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Atomic charge density at the nucleus and inequalities among radial expectation values
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A self-consistent study of the function f (r) =p(r)+p'(r)/(2Z), where p(r) is the spherically aver-

aged electron density of the ground state of an atom, shows that f (r) ~0 everywhere. This allows
us to obtain several inequalities relating the atomic electronic density at the nucleus p(0) and atomic
radial expectation values (r ). In particular, we generalize upper bound found by Ho(fmann-
Ostenhof, Hoff'mann-Ostenhof, and Thirring [J. Phys. B 11, L571 (1978)] to p(0). We also obtain ac-
curate inequalities between the radial expectation values ( r ) of atomic systems.

The electron density p(r) of an X-electron atom,
defined by

p(r)=&g f l+(r, r~,

The main objective of our study is to verify that the
function

f (r) =p(r)+ p'(r)
2Z

Xdr2 . dr~, (1) for atoms in their ground state, has the property

where ]II(r],r2, . . . , r]v;cT], cT2, . . . , cr]v) is the normalized
electronic wave function —antisymmetric in the pairs of
(r;, o.;) of position-spin electron coordinates —or the
spherically averaged electron density, p(r), defined by

p(r)= fp(r)dQ,1

4~
(2)

is one of the most useful quantum-mechanical concepts of
atomic physics, not only because it allows a more con-
venient and transparent interpretation of physical and
chemical phenomena, but also because it is the corner-
stone of modern atomic density-functional theories. '

It is hard to prove mathematical properties of this
quantity in a rigorous way. One of the properties is its
behavior at the origin, Kato's cusp condition '

p'(0)= —2Zp(0). (Atomic units are used throughout. )
However, some other properties have been suggested by
self-consistent numerical calculations. One of them is
that the spherically averaged electron density of the
ground state of neutral atoms is a monotonically decreas-
ing function. ' In addition, the positivity of the second
derivative has been also studied both analytically and nu-
merically.

A lot of work with these properties has been done.
One manner of work leads to the description of the atom-
ic density at the origin, p(0), by means of bounds " in
terms of atomic radial expectation values (r ), defined
by

(r ) =f,r p(r)dr=4 rf ]r + p(r)dr .

In this work we obtain, based on the positivity of the
function f (r) defined by Eq. (4), one set of bounds to
p(0), which will improve the others mentioned above.
Also, the use of this property will allow us to obtain
several sets of accurate inequalities among radial expecta-
tion values (r ) of diff'erent orders.

f (r) ~0,
which can be considered as a spatial generalization of
Kato's theorem as defined by March. '

The only atomic systems for which we know the exact
form of f (r) are the one-electron atoms. For these sys-
tems f (r) =0. For the other atoms we have the following
information about f (r).

(i) The Kato's cusp-condition states that

f (0)=0 .

(ii) For large values of r it is already known' that

p(r) ~ exp( &8Ir), — (7)

where I is the first ionization potential. Equation (7)
leads to

f (r) ~ 1 — exp( &8I r)~0—&ZI
Z

because of 2I +Z .
In addition to this, the inequality (5) is formally correct

if we use for p(r) the total electron density of an arbitrary
number of closed shells for a bare Coulomb potential en-
ergy V (r) = —Ze /r, as was proved by March. '

A numerical study of this function in the Hartree-Fock
framework, using Clementi and Roetti's data' for atoms
in their ground state between Z =2 and 54 shows that
f (r) is a positive function, which is illustrated in Fig. 1

where it has been plotted for the krypton atom, the be-
havior of the other atoms being similar to this one.

In addition to this, a comparison between this function
and the atomic density p(r) is shown in Fig. 2 for the
same atom, where we can see how p(r) is much greater
than f (r) for small values of r, where they are more
significant.

Now we will use the positivity property of f (r) in or-
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5' '=v if m =0.0 k

(12)2'
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(b) For k )0 we obtain

kh th rem to the function r r
of all the determinants b fo
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b.'"') we obtain the followingFrom the positivity of vk(b. o we o
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(a) For k =0,
z&.-'&

p(0)&:—Uo .

v = r "f(r)dr = .~n

p(o)
4v 2Z '

&."-')- "
&
"-'),

4m 2Z

k —3) & ( k —2) Uk

Particular cases o q.. (13) are

1(r ') &2Z(r ') = Uo,

(.-') &Z'= U,',
& )-l

(13)

(15)

(16)
~ ~
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TABLE I. Test of the upper bounds U to the atomic density at the nucleus p(0), given by Eq. (17),
for some values of m, by means of the ratios R =p(0)/U . See details in text.

2
3
4
6
8

10
14
18
23
29
36
44
54

p(0)

3.60
13.83
35.43

127.56
311.97
620.15

1765.71
3840.22
8178.33

16 626.73
32 228.20
59 490.87

111 163.94

Ro

0.942
0.959
0.966
0.963
0.952
0.939
0.926
0.915
0.906
0.897
0.889
0.880
0.873

Ri

0.979
0.972
0.979
0.982
0.980
0.976
0.963
0.954
0.945
0.940
0.931
0.923
0.915

R2

0.989
0.982
0.985
0.988
0.988
0.986
0.976
0.973
0.959
0.953
0.949
0.939
0.933

0.994
0.988
0.990
0.991
0.991
0.990
0.982
0.980
0.959
0.964
0.960
0.949
0.945

R4

0.996
0.991
0.992
0.993
0.994
0.993
0.985
0.984
0.975
0.970
0.968
0.956
0.954

R5

0.997
0.993
0.994
0.995
0.995
0.994
0.988
0.987
0.979
0.975
0.975
0.961
0.960

R6

0.998
0.994
0.995
0.996
0.996
0.995
0.990
0.989
0.982
0.979
0.979
0.966
0.965

given by Eq. (17), for some m values, in the near-
Hartree-Pock framework mentioned above, by means of
the ratios R =p(0)/U for some illustrative atoms.
The values Ro corresponds to the bound of Hoffmann-
Ostenhof, Hoffman-Ostenhof, and Thirring of Eq. (12).
We can see that the values of U approximate rapidly to
p(0) when m increases.

We can notice how the simple expression in Eq. (18)
improves the accurate upper bound of Hoffmann-
Ostenhof, Hoffman-Ostenhof, and Thirring increasing
their ratios in 1.3—5 % range for atoms in the range
Z =2—54, when tested with Hartree-Fock data.

The use of b, ' ' ~ 0, for a Axed value of k )0, allows us
to obtain upper bounds to ( r"

& in terms of other radi-
al expectation values of higher orders. This condition
leads to

the radial expectation values with orders between k —2
and k +2m —2.

For the simplest case, m = 1, we have
r

2

( k —3)& ( k —2)
( k —t) k+1

( k 2)
2Z

( k) k+2
( k ))

2Z

(20)

and

( 2) &2Z (,) (Z —(r ') /Z)
(r ) —-,

' = U', (2 l)

Particular cases of Eq. (20) give the following upper
bounds to the atomic moments (r ) and (r '):

4n g vj+kadj (vj+k )

( k —3)& 2Z
( k —2)+

adj(v„}
Uk

((r ) ——')'r'&ZZ— 2

& "&—2&.&/Z
U2 (22)

(19)
Again, the second term in the right-hand side is a nega-
tive term, improving the bounds Uo. It depends on all

A test of the upper bounds U" given by Eq. (19) to
( r ) and ( r ' ) (k = 1 and 2, respectively) is shown in
Tables II and III, for some values of m, and Hartree-

TABLE II. Test of the upper bounds U" ' to the expectation value (r '), given by Eq. (19), for some
values of m, by means of the ratios R ' = ( r ') /U' . See details in text.

2
3
4
6
8

10
14
18
23
29
36
44
54

11.992
30.217
57.624

138.773
257.257
414.900
856.227

1465.009
2465.486
4014.377
6330.530
9648.752

14 818.051

Ro

0.888
0.881
0.857
0.787
0.722
0.667
0.621
0.584
0.551
0.511
0.481
0.456
0.432

Rl

0.967
0.937
0.944
0.929
0.903
0.876
0.750
0.726
0.672
0.658
0.610
0.570
0.535

Rq

0.986
0.958
0.966
0.964
0.953
0.939
0.847
0.824
0.742
0.720
0.706
0.636
0.616

R3

0.993
0.972
0.977
0.977
0.972
0.964
0.898
0.885
0.790
0.765
0.764
0.691
0.673

R4

0.996
0.981
0.983
0.984
0.981
0.976
0.924
0.917
0.832
0.805
0.805
0.735
0.722

0.997
0.986
0.988
0.988
0.986
0.983
0.941
0.936
0.865
0.838
0.841
0.768
0.763
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TABLE III. Test of the upper bounds U' to the expectation value (r '), given by Eq. (19), for
some values of m, by means of the ratios R"= (r ') /U . See details in text.

z
2
3
4
6
8

10
14
18
23
29
36
44
54

3.3747
5.7156
8.4087

14.6893
22.2595
31.1132
49.2434
69.7248
97.2730

135.4781
182.8480
240.4579
317.8706

R"
0

0.844
0.635
0.526
0.408
0.348
0.311
0.251
0.215
0.184
0.161
0.141
0.124
0.109

R"
1

0.961
0.870
0.842
0.763
0.700
0.654
0.418
0.419
0.300
0.282
0.255
0.212
0.190

R"
2

0.986
0.931
0.932
0.898
0.860
0.829
0.553
0.559
0.421
0.394
0.374
0.285
0.276

R tl
3

0.993
0.956
0.962
0.948
0.927
0.908
0.672
0.668
0.512
0.480
0.488
0.351
0.354

R lt
4

0.997
0.970
0.975
0.969
0.957
0.946
0.763
0.754
0.579
0.549
0.577
0.418
0.422

Pock values of the radial expectation values. These
bounds include those given by Eqs. (14) and (21)
(m =0, 1) for (r ) and by Eqs. (15) and (22) (m =0, 1)
for ( r ' ) . We can see the large improvement in some
cases when we increase the values of m, which are shown
by the ratios R ' = (r ) IU' and R "= (r ') IU

By means of Eq. (19) we could find many inequalities
among radial expectation values. We have only written
explicitly and tested the simplest and the most accurate
of them. We have noted here the bounds to ( r ) and
(r '), not only because of their special tightness but also
because they are upper bounds to radial expectation
values of negative order in terms of higher-order mo-
ments, while in the literature only lower bounds were
known, to the best of the author's knowledge, except for
an upper bound to ( r ' ) obtained by Thirring. ' For
example, using the monotonic decrease of p(r), it has
been found' that

,)) 4(r
32K

Using Eq. (14) in addition to this bound, and setting
N =Z for neutral atoms, the following interesting result
is obtained:

2Z(» ') ( ')
3Z

For (r '), Thirring found the upper bound

(r ') 2.289N

and, if we compare to the upper bounds given by Eq. (22),
only for low Z atoms (Z ~ 10) is Thirring's bound im-
proved.

This is a general feature of all these inequalities; they
are more accurate for the low-Z atoms. We should keep
in mind that all of them written here become equalities in
the case of one-electron atoms because f (r) =0.

In conclusion, the assumption of non-negativity, for
the ground state of the atoms, of the function
f (r)=p(r)+p'(r)I2Z, which is verified for the Hartree-
Fock wave functions of Clementi and Roetti, allows us to
obtain inequalities between p(0) and several expectation
values (r ), improving previous results. In addition, re-
lationships among ( r ) values themselves are also ob-
tained. Let us note that some of these values are experi-
mentally measurable quantities or have a special physical
interest.
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