6(t' —t") and integrating over
time, one obtains the emission probability
I(t) =(1—e "').

It is instructive to interpret Eq. (23) in terms of
double-sided Feynman diagrams [8]. The atom in some
sense "sees" all possible paths in which it jumps from the
excited state to the ground state at some instant t. The
integrand in expressions (23)—(25) represents the superpo-
sition of all possible pairs of such paths [see Fig. 3(a)]. In
evaluating Eq. (25) we have a 5 function in time which
shows that only diagrams of the form t'= t" actually con-
tribute [see Fig. 3(b)]. There is no observable effect on

I

the upper state lifetime, arising from interference be-
tween different Feynman paths. This is a mathematical
manifestation of the quantum jump nature of spontane-
ous decay. If we now include the perturbative effects of
the detectors in the atomic bubble chamber we can show
that the lifetime is still unaffected so long as the atom-
detector interaction time is greater than the correlation
time between the excited state and the vacuum. Typical-
ly, this vacuum correlation time ~„„,is extremely short;
it is at most 1/coo, where coo=10' sec ' is the optical
transition frequency of the atom. By including V;„„Eq.
(23) is modified to read

I(t)= g ~ Hii. z~ f dt'e " ' e '" "exp i g V2~(n) f f(t"' t„)dt"'—
k n

X f dt"e ' " ' e ' ~ ""exp i g V—zz(n) f f (t'" —t„)dt"'
n

(26)

lk

Once again, we change the summation over photon
modes to an integral and find that the integration over
frequencies gives a 5 function 5(t' —r") in the
Weisskopf-Wigner approximation. The result is that
there is no modification of the lifetime since

T

exp iVzz f fdt'"
0

I

exp & ~22 dt

lk

lk

(b)
FIG. 3. Pairs of Feynman paths contributing to integrals of

the form Eq. (23). Each path represents a jump, at some instant,
from the state consisting of a two-level atom in its excited state
with no photons in the field, to that in which the atom is in its
ground state having emitted one photon of type k into the 6eld.
(a) Pairs of Feynman paths characterized by di6'erent jump
times. (b) Only pairs of paths with equal jump times (t"=t')
contribute to the expression for the total fluorescence intensity.
This is a mathematical manifestation of the quantum-jurnp na-
ture of spontaneous decay.

Again, this result can be linked to the fact that the
correlation time for the vacuum field is much smaller
than the atom-detector interaction time. In measuring
the atomic decay time, one averages over all the modes of
the vacuum field, which eliminates any coherence be-
tween states 2 and 1k in the Feynman diagrams of Fig.
3(a). For the measurements to modify the decay rate it
would be necessary to have an atom-detector interaction
time much less than the correlation time of the vacuum
field. This conclusion has been reached by other authors
[2,9,10], but from a somewhat different perspective.

Even though the upper-state lifetime is unaffected by
the presence of the detectors the fluorescence spectrum of
the radiation emitted by a test atom in the atomic bubble
chamber may be modified. In terms of the spectrum, the
coherences formed by overlapping Feynman paths do
play a role. The spectrum is given by the probability to
be in the lower atomic state with a photon of type k
present. In the absence of atom-detector interactions, the
spectrum is given by
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I Pl

I(t=ao)=b (~)i = dt'H . e " ' e '" " dt"H . e " ' e
0

( I /2)'+ (~k —coo)'
(27)

giving the expected result that the spectrum is peaked at
~o with a width determined by the atomic lifetime I.
The important point is that contributions to the integral
Eq. (27) come from all pairs of paths of the form shown
in Fig. 3(a). These coherences, arising from interference
of paths characterized by different jump times, are
affected by perturbations in the form of Eq. (20). In the
presence of such perturbations, the Auorescence spectrum
is broadened in a manner analogous to that of the tradi-
tional pressure broadening of spectral lines.

We may employ yet another approach in order to
demonstrate the role of the ultrashort correlation time of
vacuum Auctuations is removing the quantum Zeno effect
from observations of spontaneous decay. In the usual ap-
plication of quantum mechanics, the probability of
finding that a system, initially prepared in some state
1(to), remains in that state at time t is given by

where H is a Hermitian Hamiltonian. In particular for
the bubble chamber example, ~Po) is the upper atomic
state with zero photons in the field and H is the Hamil-
tonian described above. The probability that the system
is found to remain in state ~$0) given that it is in the
state ~go) at n instants (t„t2, . . . , t„) is [11]

(29)

where we prefer to interpret this as a joint probability of
observing a particular outcome, and on that the wave
function has actually collapsed at each intermediate time.
In general, Pz does not equal P2 „. Misra and Sudarshan
[3] have rigorously proved that in the limit n —+ m, the
joint probability P2 „approaches 1, provided that H is a
Hermitian and sernibounded operator. This is a precise
restatement of the quantum Zeno effect.

From this analysis it is tempting to conclude that a
particle should be inhibited from decay if it is frequently
observed. Certainly, the Harniltonian governing the in-
teraction of the excited-state atom with the vacuum field
modes is Hermitian and has a spectrum bounded from
below as required by the theorem of Misra and Sudarshan
[3]. It would seem to follow that the probability to be in
the undecayed state after passing n detectors is given by
an expression of the form Eq. (29), indicating a longer
lifetime for the "observed" particle, in contradiction to
all experimental data on spontaneous decay.

The resolution to this seeming paradox is that, given
the ultrashort correlation time of vacuum Auctuations, in
making our observation of the system we have implicitly

where the I; are decay constants. The important point
is that averaging over vacuum field modes has yielded
these irreversible damping terms I, in the equations for
the reduced density matrix. Evolution is no longer
governed by a Hermitian Hamiltonian and the theorem
of Misra nd Sudarshan [3] no longer applies. In the ab-
sence of an incident field the evolution of the excited-
state probability is easily found from Eq. (30) to be—r(t —t, )Pz(t)=e ' P2(to), where I is the upper-state life-
time. What is uniquely true for exponential decay [11] is
that

—r~, —rI~, —t, )
—r(t —t„)

2, B 2 e ~ ~ ~

=Pz(0)e "'=P2(t) . (31)

Therefore, so long as we have implicitly averaged over
vacuum variables in making our observations of decay,
the probability to remain undecayed is independent of the
number of such observations we make. In other words,
Eq. (31) shows that in this case we expect no manifesta-
tion of the quantum Zeno effect.

The quantum Zeno effect, as discussed by Itano et al.
[1] differs from the problems posed by quantum jump
paradox in that it is the induced rather than spontaneous
transitions that are considered. The reason that induced
transitions are inhibited, whereas spontaneous transitions
are not, is again a matter of the time scales over which
the measurements are performed. In the work of Itano
et al. [1] the measurements, or more properly, the inter-
ruptions of the developing coherence, occur over times
much shorter than the time over which induced transi-
tions to the metastable state would occur. These inter-
ruptions result in the reduction in p22. This is not unlike
the situation in which active atoms undergo phase inter-
rupting collisions with perturber atoms. Phase interrupt-
ing collisions are simply included in the Bloch equations
by writing the phenomenological transverse decay rate as

y, 2=I /2+y', where I is the spontaneous decay rate
and y' is the collision rate. Solving the Bloch equations
approximately for strong fields gives that p&z(t) is ex-
ponentially damped with rate y', and hence the probabili-
ty for induced transitions is reduced.

Itano et al. [1], note that collisional relaxation may
constitute a "Zeno effect, "but dismiss this with the claim
that collisions represent an essentially different process
from the one considered in their experiment. They point
out that it is the ensemble average value of the coherence
that decays, where the average is over collisional his-

averaged over vacuum variables. The quantities we are
actually measuring correspond to atomic states only.
The equation of motion for the reduced density matrix
which represents these states is

(30)



1472 ELLEN BLOCK AND P. R. BERMAN

tories. In this experiment the relaxation of coherences
occurs because of spontaneous decay. However, an en-
semble average has been made implicitly, where the aver-
age is over the vacuum field modes; perhaps the two situ-
ations are not so dissimilar.

What has motivated our alternative approach is the
desire to avoid any physical explanation that relies on the
idea of wave-function collapse, with all its attendant
difficulties. In the usual interpretation of quantum
mechanics the probability of an outcome after a succes-
sion of measurements is given an appropriate correlation
function or joint probability. There is usually no need to
invoke the idea of a wave-function collapse. In this spirit
we solve the full dynamical problem posed by Itano's ex-
periment, and show that the inhibition of quantum tran-
sitions between two quantum states result from the dis-
ruption of coherence existing between these states, and
where the time over which these interruptions occur
plays a crucial role. Clearly, a "quantum Zeno effect" is
manifested only if the interruptions occur during times
much shorter than the time it takes for the signal field to
induce complete inversion.

In addition, by considering the dynamics, and not the
presumed consequences of measurement, we offer a reso-
lution to the quantum Zeno paradox. The fact that inter-
ruptions occur ever times long compared to ~„„leads to
the result that the observed lifetime of the excited state is
unchanged. The analysis in terms of Feynman paths is

particularly illuminating because it suggests that a detec-
tor measuring total fluorescence "sees" a quantum jump
from the excited to the ground state at some instant. The
detector is never in a superposition state.

This picture seems to clarify the completely analogous
scenario of Schrodinger's cat [12]. This consists of a
lethal dose of poison which kills the cat when its release
is triggered by a particle undergoing spontaneous decay.
If the cat is enclosed in a box, then it is asked if quantum
mechanics demands the strange situation that the cat is
in a superposition of being both alive and dead until
someone looks in the box and thereby projects the system
into one of these two possibilities. Yet, by our analysis
the cat is, unfortunately, a 100% effective detector which
records decay by changing state (quite irreversibly) from
alive to dead. Anyone peering inside the box in no way
affects the state of the cat. As in our previous example of
an atomic bubble chamber, the detector jumps irreversi-
bly from one state to the other without being in a super-
position state. Likewise, owing to the ultrashort vacuum
correlation time, our observing the cat through a window
in the box will have no efFect on the system. No matter
how humanitarian our intentions, we will not succeed in
postponing Kitty's sorry fatef
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