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Spatiotemporal behaviors involving coexisting attractors are investigated in discrete complex time-
dependent Ginzburg-Landau equation systems. Complex dynamics connecting local attractors and an
“attractor complex” born from destabilized coexisting equilibria are studied through numerical simula-

tions.

Majority-rule-based switching among two surviving attractors, inherent unstable motions

reflecting the nature of the attractor complex, and “history-dependent” path formation resulting in the
recovery of memory are shown in weakly coupled regimes. A relation with a continuum limit is briefly

discussed.

Spatiotemporal behavior of spatially coupled nonlinear
systems far from thermal equilibrium is a crucial problem
in complex dynamics. In general, different equilibria
(spatial structures) coexist in the stationary state in high-
dimensional systems. The complex time-dependent
Ginzburg-Landau (CTDGL) equation [1,2], which de-
scribes turbulent phenomena in spatially coupled non-
linear oscillator systems, is a good example for investigat-
ing the interplay between coexisting attractors. We in-
vestigate CTDGL systems in a small-system-size limit,
paying special attention to dynamics involving multiple
attractors, and show how dynamics change when the sys-
tem size increases and the equation approaches the con-
tinuum limit [1,2].

Consider a CTDGL system with complex coefficients
[3], assuming_giz\ii exp(jwt) (w is the natural frequen-
cyand j=V —1), then

‘i’f:#i‘i’i+(a1+ja2)(q’f+1+q’i—1_2q’i)
—(1—jB)¥;|*¥;, i=1,2,...,N (1

in which we employ the periodic boundary condition, i.e.,
Uy, 1=V, where we can set ¥, =W,exp(ja,;) (¥, is the
amplitude and ¢; the phase).

With locking conditions, the steady-state solutions
given by

Vi =¥ ={u+2a,[cos (A$))—1]}'72,

Ad|=(¢; 1 —¢;))'=2ml/N ,
and

Q' =0—(2a,—BV?)+2a,cos (Ad!) ,

in which /=0,1, ..., N—1, are deduced as equilibria.
First, let us consider briefly the simplest case of N =3,
which will provide a base for larger system sizes. When
the on-site nonlinearity S is increased from zero, a sym-
metric steady-state o° (i.e., in-phase locking state) that is
stable in time is realized at first. When 3 increases above
the first threshold By, ;, the o° state (node) becomes un-
stable and a stable asymmetric steady state (focus), i.e.,
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o=1) Or 0=, is realized, depending on initial condi-
tions (symmetry breaking). As S increases further, the
asymmetric steady state becomes dynamically unstable
and period doubles to asymmetric chaos, featuring a
Shil’nikov-type [4] reinjection motion toward o* via the
saddle o, in which one of the relative phases equals zero,
and an intersaddle motion [5]. As 3 increases up to By, ,,
a symmetry-recovering crisis takes place and heteroclinic
chaos connecting the two homoclinic attractors via o ap-
pears.

Next, let us consider the dynamics when the system
size N is increased. The bifurcation scenario is as follows.
As the on-site nonlinearity B is increased from zero, the
o state is realized stably in time up to the first threshold
Bin,1- In the region just above By, |, spatiotemporal chaos
(STC) reflecting unstable motions around a basin bound-
ary o state, which is not captured by any particular local
attractor, appears for quite a while, as will be discussed
later. Hereafter, we call this instability global STC. As f3
is increased beyond this region, two states / =(N —1)/2
(i.e., o1) and I=(N+1)/2(0 ") survive, whereas other
solutions become unstable foci for odd N [6]. For even N,
only the /=N /2 (o™) attractor survives. The present bi-
furcation scenario generally exists in weakly coupled re-
gimes independently of the system size N. A bifurcation
diagram for N=5 is shown in Fig. 1, where u=1 and
a;=a,=a=0.1 are assumed. Above the first threshold
Bun,1> one of the above two states is realized stably, de-
pending on initial conditions (symmetry breaking) and ex-
hibits Hopf bifurcation leading to asymmetrical local
chaos. As S is increased up to the second threshold,
cooperative switching among the two attractors takes
place via the o° state. As a (and/or N) is increased, By, ,
rapidly approaches B,;, | and at the same time the above-
mentioned global STC region spreads.

Now let us consider the o* state for N >3. The o*
state, where one of the relative phases A¢;(¢) equals
zero, dramatically changes its nature and exhibits syn-
chronized unstable motions such that W,(t) =P ,(z),
U,(1)=Wy _,(2), W3(t)=Wy _,(¢), etc., as N increases.
The o° state for N=5 is shown in Fig. 2(a), where
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FIG. 1. Bifurcation diagram for a CTDGL system. N =35,
p=1, a=0.1 Above By, , only the ot stated is depicted. For a
given on-site nonlinearity S, an initial condition is chosen and
successive maxima and minima of A¢s(¢) are plotted after omit-
ting transients.

A@,(2)=0, other relative phases satisfy Ad,(t)=— Ads(?)
and A¢;(t)=—A¢,(z). When the o’ state is excited, two
of the relative phases, i.e., A¢(t) and A¢,(z), rapidly
separate symmetrically. This results from the fact that
the two phases ¢,(¢) and ¢,(¢) are synchronized and ro-
tate more rapidly than other phases ¢;(z)=¢s(¢) and
¢4(2). This implies that the intensity of two adjacent ele-
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FIG. 2. Unstable motion of basin boundaries ¢°. p=1,
a=0.1, and B=11. (a) N=5, (b) N=19. These motions do not
depend on the on-site nonlinearity 3 if N and «a are fixed. The o*
state can be easily obtained by setting initial phases symmetri-
cally except for one. (For even N, similar synchronized states
are obtained by setting all the initial phases symmetrically such
that ¢, =¢y, $=¢n—-1,. ..
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ments is increased and the phase rotation speed of these
elements is increased accordingly as a result of on-site
nonlinearity 8. In short, pair-phase “rotors” are created.

Here, it should be noted that the averaged value of
Ad,< —m belongs to the o' attractor and that of
A¢s> 1 belongs to the o~ attractor. If one applies an ex-
tremely weak symmetry-breaking noise to this “hybrid”
state, one of the two attractors can be excited in the
asymmetric chaos regimes. Therefore, this state
definitely forms a basin boundary between the two chaot-
ic attractors, similarly to the case of N =3.

When N is increased further, the o° state exhibits
quasiperiodic (torus) and even chaotic motion. (The
chaotic o* state appears when N = 17 for a=0.1.) The o*
state exists independently of the system size. This hybrid
nature, where one relative phase equals 0, (N —3)/2 of
relative phases belong to the basin of one attractor ( > ),
and the rest (N —3)/2 belong to the other attractor basin
( < —r), remains in the regimes in which the the o° state
does not exhibit well-developed chaos. For a=0.1, such
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FIG. 3. Relative phase dynamics in N=5 CTDGL systems.
pn=1. (a) Majority-rule-based switching among o¥ attractors.
a=0.1 and $=10.5 (b) Corresponding phase-space trajectory
projected on [A¢,,A¢,]. Three o° motions A, B, and C project-
ed on this plane are also shown. (c) Global STC around the o°
state. a=0.15 and B=2.
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a well-developed chaotic o° appears roughly above
N=19. The ¢° motion for N =19 is shown in Fig. 2(b).
When the coupling a is increased, the well-developed
chaotic o state appears for a smaller N. Inherent unsta-
ble motions near basin boundaries may presumably be
created by reflecting the unstable character of destabi-
lized coexisting equilibria (namely, the attractor complex )
above the first threshold and provide a possible origin of
the previous global STC. Needless to say, there are N
equivalent o° states. A similar synchronized chaotic
motion also appears for even N.

An example for N =5 above the second threshold By, ,
is shown in Fig. 3(a). It should be noted that successful
cooperative switching among the two attractors is estab-
lished when the majority rule is satisfied (see points a and
b), while switching fails when the condition is not met
(see point ¢). In short, successful switching occurs when
the majority of relative phases cross over the sin A¢; =0
line and fall into the basin of attraction of the new attrac-
tor just after one relative phase crosses over =2n7. (At
point a, for example, just after A¢; crosses over zero,
A, 4 and A¢s cross over m and — 27+, respectively.)
When the majority condition is satisfied, the system can
switch to the new attractor more easily so as to fulfill the
periodic boundary condition. The corresponding phase-
space trajectory projected onto [A¢d;,A¢,] is shown in
Fig. 3(b). Switching among the two attractors is clearly
seen. The majority-rule-based cooperative switching be-
tween the two attractors has been found to arise indepen-
dently of system size if N (=odd) is not so large that “in-
formation” can spread over the whole system bidirection-
ally in a time scale which is shorter than the fluctuation
period «1/a>>N.

Let us examine the switching process more precisely.
At points a and b, A¢, approaches zero and 2, respec-
tively, and the i =1 and 2 elements tend to be locked. As
a result, the intensities of the two elements are increased,
just as in mutual injection locking in lasers, and pair “ro-
tors” are created transiently. When such appropriate
pair rotors are created, A¢, ; separate, the majority con-
dition for switching is satisfied, and switching is estab-
lished by crossing over the basin boundary successfully.
To be more specific, as can be seen in Fig. 3(b), the sys-
tem approaches the o° state A in which A¢,=0 at point
a, by creating pair rotors. Then, the system is repelled by
A and successfully crosses over the basin boundary cor-
responding to o° state B with A¢;=0. At point b, after
being repelled by o° state A, the system switches back to
the o T attractor by crossing over o° state C with A¢; =0.
In some cases, the system switches to the other attractor
by crossing over the basin boundary directly, like the dot-
ted curve shown in the figure.

At point ¢, A¢p; | separate when Ap,—0 (i.e., o° state
A). In this case, however, the pair rotors are so strong
that these two relative phases again cross —27 and 4w
successively [see Fig. 3(a)], and the system returns to the
basin of attraction of o™ as shown in Fig. 3(b). In some
cases, longer-lived pair rotors are created and the system
approaches the o° state asymptotically, like a dashed
curve shown in the figure. At this moment, a similar hy-
brid state featuring the attractor complex motion is excit-
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ed. In short, in this approach toward the o state (i.e.,
one relative phase approaching 0) shown in Fig. 2(a), two
separating relative phases periodically cross nearly
equivalent relative phase values corresponding to the ini-
tial attractor, another relative phase remains within the
initial attractor, and the rest approach the value belong-
ing to the other attractor. This implies that the majority
of relative phases falls into the basin of the initial attrac-
tor almost periodically. This history-dependent motion
may return the system to the initial attractor via a path
which is periodically opened [see Fig 3(b)] and the initial
memory (attractor) is recovered before complete memory
blackout, i.e., before the complete hybrid state o° is es-
tablished. (At point c of Fig. 3, the system returns to the
initial attractor via a path opened at the first cycle, i.e.,
just after A¢, crosses over 47.) The probability for realiz-
ing perfect o°-type locking during the course of temporal
evolution is extremely low in weakly coupled regimes.
Consequently, this memory-recovering path is always es-
tablished in the regime where the o° does not exhibit
well-developed chaos. Which path (a, b, or ¢) is formed
critically depends on how two adjacent-element phases
approach, i.e., on the property of pair rotors.

The symmetrical relative-phase separation also occurs
due to random creation of single-phase rotors during the
course of temporal evolution [6]. In such a case, howev-
er, the system excites another attractor complex instead.
Similarly to the ¢ motion, the system always returns to
the initial attractor. In the case of single rotor, for exam-
ple, two adjacent relative phases separate symmetrically,
one relative phase tends to fluctuate around *=2n7+7 (n
is an integer), (N —3)/2 of relative phases remain within
the basin of an initial attractor, and the rest approach the
other attractor basin. In this process, the system always
returns to the initial attractor via a path periodically
opened similarly to the case of pair rotors.

As the system size N or the coupling « is increased, the
basin of attraction of the surviving attractors is drastical-
ly decreased. Consequently, dwell times within the local
attractors decrease and switching fails more often be-
cause of frequent rotor creation. Furthermore, the previ-
ously mentioned global STC develops when switching
fails. In short, in these regimes two attractors tend to ex-
ist just as small “islands” in a high-dimensional chaotic
sea. Finally, the surviving attractors o* are destroyed,
thus leading to the persistent global STC. An example of
the persistent global STC around the o state is shown in
Fig. 3(c) when «a is increased to 0.15, assuming u=1,
N=5, and B=2 and setting initial phases near the o*.
During the course of temporal evolution, the o*type
locking is also attained for a while as indicated by arrows.
The global STC also occurs for even N when the o7 at-
tractor is destroyed.

For double limits of strong coupling and large system
size (i.e., N >a=1), which might correspond to a well-
studied continuum CTDGL limit, the dynamics change
substantially. The 0¥ state survives, with other attractors
being dead, and global STC above B,;, ; tends to be dom-
inated by unstable motions around the o° state as one in-
creases N(a), regardless of whether N is even or odd. Fi-
nally, intermittent turbulence around the o0 state, featur-



1396 BRIEF REPORTS 44

majority rule rotor(s)

(b)

e hole(s)

(a) (c)

pair rotors

=
s
@
<]
S
<
o
=
>
%
S
g
]
E

FIG. 4. Conceptual model of self-induced path formation in
CTDGL systems, where AX denotes the attractor complex. (a)
N =odd; weakly coupled regimes. (b) N =even; weakly coupled
regimes. (c) Strongly coupled and large-system regimes.

ing discontinuity phase jumping of +2nw (n is an in-
teger), takes place. This phase jump occurs when ¥; of a
particular element approaches zero (singular point). At
the same time, the phase rotation of this element de-
creases and a trajectory of ¥; approaches the origin at
the discontinuous point [6]. This is nothing more than

the so-called “hole” solution observed in the standard
continuum CTDGL equation [2].

On the basis of the computer experiments described so
far, the conceptual model of self-induced path formation
shown in Fig. 4 is conjectured for CTDGL systems. In
weakly coupled regimes, a path connecting each attractor
(ot or o 7) and the attractor complex to which it belongs
is created for odd N =5 [see Fig. 4(a)], whereas the two
homoclinic attractors are simply connected through the
saddle for N =3. Switching among the two attractors is
governed by the majority rule. Which path is formed de-
pends critically on the character of the phase rotors.
Various unstable orbits (attractor complex), which
succeed the initial attractor nature, are excited according
to the number and property of the phase rotors as well.
For even N, only the path connecting the o™ attractor
and the attractor complex is formed. [See Fig. 4(b).]
When one increases N and/or «, the basin of attraction of
surviving attractors decreases thus leading to the global
STC featuring attractor complex motions. Finally, in a
strongly coupled large system limit [Fig. 4(c)], the inter-
mittent turbulence around the o° state takes place as a
result of hole creations, regardless of whether N is even
or odd.

The author is indebted to K. Ikeda for suggesting
CTDGL problems and for fruitful discussions.
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