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A self-consistent study of the function f(r)=p(r)+p'(r)/(2Z), where p(r) is the spherically aver-
aged electron density of the ground state of an atom, shows that f(r) >0 everywhere. This allows
us to obtain several inequalities relating the atomic electronic density at the nucleus p(0) and atomic
radial expectation values {r®). In particular, we generalize upper bound found by Hoffmann-
Ostenhof, Hoffmann-Ostenhof, and Thirring [J. Phys. B 11, L571 (1978)] to p(0). We also obtain ac-
curate inequalities between the radial expectation values {7*) of atomic systems.

The electron density p(r) of an N-electron atom,
defined by

p(r)=NY f W(r,1y ..., TN;01,00, ..., 0N)]?
g

Xdrz"'drN N (1)

where ¥(r,1,,...,TN;0,0,,...,0y) is the normalized
electronic wave function—antisymmetric in the pairs of
(r;,o;) of position-spin electron coordinates—or the
spherically averaged electron density, p(r), defined by

p(r)=zl;fp(r)dﬂ : )

is one of the most useful quantum-mechanical concepts of
atomic physics, not only because it allows a more con-
venient and transparent interpretation of physical and
chemical phenomena, but also because it is the corner-
stone of modern atomic density-functional theories. 12

It is hard to prove mathematical properties of this
quantity in a rigorous way. One of the properties is its
behavior at the origin, Kato’s cusp condition>*
p'(0)=—2Zp(0). (Atomic units are used throughout.)
However, some other properties have been suggested by
self-consistent numerical calculations. One of them is
that the spherically averaged electron density of the
ground state of neutral atoms is a monotonically decreas-
ing function.>® In addition, the positivity of the second
derivative has been also studied both analytically’ and nu-
merically.?

A lot of work with these properties has been done.
One manner of work leads to the description of the atom-
ic density at the origin, p(0), by means of bounds’ !! in
terms of atomic radial expectation values (»%), defined
by

(r“)zfRzr“p(r)dr=4rrf0wr“+2p(r)dr . 3)

In this work we obtain, based on the positivity of the
function f(r) defined by Eq. (4), one set of bounds to
p(0), which will improve the others mentioned above.
Also, the use of this property will allow us to obtain
several sets of accurate inequalities among radial expecta-
tion values (%) of different orders.

The main objective of our study is to verify that the
function

p'(r)

= +

fr)=p(r) 27 4)

for atoms in their ground state, has the property
fr=zo0, (5)

which can be considered as a spatial generalization of
Kato’s theorem as defined by March. 1

The only atomic systems for which we know the exact
form of f(r) are the one-electron atoms. For these sys-
tems f (r)=0. For the other atoms we have the following
information about f (7).

(i) The Kato’s cusp-condition states that

f0)=0. (6)
(i) For large values of r it is already known'? that
p(r)<exp(—V8Ir), @)

where I is the first ionization potential. Equation (7)
leads to

V21

flre |1— exp(—V8Ir)>0 8)

because of 21 <Z2.

In addition to this, the inequality (5) is formally correct
if we use for p(r) the total electron density of an arbitrary
number of closed shells for a bare Coulomb potential en-
ergy V(r)=—Ze?/r, as was proved by March. 12

A numerical study of this function in the Hartree-Fock
framework, using Clementi and Roetti’s data'* for atoms
in their ground state between Z =2 and 54 shows that
f(r) is a positive function, which is illustrated in Fig. 1
where it has been plotted for the krypton atom, the be-
havior of the other atoms being similar to this one.

In addition to this, a comparison between this function
and the atomic density p(r) is shown in Fig. 2 for the
same atom, where we can see how p(r) is much greater
than f(r) for small values of r, where they are more
significant.

Now we will use the positivity property of f(r) in or-
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f()425 AP>0, AD>0, m=0,1,..., - (10)
r
£=36 where these symbols denote the Hadamard determinants,
340 given by
Vi Vi +1 Vi+m
255
X Vi +1 Vi +2 Vik+m+1
A‘m )= .. (11)
170
Vi+m Vk+m+1 Vi +2m
85 if m >0, and
AP =v, if m=0.
0 The application of this theorem to the function r*f (r)
0.0 0.2 0.4 0.6

FIG. 1. Plot of the function f(r), defined by Eq. (4), evalu-
ated with the Hartree-Fock wave functions of Clementi and
Roetti (Ref. 14) for the krypton atom (Z =36). Atomic units
are used.

der to find inequalities among moments of this function.
These moments are related to those of p(r) by

(r72) p(0) n=0
- 4 2Z’
v, = [ "r'f (rdr = ©)

_l_ n—2y___n_ n—3
o (r"=2) 2Z(r >,

n>0.

For our purpose, we will use the following Stieljes
theorem. !

If £(r) is a density function (i.e., non-negative and in-
tegrable in its domain), then its moments v, satisfy the
following determinant inequalities:
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FIG. 2. Plot of the function f(r), defined by Eq. (4), com-
pared to the spherically averaged electron density p(r) for the

krypton atom (Z =36), both calculated with the Hartree-Fock
data of Ref. 14. Atomic units are used.

will lead to the positivity of all the determinants A¥ for
any k=20, m =0.

From the positivity of v, (A{")) we obtain the following
relations.

(a) For k =0,
-2
p<o>55<2’7>«zug. (12)

This is the Hoffmann-Ostenhof upper bound’ to p(0).
(b) For k >0 we obtain

(rk_3)5%(rk_2>EU§ . (13)
Particular cases of Eq. (13) are

(r2)<2z(r H=U}, (14)

(r NY=<z2=U3}, (15)

(r)z3, (16)

where we make use of {7°) =Z for a neutral atom.

From the positivity of A!Y’ we can improve the
Hoffmann-Ostenhof upper bound to p(0) [Eq. (12)] by in-
cluding more expectation values (increasing the value of
m). If we denote by adj(v;) the determinant of the adjoint
matrix in Eq. (11) corresponding to the jth element of the
first row, when k =0, we can write

> v;adj(v;)

(r)+arl= — 1=y . (7

z
< =
pOI=2 adj(vg)

Note that adj(vy)=A!). The second term in the right-
hand side of Eq. (17) is a quantity smaller than zero for
every m, and it depends on expectation values from

(r=2) up to {r*™~2). For every value of m >0, Eq. (17)
gives an upper bound sharper than the one given by Eq.
(12). For the sake of clarity, let us write the lowest-order
particular case:
V4 _ [{r D —=(r 2 /222)?
()= [(r2)— =U?.
P 2 N—(r1y/z :

(18)

In Table I we study the accuracy of the upper bounds
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TABLE I. Test of the upper bounds UJ, to the atomic density at the nucleus p(0), given by Eq. (17),
for some values of m, by means of the ratios R,, =p(0)/U%. See details in text.

z p(0) R, R, R, R, R, R,
2 3.60 0.942 0.979 0.989 0.994 0.996 0.997 0.998
3 13.83 0.959 0.972 0.982 0.988 0.991 0.993 0.994
4 35.43 0.966 0.979 0.985 0.990 0.992 0.994 0.995
6 127.56 0.963 0.982 0.988 0.991 0.993 0.995 0.996
8 311.97 0.952 0.980 0.988 0.991 0.994 0.995 0.996

10 620.15 0.939 0.976 0.986 0.990 0.993 0.994 0.995

14 1765.71 0.926 0.963 0.976 0.982 0.985 0.988 0.990

18 3840.22 0.915 0.954 0.973 0.980 0.984 0.987 0.989

23 8178.33 0.906 0.945 0.959 0.959 0.975 0.979 0.982

29 16626.73 0.897 0.940 0.953 0.964 0.970 0.975 0.979

36 32228.20 0.889 0.931 0.949 0.960 0.968 0.975 0.979

44 59490.87 0.880 0.923 0.939 0.949 0.956 0.961 0.966

54 111163.94 0.873 0.915 0.933 0.945 0.954 0.960 0.965

given by Eq. (17), for some m values, in the near-
Hartree-Fock framework mentioned above, by means of
the ratios R,,=p(0)/U2 for some illustrative atoms.
The values R, corresponds to the bound of Hoffmann-
Ostenhof, Hoffman-Ostenhof, and Thirring® of Eq. (12).
We can see that the values of U approximate rapidly to
p(0) when m increases.

We can notice how the simple expression in Eq. (18)
improves the accurate upper bound of Hoffmann-
Ostenhof, Hoffman-Ostenhof, and Thirring® increasing
their ratios in 1.3-5% range for atoms in the range
Z =2-54, when tested with Hartree-Fock data.

The use of A‘,,’f) >0, for a fixed value of k >0, allows us
to obtain upper bounds to {7*~3) in terms of other radi-
al expectation values of higher orders. This condition
leads to

m
a7 477'2 Vi radj(v; )
(rk=3)y < 28 | (ph2y 4 I
k

; =Uk .
adj(vy )

(19)

Again, the second term in the right-hand side is a nega-
tive term, improving the bounds UZX. It depends on all

the radial expectation values with orders between k —2
and k +2m —2.
For the simplest case, m =1, we have

2
[<rk—1>——";; <rk—2>]

k—3 <2Z k—2y _
<r )_ k <r ) k 2

=7

(rk=1)

(20)

Particular cases of Eq. (20) give the following upper
bounds to the atomic moments {r ~2) and {r~!):

_ —1 2
(r2ysaz |Gy~ ET VDN g1 g
(ry—3
and
((ry—2)y
hY<z|Z——m-T— |=U?. 22
& (Py—2(ry/z |~ 22

A test of the upper bounds UYX given by Eq. (19) to
(r72) and (r~!) (k =1 and 2, respectively) is shown in
Tables Il and III, for some values of m, and Hartree-

TABLE II. Test of the upper bounds U}’ to the expectation value {r ~2), given by Eq. (19), for some
values of m, by means of the ratios R, =(r 2) /U),. See details in text.

VA (r72) Ry R} R R} R R
2 11.992 0.888 0.967 0.986 0.993 0.996 0.997
3 30.217 0.881 0.937 0.958 0.972 0.981 0.986
4 57.624 0.857 0.944 0.966 0.977 0.983 0.988
6 138.773 0.787 0.929 0.964 0.977 0.984 0.988
8 257.257 0.722 0.903 0.953 0.972 0.981 0.986

10 414.900 0.667 0.876 0.939 0.964 0.976 0.983

14 856.227 0.621 0.750 0.847 0.898 0.924 0.941

18 1465.009 0.584 0.726 0.824 0.885 0.917 0.936

23 2465.486 0.551 0.672 0.742 0.790 0.832 0.865

29 4014.377 0.511 0.658 0.720 0.765 0.805 0.838

36 6330.530 0.481 0.610 0.706 0.764 0.805 0.841

44 9648.752 0.456 0.570 0.636 0.691 0.735 0.768

54 14 818.051 0.432 0.535 0.616 0.673 0.722 0.763
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TABLE III. Test of the upper bounds U2 to the expectation value {(r~'), given by Eq. (19), for
some values of m, by means of the ratios R,, ={r ') /UZ%. See details in text.

z (r ) Ry RY RY RY
2 3.3747 0.844 0.961 0.986 0.993 0.997
3 5.7156 0.635 0.870 0.931 0.956 0.970
4 8.4087 0.526 0.842 0.932 0.962 0.975
6 14.6893 0.408 0.763 0.898 0.948 0.969
8 22.2595 0.348 0.700 0.860 0.927 0.957

10 31.1132 0.311 0.654 0.829 0.908 0.946

14 49.2434 0.251 0.418 0.553 0.672 0.763

18 69.7248 0.215 0.419 0.559 0.668 0.754

23 97.2730 0.184 0.300 0.421 0.512 0.579

29 135.4781 0.161 0.282 0.394 0.480 0.549

36 182.8480 0.141 0.255 0.374 0.488 0.577

44 240.4579 0.124 0.212 0.285 0.351 0.418

54 317.8706 0.109 0.190 0.276 0.354 0.422

Fock values of the radial expectation values. These
bounds include those given by Egs. (14) and (21)
(m =0,1) for {r %) and by Egs. (15) and (22) (m =0,1)
for (#'). We can see the large improvement in some
cases when we increase the values of m, which are shown
by the ratios R, ={r "?) /U), and R,,=(r"') /U}.

By means of Eq. (19) we could find many inequalities
among radial expectation values. We have only written
explicitly and tested the simplest and the most accurate
of them. We have noted here the bounds to {r 2) and
(r~1), not only because of their special tightness but also
because they are upper bounds to radial expectation
values of negative order in terms of higher-order mo-
ments, while in the literature only lower bounds were
known, to the best of the author’s knowledge, except for
an upper bound to {r~!) obtained by Thirring.!® For
example, using the monotonic decrease of p(r), it has
been found!” that

_ 4(r ")
2y > TN 7
(rmhz 3N
Using Eq. (14) in addition to this bound, and setting

N =Z for neutral atoms, the following interesting result
is obtained:

zz<r*1>z<r*2>zi‘—%}.

For (r '), Thirring found the upper bound
(r7')<2.289N%"

and, if we compare to the upper bounds given by Eq. (22),
only for low Z atoms (Z <10) is Thirring’s bound im-
proved.

This is a general feature of all these inequalities; they
are more accurate for the low-Z atoms. We should keep
in mind that all of them written here become equalities in
the case of one-electron atoms because f(r)=0.

In conclusion, the assumption of non-negativity, for
the ground state of the atoms, of the function
f(r)=p(r)+p'(r)/2Z, which is verified for the Hartree-
Fock wave functions of Clementi and Roetti, allows us to
obtain inequalities between p(0) and several expectation
values {r*), improving previous results. In addition, re-
lationships among (r*) values themselves are also ob-
tained. Let us note that some of these values are experi-
mentally measurable quantities or have a special physical
interest.

We are very grateful for partial financial support from
the Spanish Comision Interministerial de Ciencia y
Tecnologia (CICyT).

1Theory of the Inhomogeneous Electron Gas, edited by S.
Lundqvist and N. H. March (Plenum, New York, 1983).

2Density Matrices and Density Functionals, edited by R. Erdahl
and V. H. Smith, Jr. (Reidel, Dordrecht, 1987).

3T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

4E. Steiner, J. Chem. Phys. 39, 2365 (1963).

3G. Sperber, Int. J. Quantum Chem. 5, 189 (1971).

SH. Weinstein, P. Politzer, and S. Srebrenik, Theor. Chim. Acta
38, 159 (1975).

M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Phys. Rev.
A 16, 1782 (1977).

8J. C. Angulo, J. S. Dehesa, and F. J. Galvez, Phys. Rev. A 42,
641 (1990).

9M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and W. Thir-

ring, J. Phys. B 11, L571 (1978).

10y, Tal and M. Levy, J. Chem. Phys. 72, 4009 (1980).

HF. J. Galvez, 1. Porras, J. C. Angulo, and J. S. Dehesa, J.
Phys. B 21, L271 (1988).

12N, H. March, Phys. Rev. A 33, 88 (1986).

I3M. M. Morrell, R. G. Parr, and M. Levy, J. Chem. Phys. 62,
549 (1975).

14E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974).

ISA. Shohat and J. D. Tamarkin, The Problem of Moments
(American Mathematical Society, New York, 1943).

16W. Thirring, A Course in Mathematical Physics (Springer-
Verlag, New York, 1981), Vol. 3, p. 271.

17, R. Gadre and R. L. Matcha, J. Chem. Phys. 74, 589 (1981).



