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Tracer diffusion in shear How

V. Garzo* and M. Lopez de Haro

Apartado Postal 34, Temixco 62580, Morelos, Mexico
(Received 15 February 1991)

The Boltzmann-Lorentz equation for Maxwell molecules is used to study tracer diffusion in uniform
shear flow. It is shown that some values of the mass ratio may prevent the establishment of a hydro-
dynamic regime. In the region where a hydrodynamic solution exists, a diffusion tensor has been derived
by considering terms up to first order in the tracer concentration gradient. This tensor is a highly non-
linear function of both the shear rate and the mass ratio. A comparison with earlier results has been per-
formed.

The study of transport properties and fluctuations in
nonequilibrium systems has been a subject of interest for
many years. In particular, the case of uniform shear Aow
(USF) has provided an appropriate framework to discuss
such properties for tagged particles in dilute nonequilibri-
um gases. This problem has been addressed for mechani-
cally identical particles by Marchetti and Dufty [1],who
were interested in the study of Auctuations, and more re-
cently by Garzo, Santos, and Brey [2] who provided an
explicit expression for the nonlinear shear-rate-dependent
self-diffusion tensor. On the other hand, for unequal
masses in the Fokker-Planck limit, Rodri'guez, Salinas-
Rodriguez and Dufty [3] also obtained a shear-rate-
dependent diffusion tensor using a generalized Green-
Kubo formalism [4]. It must be pointed out that all of
these results refer to Maxwell molecules for which an ex-
act solution of the Boltzmann equation is known [5].
Further, other than for these two limits, namely self-
diffusion and Fokker-Planck, to our knowledge there has
not been a detailed study of diffusion in shear fIow for any
mass ratio in the context of the Boltzmann equation.

The main aim of this report is to extend the aforemen-
tioned results to the case of binary mixtures in which the
masses of the components are arbitrary. Due to the tech-
nical difticulties embodied in the formulation of this gen-
eral problem, we have chosen to study a case which
shares the simplicity of the tagged particle problem and
yet introduces a new ingredient into the dynamics (the
mass ratio) that yields not only a generalization but also a
richer perspective to previously known results. This case
is that of a dilute gas mixture composed of Maxwell mol-
ecules in which one of the components, say component 1,
is present in tracer concentration, namely n

&
« n2, where

the n; (i =1,2) is the number density of species i. We
also assume for simplicity that the tracer particles and
the particles of the excess component interact via the
same force law as holds between particles of the excess
component, namely the intermolecular potentials are
V(r)=klr Our choic.e has been motivated by the
many interesting results that have been derived for mix-
tures with one tracer component in linear transport
theory, in which the assumption of the tracer limit has

played a crucial role in simplifying the calculations [6].
In the tracer limit it is reasonable to expect that the ex-

cess component is not appreciably disturbed by the pres-
ence of the tracer particles. Also in this limit collisions
between tracer particles can be neglected. Therefore the
kinetic equations for describing USF in this system
reduce to a Boltzmann-Lorentz equation for the velocity
distribution of the tracer particles f, (r, v„ t ) of the form

dT2 2+ aI'2 =0,
dt 3n2k~

(2)

where in the long time limit (hydrodynamic regime) P2 „
is given by [1,5]

Pz „P2 —f d v2m —
2 V2 V2 fz

3 k
2 a*

where m 2 is the molecular mass of the excess component,
v2 its molecular velocity, and Vz =v2 —a r is the peculiar
velocity of species 2. Here p2=n2k~T2=P2 kk/3 is the
partial pressure of component 2 and the intermediate
equality serves to define the temperature" of species 2.
As a matter of fact, u2 and T2 in the tracer limit coincide
with the velocity and temperature of the mixture seen as

+vi ~fi=J[fi foalat

where v, is the molecular velocity of species 1 and J is the
usual Boltzmann-Lorentz collision operator. Further-
more, the velocity distribution function of the excess
component f2 satisfies the nonlinear Boltzmann equation
corresponding to USF, which is the other kinetic equa-
tion required to completely specify the problem. The
USF is a macroscopic state characterized by a uniform
density and temperature and a velocity field given by
u2 =a.r, where the matrix a is defined through
a; =a5;„5, where a is the (constant) shear rate. This
state is nonstationary since the temperature increases in
time at a rate determined by the xy component of the ir-
reversible pressure tensor
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a whole denoted simply by u and T. Further,
1,=4sinh [—,'cosh '(1+9a* )], a*=a/v0 is the reduced
shear rate, and v0=1. 85m.n2(k/m2)' is an eigenvalue of
the Boltzmann operator. It must be noticed that the
knowledge of the moments of the velocity distribution
function f2 allows one to solve the Boltzmann-Lorentz
equation (1) when diffusion of the tracer particles in the
excess component gas takes place. This simplifying
feature of the Maxwell interaction is not present for other
intermolecular potentials, thus rendering the formulation
of diffusion in shear Aow for a general interaction a much
more complicated problem even in the tracer limit.

In order to solve the Boltzmann-Lorentz equation (1),
it is convenient to use the peculiar velocity to introduce a
rest frame of reference in which the velocity distribution
function of the excess component f2 is uniform. There-
fore, Eq. (1) may be rewritten as

The latter quantity is defined by

Pi; = . dv, m, V„V,)f,(0)

so that from Eq. (6) it follows that

a +a Pi, ;, +a;)Pi, ), +a,) P), )

(yP2, , +—p25; ), (8)
n2 ' P

where a=2(1+)M) (v)+(Mv2), P=2p(1+@)
and y=2(1+@) 3~2(v, —v2). Here, we have introduced
the constants v, =0.91pv0 and v2=0. 70pv0 to parallel
the notation of Ref. [3]. In the long time limit, the dom-
inant contribution to the general solution to Eq. (8) can
be written in the form

af, af)+( Vi, +a, r) —a","Vi. J[fi,f ]
—— (4)

P, , (t)=n, k2)T(t)(A; e ' ' +8; ),
where

(9)

where V&;
= v I;

—a, .r .
It must be pointed out that the right-hand side of Eq.

(4) depends implicitly on the mass ratio p=m2/m i. This
fact has been used by Rodnguez, Salinas-Rodriguez, and
Dufty [3] to expand the Boltzmann-Lorentz operator in
the limit of small p, resulting in a second-order
differential operator of the Fokker-Planck form. As a
consequence, they are able to determine the distribution
function f, , and hence also the form of the diffusion ten-
sor as a function of the shear rate in this limit. While this
approach is perhaps the most natural for small p, it can-
not be generalized for an arbitrary value of p. Therefore,
since our interest lies in assessing the combined effects of
mass ratio and shear rate in tracer diffusion, we will pur-
sue a different route. Following the perturbative scheme
presented in Ref. [2], namely a Chapman-Enskog type of
expansion around a time-dependent nonequilibrium state
(with arbitrary shear rate) to be determined consistently
later, we assume that

C
(I, —k, )(k, —k, )

X[(ki+a) 5;.—(ki+a)(a; +a.;)+2a;),a), ],

k =P—a+ sinh —cosh ' 1+94 . 2 1 i a
2

k2 = —
—,'(k, +2a —p)

i . 2 1—P sinh —cosh 1+9
a

3 (12)

k 3 k 2 the dagger denoting complex conjugation, C is a
constant related to the chosen initial condition, and the
nonzero components of the tensor B are given by

B 1 1
A, +xx D(g) 1+g [Y 0 0

f (0) +ef (1) +e2f (2) + (5) +3A v0y(2A v0+ a+ v0)( A v0+ a —
—,'P)

where e is an auxiliary parameter measuring the inhomo-
geneities of the concentration of the tracer species. It is
worth emphasizing that the different approximations f ', '

are of order k in e, but retain all orders in the shear rate.
In this paper we will restrict the calculations to first or-
der in e.

To zeroth order one gets

pv()+ (I+A, )[(Av0+a) +2a ]
p

+2a yv0I, (13)

B =B„
1 1

D(A) I+A,
[yv0(Av0+a) +Av0Py(2)(v0+a+v0)

~
f"'—;,V, ~

f"'=J[f"',f ] .
+ (I+A, )(Av0+a) ], (14)

No closed-form solution for f(i ) can be obtained from
Eq. (6). However, since the moments of f2 are known,
one can also derive the corresponding moments of f ', '

for the Maxwell interaction. Therefore, taking moments
in Eq. (6) we find that n, is constant, that the macroscop-
ic velocity field u& =u2, and that the time dependence of
the "temperature" T, (p, =n, ki) T, =P, ),), /3) is
governed by the xy component of the pressure tensor P, .

B =B„
Q 1

2 [yv0(A v0+a —p)()(.v0+a)D A,

+yv0(1+ A, )(iv0+ a+P)
pv2

+ (I+A, ) ()(.v0+a)],
p

(15)
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with

D(A. ) =vo[(l,vo+a 2D =, v, a) (Xv, +~—P) —' a ]. ~voT, + 'k
li B n +a.ikJ1k v ( (17)
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FIG. 2. Shear-rate dependence of the trace Dqi, /3 for
p =0.2;0.5;2.

the diffusion of tracer particles. It must be pointed out
that previous results arise from Eqs. (18) and (19) by con-
sidering the appropriate limits. In particular, for p=1
we recover the self-diffusion results [2]. On the other
hand, in our approach the Fokker-Planck limit corre-
sponds to setting a =2vl, P =0 (but P/p = 2v~ ),

y=2(v& —vz), and v3=vl in Eqs. (13)—(15) and (19),
which are the proper values for the small-mass ratio.
Once this is done, the results given by Rodriguez,
Salinas-Rodriguez, and Dufty [3] easily follow. In the
same way we are able to consider the large-mass ratio
limit (for which there are no results to our knowledge) by
setting a=P=2p '"v„y=2p '"(v, —v, ), and
v3 |M vI but its explicit form is not very illuminating
and hence will be omitted.

In summary, we have considered tracer diffusion in
shear f1ow for an arbitrary ratio of the mass of the tracer
to the mass of the excess component in a binary mixture
of Maxwell molecules. A perturbative expansion around
a nonequilibrium state with arbitrary shear rate was car-
ried out to first order in the gradient of tracer concentra-
tion. We found that for some values of the mass ratio the
system may not reach a hydrodynamic stage independent
of the initial conditions. In the hydrodynamic regime, we
derived an explicit expression for the diffusion tensor
which is a highly nonlinear function of both the mass ra-
tio and the shear rate. Such an expression generalizes
previously known results to which it reduces in the prop-
er limits. This provides a self-consistency test of our cal-
culations.
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