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Soliton-collision problem in the nonlinear Schrodinger equation with a nonlinear damping term
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An exchange in the wave action (number of quanta) is analyzed by means of the perturbation
theory for a soliton-soliton collision in the nonlinear Schrodinger equation with a nonlinear damp-
ing term that conserves the total wave action (it may account for the intrapulse Raman scattering in
the model of a lossless optical fiber, or for the nonlinear Landau damping in a plasma). It is demon-
strated that, if the colliding solitons have a sufficiently large relative velocity, the analytical results
are in very good accordance with recently published numerical simulations [S.Chi and S. Wen, Opt.
Lett. 14, 1216 (1989)]. This warrants application of the present variant of the perturbative tech-
nique to other physical problems.

(3)

which furnishes the simplest description of the intrapulse
Raman scattering' in the model of an optical fiber based
on Eq. (1), and

R=~ 'P x —x' 'dxu x' ' (4)

(Pj stands for the principal value of the integral), which
takes account of the nonlinear Landau damping of the
Langmuir plasma waves described by Eq. (1). In both
cases, the coefficient e in Eq. (1) is real. In the model of
the optical fiber, the quantity X has the physical sense of
energy, while in the plasma-physics problem it gives the
total number of plasmons.

It is well known that a soliton, which has the form

u„&(x, t) = 2iq ecsh[2g( x Vt))

X exp[(i/2) Vx +i (4g —V /4)t]

in the absence of perturbations (e=O), undergoes ac-
celeration induced by nonlinear damping. In the lowest
approximation, the perturbation-induced equations of
motion for the soliton's amplitude and velocity V are

q =0, V= Cog", (6)

where C =+2' and n =4 in the case of Eq. (3),' and
C =7.443 and n =3 in the case of Eq. (4). The accelera-
tion also generates emission of radiation (the radiative de-

The present work is devoted to collisional dynamics of
solitons governed by the nonlinear Schrodinger (NS)
equation

iu, +u„, +2~ u ~' u= euR [u],
with the nonlinear damping term on its right-hand side
that conserves the total wave action (also called the num-
ber of quanta)

X=I lu(x)l'dx . (2)

In physical applications, two terms of this kind are well
known: the one with

cay of the soliton), but this e6'ect is very weak.
As the soliton's acceleration depends on its amplitude

according to Eq. (6), the next natural step is to consider a
collision between solitons with different amplitudes. ' In
Ref. 6, the collision problem was attacked numerically
for the optical-fiber model with the perturbing term (3).
The main finding of Ref. 6 is a collision-induced change
of amplitudes of both solitons. This change may be inter-
preted as a transfer of energy from the slower soliton to
the faster one, the sum of the amplitudes being conserved
[for the soliton solution given by Eq. (5), the number of
quanta bound in the soliton is X„,=4']. Independently,
radiative losses in the soliton-soliton collision were stud-
ied in Ref. 7 by means of the perturbation theory for the
case when the relative velocity of the solitons was much
larger than their amplitudes. It has been demonstrated
that the collision between the solitons with the ampli-
tudes g, and g2 and the relative velocity V ( V ))g„r)z)
gives rise to the radiative losses which can be expressed
as the changes 5' 'g„(n =1,2) of the amplitudes of the
colliding solitons:

in the case of Eq. (3), and

(7)

(8)

in the case of Eq. (4). The superscript (2) in Eqs. (7) and
(8) implies that these expressions have been obtained in
second order in the perturbation parameter e, which is
typical for the radiative processes.

However, the change of the solitons' amplitudes gen-
erated by the adiabatic (nonradiative) exchange must be
an effect of first order in e, ' i.e., more important. The
main objective of the present Brief Report is to demon-
strate that the fundamental numerical results of Ref. 6
can also be obtained analytically (and in a more general
form) by means of the perturbation theory. Similarly, the
same will be done for Eq. (4).

If the relative velocity V of the colliding solitons is
large as compared to their amplitudes, the full wave field
during the collision may be represented, in the lowest ap-
proximation, by the linear superposition of the unper-
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turbed solitons defined by Eq. (5):

u(x, t)=(u„)),+(u„))~ . (9)

Inserting Eq. (9) into the right-hand side of Eq. (1), one
notes that, for both Eqs. (3) and (4), it turns into a poly-
nomial in (u„, ), and (u„, )2. Straightforward analysis
demonstrates that, in the case of Eq. (3), the dominating
role in the evolution of the, e.g. , first soliton is played by
the term of the polynomial

P, =e(u„, ),(u„i)2[(u,*,t )2]„, (10)

the asterisk standing for the complex conjugation.
Indeed, inserting the polynomial into Eq. (11) (see below),
one notes that the dominating term must contain one
power of (u„& )2 and one power of (u,', ~ )z (or their deriva-
tives), lest the integral on the right-hand side of Eq. (11)
should be exponentially small (the integrand will contain
a rapidly oscillating exponent). Next, either (u„&)z or
(u „,)2 must be represented by its derivative, which gives
an additional large multiplier —V. It is easy to see that
this is only the term (10) which meets all these conditions.

Subsequent calculations are straightforward: One
should find the quantity

(12)

Substitution of Eqs. (5), (10), and (11) into Eq. (12) yields
the eventual result

91,2 ~ )192sg ( ~1,2 ~2, 1 )
(1) (13)

The superscript (1) in Eq. (13) means that this result has
been obtained in first order in e, cf. Eq. (7). Evidently,
Eq. (14) satisfies the conservation law 5'"iI&+5"'iI&=0.

Now, it is relevant to compare the analytical result of
Eq. (13) with the numerical findings of Ref. 6. In the no-
tation adopted in the present work, the numerical simula-
tions of Ref. 6 were performed for g &

=g2 =
—,
' and

V] = V2 taking values from 2 to 200. The basic infer-
ence arrived at in Ref. 6 is that for V&

~ 10 and for e not
too large the quantity 5g/g is well described by the em-
piric formula

(14)

Inserting 7)& =rt2= —,
' into Eq. (13), one immediately real-

(X„i),=— J i(u„, ), i
dx

+ OO

i f—dx u *, (x)P, (x)+c.c. ,

corresponding to the perturbing term (10), and then, us-

ing the relation g= —,'X„&, it is necessary to calculate the
quantity

/1, 2 8~ ll )2( ~1,2 +2, 1 ) (15)

cf. Eq. (8).
If one considers an ensemble of the solitons with

different initial amplitudes and velocities, the ones with

largest initial amplitudes will acquire largest velocities ac-
cording to Eq. (6), and, according to Eqs. (13) and (15),
they will further increase their amplitudes due to col-
lisions with the slower solitons. As a matter of fact, a
corresponding qualitative estimate has been given in Ref.
6 conformably to the solitons in the optical fiber. It can
be relevant to note additionally that, if the mean distance
between the solitons is L and a characteristic value of the
initial amplitudes is go, the time T during which the soli-

tons will separate into "large" and "small" ones scales as
follows: T-(L/rto)'~ e ' for Eq. (3), and T-(L/
i)o)e ' for Eq. (4).

The kinetics of the rarefied soliton gas was also ana-

lyzed in Ref. 7, but without the first-order exchange pro-
cesses (only the radiative losses were taken into account).
Therefore, the conclusion of Ref. 7 that the collisions re-
sult in complete decay of the solitons into radiation is

wrong. However, the role of the radiative 1osses remains
important because they put a limit on the collision-
induced growth of the amplitudes of the fastest solitons.
For instance, comparing Eqs. (13) and (7), one concludes
that the amplitude cannot exceed (in the order of magni-
tude) the values -e '. In conclusion, it is pertinent to
mention that similar results for this problem have been
obtained by Yu.S. Kivshar (unpublished).

izes the origin of this "empiric" formula. The analytical
expression of Eq. (13) applies as well to the case rt, &i)z,
which was not simulated in Ref. 6.

The coincidence of the analytical expression with the
numerical result of Eq. (14) gives a possibility for the
direct check of the perturbative technique for the NS
equation based on the simplest approximation of Eq. (9)
in the case when the collision between the fast solitons is
considered.

In Ref. 6, a contribution of the collision to the change
of the solitons' velocities was singled out as well. The
analytical approach relying upon Eq. (9) (based on the
analysis of momentum balance instead of the balance of
the number of quanta) yields the zero result for this
effect, so that the next approximation in the small param-
eters g& 2/V is required. However, this effect, unlike the
energy exchange and the radiative losses, is not of princi-
pal importance since the solitons' velocities change con-
tinuously between the collisions according to Eq. (6).

This technique has been checked for the present partic-
ular case; therefore it may be applied to other physical
problems. For instance, for Eq. (4) the similar result is
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damped acoustic surface wave is described by the modified
Zakharov system:

iu, +2k.
~
u

~
u +2nu +u„„=0,

n„n—„„+p(~u~ )„=yn,„
This damped system conserves the total number of surface
phonons defined by Eq. (2) [H. Hadouaj, B. A. Malomed, and
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