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Principal-axis hyperspherical description of N-particle systems: Classical treatment
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Principal-axis hyperspherical coordinates (made up of one hyperradius and 3N —7 angles as
internal coordinates) and three Eulerian angles as external (rotational) coordinates are defined from
the Eckart coordinate system [Phys. Rev. 46, 383 (1934)]. They can describe any X-particle system.
The exact classical Hamiltonian of the system in terms of these coordinates is derived, and it is re-
markably simple. The quantization of this Hamiltonian is deferred for future study.

I. INTRODUCTION

Owing to the fact that the concept of size of an N-
particle system refers to a unique length, it is desirable to
describe all the possible deformations of the system for a
given size by using only one length-type coordinate, the
3N —7 other internal coordinates being dimensionless
(i.e., angles). The hyperspherical (or related) coordinates
have been, for a long time, studied for this purpose. '

A coordinate system is said to be "principal-axis (PA)
hyperspherical" if, and only if, the 3N —6 internal coor-
dinates split into one coordinate having the dimension of
length (possibly mass weighted) p, the hyperradius, the
3N —7 other coordinates being angles, the so-called hy-
perangles (which are actually generalized Euler angles),
so that the following applies:

R 1 ~ =P sinO3N 4 sinO3sin02sinO1,

R 1 y
=p sin03N 4 sin03sin02cosO1,

R, z =p sin03+ 4
. sin03cos02,

RN 1 ~ =P sin03N 4siI103N 5cos03N

R N 1 y P sln03N 4cos03N 5

RN —1 z P cos03N 4

0~0, ~mand0& 0, ~2m,

N —1

with O~p& ~,
(i =2, . . . , 3X —4).

Although the hyperradius p is the same as noted above,

1=1 G

where rk denotes the gth component (g =x,y, z) of the
mass-weighted position vector rk of the kth particle
viewed in the moving-axis system (MS).

(ii) The MS is a principal-axis system (PAS), i.e. , the
axes of the MS coincide with the instantaneous principal
inertia axes of the system.

(iii) The overall rotation of the MS with respect to the
laboratory-axis system (LS) is described by the three usu-
al Euler angles.

Thus, leaving out the center-of-mass motion, the system
is described by means of one length and 3N —4 angles.

It should be emphasized that the PA-hyperspherical
coordinates are basically diFerent from the usual hyper-
spherical coordinates. These coordinates parametrize the
components of N —1 mass-weighted relative position vec-
tors of the system, Rt (l =1, . . . , N —1), directly in the
LS by means of 3N —4 angles, according to

the role of internal coordinates for X particles (which are
3X —6 in number) clearly does not suit the usual hyper-
spherical coordinates. This is disadvantageous, because
the hyperspherical coordinates are orthogonal, whereas
the PA-hyperspherical coordinates are not, and therefore
they cause many mathematical complications. This
rejects the price to be paid for preserving the notions of
internal coordinates and the rotating system fixed frame,
which are so useful in molecular and nuclear physics.

The dynamics of N interacting particles, described by
means of curvilinear coordinates, rests on the explicit re-
lations between the 3N moving-frame mass-weighted
Cartesian coordinates of the particles [collectively denot-
ed by r=(r&, r&~, ri„rz„, . . . , r&z)] and the 3X —6 cur-
vilinear internal coordinates [q = (q i, q2, . . . , q3+ 6 ) ].
First, it is possible to start from the 3N relationships:
r=r(q); the MS is thus implicitly defined. The alterna-
tive possibility is to start from the 3N —6 relationships:
q=q(r), by definition invariant under translation and ro-
tation; in this case, supposing that the center of mass is at
rest at the origin of both the LS and the MS, the orienta-
tion of the latter must be explicitly determined by three
additional relationships: 0= C (r), g =x,y, z, often called

1328 1991 The American Physical Society



PRINCIPAL-AXIS HYPERSPHERICAL DESCRIPTION OF X-. . . 1329

"axial constraints" (for reviews of these topics, see Refs.
25—27}.

Here, the former attitude will be adopted throughout.
A summary of what its application requires in actual
practice is presented in Sec. II. In Sec. III, after recalling
that the use of Jacobi vector components instead of posi-
tion vector components greatly simplifies the problem,
the PA-hyperspherical coordinates are given a mathemat-
ical definition, with the help of a formal analogy between
Jacobi vector components and orthogonal matrix ele-
ments. This approach was first used by Eckart long ago
and has been rediscovered recently by Robert and Bau-
don. ' The basic algebra for using, in practice, the
PA-hyperspherical coordinates is presented in Sec. IV,
including the derivation of the exact classical mechanical
Hamiltonian. There is no limitation of the number of
particles.

The quantization of this Hamiltonian, and in particular
the study of the commutation relations of the operators
associated with the quasimomenta introduced below, is
planned as the subject of a subsequent article. ' Finally,
the physical interpretation of the hyperspherical descrip-
tion of an X-particle system will be thoroughly discussed,
along the line of the arguments of both Aquilanti and co-
workers ' and Robert and Baudon, ' in a third pa-
per.

I

The authors are aware of the tedium of some passages
below; in particular, in Sec. IV. They, however, beg the
reader to realize that the reported calculations are just a
small part of the calculations actually undertaken.
Presenting fewer of these would mean preventing one
from checking. But calculation is nothing but a means to
an end. Most worthy of consideration is the concise-
and hopefully important —result in Sec. IV D below.

II. CLASSICAL MECHANICAL EXPRESSION
OF THE KINETIC ENERGY DERIVED

FROM r=r(q)

A. Classical kinetic energy

where

J—P ~ll' 1 T(E) (2a)

aI1d

The exact classical Hamiltonian expression of the ki-
netic energy T of the N particles decomposes (after sepa-
ration of the center-of-mass motion) as follows:

PT
q

2T =(P J) g(q).

S(q) C (q)
C(q) I(q) 0 1

S '(q) 0
0 p(q)

1 0
(2b)

Pq and Pz are row-vector shorthand notations for the momenta conjugate to, respectively, the 3N —6 internal coordi-
nates q (considered curvilinear) and the three Euler angles a, P, and y, collectively denoted by E. Matrix r0 (E) is
that of the transformation

(3)

~x cotP cosy siny —cosy /sinP
J = J = —cotP siny cosy siny /sinf3 P&

1 0 0 p

from Pz to J, the angular momentum vector, whose components along the MS axes are, respectively, J, J, and J, .
S(q) is the (3N —6)-dimensional symmetric matrix of elements:

N

s; (q)= g
Br&„drk„drk Brk Brk, Brk,+ +
aq, aq, aq, aq, aq,

(i,j =l, . . . , 3N —6), (4)

i.e., the contravariant components of the metric tensor of the transformation r=r(q), C(q) is the 3 X (3N —6) Coriolis
matrix of element~.

T

and

Brk - BrkC;(q)= g rks, —
rk&, .

q; Bq;
(i = l, . . . , 3N —6; g g'g" is an even permutation of x y z),

p(q) = [I*(q)]
where

I*(q)=I(q)—C(q) S '(q) C (q) (7)
is the effective inertia tensor, I(q) being the usual inertia tensor represented by the three-dimensional symmetric matrix
of elements:

N

I~s(q) = g (re, + rks. , ) (g g' g" is a permutation of x y z),
k=1

NI .(q)= —g rkgrks, (g,g'=x, y, z} .
k=1

(gb)
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B. Quasivelocities and quasimomenta

An important point should be discussed now. Equa-
tion (1) is nothing but the Hamiltonian counterpart of the
Lagrangian expression of the kinetic energy:

r

S(q) C (q) q
2T =(q c0). C(q) I(q)

The transformation has been achieved with the help of
the usual definition of conjugate momenta, P=dT/dV,
where V=(q co) is the (3N —3)-dimensional velocity
vector, whose components are, respectively, the internal
and angular velocities, so that

S(q) C"(q)
P —(P J)—(q co) C( ) I( )

in partial differentiations with respect to coordinates, or
preferably in creation and annihilation operators if stan-
dard bases can be derived for these operators. In all
cases, this is possible if, and only if, particular commuta-
tion relationships of the quasimomenta have been estab-
lished beforehand. The most celebrated example of
quasivelocities and quasimomenta is the one of the MS
components of the angular velocity and angular momen-
tum vectors, e.g. , [J„,J ]=—iirtJ„and so on, and the
2)Mn(E) Wigner functions as basis functions.

Both reasons (simplification of the analytical matrix in-
version problem in the present article, and particular
commutation relations resulting in efBcient standard rep-
resentations for the wave function in the planned future
work) will justify the use of the quasivelocities and quasi-
momenta initially suggested by Eckart.

V'=V B(q),
so that

(10a)

S C
2T =V' B B—1 TV~T

C I

whence

and 2T takes the same form as in Eq. (1), 2T =P g(q).P .
Now, one is always at liberty to use a nonsingular

(3N —3)-dimensional square matrix B(q) to transform
the velocities into quasivelocities, namely,

III. MATHEMATICAL DEFINITION
OF THK PA-HYPERSPHKRICAL COORDINATES:

THE KCKART SUBGROUP OF SO(n }

It is well known that a system of N particles can always
be replaced by n =TV —1 relative particles and the center
of mass. More precisely, the relation between, on the one
hand, N mass-weighted (by Qmk) particle position vec-
tors rk (k =1,N) and, on the other hand, n =N —1

mass-weighted (by Qp&) relative Jacobi vectors p&
(A, = l, n) and the mass-weighted [by &M =(gk mk)' ]
position vector of the center of mass pN, is given by

and

S CBT B—1 T
gV' C I

2T =P'.B (q) g(q) B(q) P'

(10b)

(10c)

N

k rf ~kk~™i ' ' mX )pk'
k'=1

where okk, (m„. . . , m~) (k, k'=1, . . . , N) are the ele-
ments (depending only on the masses of the particles) of
an orthogonal matrix a, such that

In classical mechanics, this is just a canonical transfor-
mation, generally invoked if it simplifies the matrix inver-
sion problem, namely, if there exists a matrix I (q), easy
to invert, I '(q)=g'(q), which allows to write the La-
grangian expression of T in terms of quasivelocities,
2T=V' I (q) V', and thus the Hamiltonian expression
in terms of quasimomenta, 2T=P'.g'(q) P'r. A simpIe
example of this is the generalized Wilson-Howard and
Darling-Dennison expression of T:

N

kk "k'k" ~kk'
k"=1

The orthogonality property of o. can be directly inferred
from the conservation of the arc length that is required
for the kinetic energy to be invariant, namely,

N N n

2T= g mk(x k+y k+&k)= g rkp +~+ pk
k=1 k=1 A, =1

PT
2T =(P J') g'(q), z.

where it is obvious from (1) and (2) that

implies that
n

X «'k= & dPk+dP~
k=1 A, =1

(12)

S '(q)
g'(q) = 0

p(q)

and J'= J—P S '(q).C (q) is the generalized angular
momentum vector (in the original form of Darling and
Dennison, the coordinates are normal, i.e., S= j. , andJ'=J—P .C, where P C is the so-called vibrational
angular momentum).

In quantum mechanics, it is not immaterial whether
one uses momenta or quasimomenta. Indeed, the action
of momentum operators on wave functions consists either

Brk 8rk

k=1 g i i'

n gpss Bpks

Btl; i)g

(i, i'=1, . . . , 3N —6), (13)

Owing to the orthogonality of matrix a, and from Eqs.
(4), (5), and (8), it comes out
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~rk "
Cg;(q1, . . . , q3ly 6)= g g rk11. sxxl1

k=1 g'g" qi

N

Igs'(q1 . qm 6)—
k=1

y 2 R
pykg- 6gg rkg rkg

.g

~ Pkg"~gg' PA,gPA, g'

(g,g'=x, y, z) . (15)

A. Eckart's formulation

More than 55 years ago, Eckart proposed a solution to
the problem of X-particle classical dynamics that per-
fectly suits the PA-hyperspherical coordinate parametriz-
ation. The present work is directly descended from
Eckart's approach. We reformulate it as follows.

First, let us recall that the Whitten and Smith initial
hyperspherical coordinates p', 6, and N for a three-body
system were defined as

(i =1, . . . , 3N —6; g =x,y, z),
where c. ~ - is the signature of the permutation gg'g" of
xyz, and

i.e., a direct parametrization of Jacobi-vector MS com-
ponents, with d =(p, 2 3/p)', a scaling factor, such that

PP P12( 1) +P12, 3( 2)

p=(m, m2m3/M)' is a totally symmetrized charac-
teristic mass (M is the total mass), and
p12 3=(m, +m2)m3/M and p, 2=m, m2/(m, +m2) are
the usual reduced masses.

Formally speaking, since the system reduces to two
Jacobi vectors, which determine a plane of IR, the four
vector components in Eq. (16) can be identified with those
of a planar rotation matrix (angle 4&), weighted by either
p'cos6 or p'sinO, i.e., any two lengths suitably
parametrized, and finally rescaled (d1 =d and d2 =d ').

More recently, by formal analogy with the three-
particle case, the nine components of the three Jacobi
vectors of a four-particle system have been identified with
those of a three dimens-ional rotation matrix (Euler ma-
trix with angles 4&, 6, and X), suitably weighted by any
three lengths parametrized by spherical coordinates (p',
0, and A) and rescaled. The result is

r', =d, p'sinA cosA(cos6 cos@cosX —sin% sinX),

r1 = —d1p'sinQ sinA(cos6 cos4 sinX+ sin@ cosX),

r '„=d, p'cosQ sinO cosN,

rz =d2p'sinO cosA(cos6 sin@ cosX+cos@sinX),

r', = —dp'sinO sin+, rz =d 'p'sinO cosN,

scaled Jacobi vectors

r', „=dp' cos6 cosN, r2 =d 'p'cos6 sinN,
(16) r2 = —d2P'sinA sinA(cos6 sinN sinX —cos4 cosX),

(18)
rz, =d2p'cosQ sinO sinN,

P 3 d 3
' p'sinQ cosA sinO cosX

I 3y d 3 p'sinQ sinA sin6 sinX

tll
+ x—
CI
C0
Q y
E0
V

Z

X p stn

ecosoc

X P sin 6 sin Q 3 lengths

X p'cose

r3, =d3 'P'cosQ cosO,

where d, = (p/p, 2)', d2 = (p/p, 2 3)'~,
d3 =(p, ,23 4/p)' are scaling factors such that

pP p'12 1) +p12, 3( 2) +p123,4(r3)

and

n —dimensional
orthogonal matrix

p = ( m, m 2m 3m 4
)' /M (M is the total mass) is the total-

ly symmetric characteristic mass, and

p, 2=m, m2/(m, +m2),

FIG. 1. The MS components of the scaled Jacobi vectors
dq 'rz are by construction equal to the product of an element of
the three first lines of an n-dimensional orthogonal matrix de-
pending on 3n —6 angles, by one out of three length-type quan-
tities, for the x,y, and z-components, respectively. These quan-
tities are actually the three instantaneous gyration radii of the
system and, for the PA-hyperspherical coordinates, they are
parametrized by means of spherical coordinates:

Qm Xmz X . X mls
d = /p pi~ p

( + + +
and pz is the reduced mass corresponding to the Jacobi vector
r,' (1=1,n).

p12 3 (ml ™2)m3/(m,+m2+m, ) and p, 23 4
=(m, +m2+m3)m4/M are the usual reduced masses
associated with the three Jacobi vectors.

Now, in the general X-particle case, the problem
reduces to n =X —1 Jacobi vectors and appropriate re-
duced masses. The formal analogy between the Jacobi
vector MS components and the weighted elements of an
n-dimensional orthogonal matrix can be extended. The
procedure to do this is schematically illustrated in Fig. 1,
where, now, dz =(p/p&)'~,

p=(m, Xm X . Xm )' /M'

M =m, +m~+ . . +mN, and p~ is the appropriate re-
duced mass associated with the Jacobi vector rk (k= l, n).
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Eckart elegantly identified the three quantities ag
(g =x,y, z) with the three usual gyration radii of the~ss-
tem and the mass-weighted Jacobi vectors rk=Qpkrk
with i/pd k 'rk, so that the following can be readily estab-
lished

lines of an orthogonal matrix (suitably parametrized) help
to parametrize the Jacobi vector components.

However, Eckart s basic idea is preserved, providing
that an n-dimensional orthogonal matrix depending only
on 3n —6 angles is properly constructed. This is
achieved in Sec. III B.

(20a)
B. The Eckart subgroup E3„6of the group

of rotations of I",SO(n)

p being the mass-weighted (by i/]L], ) hyperradius.
(ii)

A celebrated theorem states that any rotation g of the
SO(n) group of rotations of R" (x„xz, . . . , x„) can be
written

2T= g Ijk(dr], /dt)2= g (drk/dt)z, (20b)

where

g(1)g(2) g(n —1) (21)

T being the classical kinetic energy.
(iii) g(k) gk(8k )gk —](8k —]) ' ' ' g](8] ) (22)

=]M(&y +a, ) =p (1—sin 8 cos P),
Iyy =@(&,+&, )=p (1 —sin 8sin y),
I„=]M(a„+a )=p sin 8, I =I,=I, =0

(20c)

I being the inertia tensor, i.e., the MS is implicitly a PAS.

All conditions required are thus put together to identi-
fy PA-hyperspherical coordinates. These are, namely, (i)

p, the hyperradius; 8 and P, the spherical coordinates to
parametrize the mass-weighted gyration radii (8 and
PH [0,]r/2]); (ii) a, P, and y, three usual Eulerian angles
to orientate the PAS-MS with respect to the LS; and (iii)
3n —6=3N —9 angles appearing in the three first lines of
an n-dimensional orthogonal matrix.

Here lies the only difFiculty with Eckart's original idea.
Eckart shows that the orthogonal n-dimensional matrix
can be considered the eigenvector matrix of the sym-
metric Gram matrix of the Jacobi vectors rk (i.e., the ma-
trix of element rk rk ). ' As such, due to the fact that
only three of the n Jacobi vectors are linearly indepen-
dent in R, whence only three eigenvalues of the Gram
matrix are nonidentically zero (namely, a, a, and a, )

the orthogonal matrix should depend on 3n —6 angles
only. Although this observation is true, it is of little use
for practical applications. The inadequacy is removed as
follows. In practice, we do not use the Jacobi vector
components to define the elements of the orthogonal ma-
trix (via the diagonalization of the Gram matrix), but we
do the reverse. Namely, the elements of the three first

0

g;(a)= cosa sina
—sine cosa

0
n

(23)

If matrix g is written down,

and g;(a) denotes the elementary rotation of angle a in-
side the (x;,x,. +, ) plane of H".

Apart from the poles where one of the angles Ok

(2&k & n —1) is 0 or m. , the above expressions define g
uniquely. The angles 8" (1 & k & n —1, 1 &j & k) are the
generalized Eulerian angles for rotation g. They are
n(n —1)/2 in number. By construction, the range of
variation of the Eulerian angles is

0 & 8k] & 2ir, 0 & 8k & ~ (j & 1) .

Now, an n-dimensional orthogonal matrix g is a repre-
sentation of g in the natural basis of R". In particular,

ql) q2). Euler I;ttrix

1

]:,jeJ

KN
1

NN

FICs. 2. Explicit construction of matrix I, in the case where n =5. Each shaded 2X2 matrix represents a planar rotation, by the
angle indicated in the last line.
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S =S1(~1 )S2(~2 )Sl(~1 )S3(~3 )Sz(~2

Xgl(91 )g4(04 )g3(03 )g (g" )g (g" )

g(1)g(2)g(3)g(4) (24)

gl(01 g2(~2)gl(~1)$3(~3)g2 ~2)gl(~1)g4(~4)

Xg 3 ( 03 )g 2 ( 02 )g 1 ( 01 )g 5 ( 05 )g 4 ( 04 )g 3 ( 03 )g2 ( 02 )

g 1 ( ~1 )g 6 ( ~6 )g 5 ( ~5 )8 4 ( ~4 )g 3 ( ~3 )g 2 ( ~2 )g 1 ( ~1 )

(25)
or, in a more illustrative way in Fig. 2 (for n =5), where
each shaded 2 X 2 matrix depends on one angle, two im-
portant properties emerge.

(i) If n )2, a usual three-dimensional Euler matrix (ac-
cording to Goldstein's convention ) is factorized in the
upper left corner of g. This will be shown later on to
have an important physical consequence.

(ii) If n ) 3, the three last columns of g depend on
3n —6 angles only, namely,

Now, owing to the fact that two planar rotations g, and

gj commute if (i —j ) 1 (this property is immediately ob-
served on block-diagonal matrices g, and gj), g can be
rewritten in the form

g =gl(~1)gz(&2)g 1(&1)g3(~3)g,(&2)gl(&', )g4(84)g3(83)

XS2 ( ~2 )g 5 ( ~5 )+4 ( ~4 )g 3 ( ~3 )g6 ( ~6 )g 5 ( ~5 )g 4 ( ~4 )

Xg 1 ( 81 )g2 ( 82 )g 1 ( 81 )g 3 ( 83 )g2 ( 82 )g 1 ( 01 ) (26)

gn
—1 gn

—1 gn
—2 (gn

—1 gn —2 gn
—3)

1 ~ 2 ~ 1 ~ 3 ~ 2 ~ 1

The latter property is recursively demonstrated. It is
obviously true for n =4 [then 3n 6=—n (n —1)/2]. It is
also true for n =5 (see the developed expression in Fig. 2
above, taking into account that the last matrix gl(8))
does not modify the last three columns of g). Let us sup-
pose it to be true for n —1. The situation for n is illus-
trated in Fig. 3. Clearly, starting from 0"„:4up to 0'„all
the Eulerian angles appearing in 2X2 shaded matrices
that do not overlap the three last columns of, respective-
ly, g„4 to g1, do not appear in the three last columns of
the product matrix g. Q.E.D.

As a matter of fact, the three last columns of g, which
actually depend on 3n —6 angles only, could be used as
well as the three first lines to define Jacobi-vector com-
ponents; for example, by transposition of g with respect
to the secondary diagonal. But then property (i) would
be lost, which we do not want. We therefore construct an
ad hoc subgroup of SO(n), which we call the Eckart sub-
group, and note E3„6,whose elements g fulfill the two
following requirements.

(i) If n & 2, a three-dimensional Euler rotation appears
on the left in the developed expression of g.

(ii) If n ) 2, g depends on 3n —6 Eulerian angles only.
The construction of E3„6 is illustrated in the case

n =7, but it can straightforwardly be recursively general-
ized to any value of n. Indeed, for n =7

g E-E3„6 is defined by setting all the angles of the planar
rotations of the last line in the product of Eq. (26) equal
to zero.

As far as orthogonal matrices are concerned, the fol-
lowing theorem holds. An n-dimensional orthogonal ma-
trix depending on 3n —6 angles can be built in all gen-
erality as follows:

where

g(1)g(2)g(3)g(4) g(n —1) ~ (27)

S(1) Sl(~1) &

S(2) S2( ~2 )S 1 ( ~3 )

S(k) Sk ( 03k —5 )Sk —1( ~3k —4 )Sk —2( ~3k —3 )

(28)

with (8„03,96) H [0,2'[ and (82, 94, 0„0;~7)H [0,~[.
The following convention will be used hereafter for the

Euler matrix C&(8„02,83)=g,(g, )gz(82)g, (83), written as
a 3 X 3 orthogonal matrix:

Sz=gz(()2 ')S)(()( '),
S(k) Sk ( ~k )Sk —1( Ok —1)gk —2( ~k —2)

and 0') E [0,2'[, 8& E [0,7r[ (i +j & 1). It is worthwhile to
note that the 3n —6 angles appearing in g are precisely
those on which the three last columns of the general rota-
tion matrix g depend.

Finally, just for convenience, the Euler angles in g are
renumbered as follows:

~(lg( 2)
' ' ' ' '~(n - 2)

I I I

F/1/1//1///Y/8//

~& (for n-1) ~~&////&//—
J'.

a = &///////ANS&z 0
(fPI' l1) &////////g &/ g~g &/ 0

/ZZZZ(ZP. 8&ili 0
0 OIO0 1

oooo
1 000 ~

01 00
o 0 Yg&/
o o &z/i

g„,(e"„J

O OO 0

0 1 000 ~

o o~8N o
0 0 /l+/i 0
o oloo1
).„,(e„"

zl

Q OQ 0

%&20 0 ~

&/Yio o
,
0010
000 1

00 000
&/~&go o o
Fg&/0 o o ~ . .00100
Oo O1O
OOOO 1

FIR. 3. Schematic illustration of the fact that, according to the mathematical construction of matrix g (for n), all the angles 0"„:
to 0& do not appear in the last three columns of g. Each shaded 2 X 2 matrix represents a planar rotation.



1334 XAVIER CHAPUISAT AND ANDRE NAUTS

cos0 1cos03 sin 0 1cos02sin 03
—sin01cos03 —cosO, cos02sin03

sin 02sin03 —sin 02cos03 cos02

cosO, sin03+ sinO, cos02cos03 sinO, sin02
—sin01sin03+ cos01cos02cos03 cos01sin02 (29)

IV. CLASSICAL HAMILTONIAN EXPRESSION
OF THE KINETIC ENERGY IN TERMS

OF PA-HYPERSPHERICAL COORDINATES

The problem is now to particularize the results of Sec.
II, in light of the results of Sec. III.

aG„(0„.. . , g,„,)
Gs,)(0), . . . , 03 6)

A, =i l 3

(35a)
and, by virtue of Eq. (32),

gg, l g g) l (35b)
A. Construction of matrices S and C

The starting point consists of the relations
(A, =1, . . . , n =X—1; g =x,y, z):

Let us also put a)*;=a) ~, , where (gg'g") is a circular
permutation of (xyz). Two cases must be distinguished.
For i =4, 5, 6,

p).g(ei .

where

(3O)

egg

or, in matrix form

)fc~x 4~x s~x 6

(0„0~,03) e, ,,„(0„0„0,)
1 3

0 cos01 sin0, sin02

(36a)

a, =psingcosp, a =psingsinp, a, =pcose (31) &y 4&y 5&y 6 0 —sinO 1 Cos0 1sin02

CO 467 1 0 cos02

is a spherical representation of the three gyration radii of
the N-particle system, and G & is an element of the three
first lines of a rotation matrix g in IR' that depends only
on 3n —6 angles, so that

=a)* (0„0~) . (36b)

For /=7, . . . , 3N —6, if, by analogy with ~gg, , we
define

(32)

The set of the PA-hyperspherical coordinates is therefore
bg ).(04, . . . ) 03„6),

=1 1 3

(37)
3 gg', i

=
Xg'g, i & 'Yg, 1 'Yg'g", i

then one obtains

Moreover, by construction, we have [cf. Eqs. (27) and
(28)]

G,dgi

a)s, (0„.. . , 03„6)
= y e (ei, 0~, 03)y;(04, . . . , 03„6), (38a)

= & +„(gi gz g»b, ~.(04 03m-6»
g

(33a) or, in matrix form,

where @g is given in Eq. (29) and b, ), is an element of
the three erst lines of the orthogonal matrix

@(01 02 03) y(04 03 —6)

so that

g(3)g(4) g(n —1)

& bs~b'~ =f'.g

(33b)

COz 7 COz 8

~ ~ ~ )fc

~x, 3N —6

~y, 3N —6

~z, 3N —6

(38b)

01, 02, and 03 are internal coordinates and must
definitely not be confused with a, P, and y, the
overall rotation angles of the system. Let us define
(i =4, . . . , 3X —6):

where N is the 3 X 3 Euler matrix in Eq. (29) and y is the
3 X(3n —9) matrix whose elements are defined in Eq.
(37).

We are now in a position to make S and C explicit. Let
us first recall that [cf. Eq. (20c)]
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ay +a
0

0

0

a Ja
0

0

0

a +ay

p (1—sin 8 cos P)
0
0

0

p (1—sin 8 sin P)
0

0
0

psin 8

The definition of matrix S in Eq. (13) particularizes into the following. For i, i = 1,2, 3,

S&& =S = 1, S22 =S&6f=p, S33 S$f p sin 0, S;; ~&, ~

=0 .

Fori =1,2, 3 andi'+4,

Bag ~ c)G z
S,, , =pa g G q =O.

gC)q, ~, '
C)q;

For i,i'=4, 5, 6,

The corresponding block of matrix S can therefore be split into

2 2
COx, 4~y 4~z 4 y + z 0 0 ~~,4~&, S~x, 6

~x, sy, s~z, s
)fC

CO~ 6COy 6COz 6

0 a +a
0

)fc )fc I )fc T
y4 ys y6

)fCa +a c0, 4',

For i,i' ~ 7,

S...= y a,'y y e„.a,".,",', e„„,
where

Coriolis matrix in Eq. (14),

C; =0 for i =1,2, 3,
C';= —2a .a -~, for i =4, 5,6,

Bb ~ i3b-

, , ae, , ae,

and

C, = —2a a gN -.y .„, for i 7~,

is a matrix element of a 3X3 matrix B'" '. S;; can be
rewritten in a symmetric way,

tr(A @.B'"' @ A)= Y;

where

—2aya,

0

0
—2a, a

0

0

where (gg'g") is a circular permutation of (xyz).
With the help of the diagonal matrix a defined as

r

a„0 0
A= 0 a 0

0 0 a,

Fori =4, 5, 6andi'+7,

the complete matrix

S(q) C (q)
C(q) I(q)

0 2ax ay

ae„, ab, ,,
S,, = g gaggg ~~ ~gg-~9 bg

A, =1 g g g 1 3

After some calculation, one obtains

of Sec. II now reads, for the set of PA-hyperspherical
coordinates introduced in Sec. III, as indicated in Fig. 4.

B. Lagrangian expression of the kinetic energy

g ~ gg gg')'g'~'

or, still, in matrix form for the corresponding block of S,—co* I @ y. Finally, according to the definition of the

The matrix in Fig. 4 can be readily split and inserted
into the Lagrangian expression of the kinetic energy in
terms of the PA-hyperspherical coordinates, as follows
below,
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3n-9
=3N- 12

3n-9
=3N- 12

FIG. 4. Algebraic structure (deAned block by block) of the symmetric matrix, defined in Eq. (9), for the set of the PA-
hyperspherical coordinates. This matrix appears in the Lagrangian expression of the kinetic energy of the system in terms of the
3X—6=3n —3 internal velocities and the three MS components of the angular velocity vector. The row and column indices of the
matrix correspond to the individual coordinates, namely (i) three spherical coordinates to parametrize the three gyration radii of the
system, p, 0, and P; (ii) three Eulerian angles 0„0,, and 03 that are actually internal coordinates and account for the internal defor-
mations; (iii) 3n —9 additional generalized Eulerian angles, 04 to 03„6,appearing in the expression of matrix g that are also internal
coordinates; and Anally (iv) the three directions x, y, and z of the MS frame of reference.

where y= Y+3y .N I @ y and z= —2I 4 y. The structure of Eq. (39) strongly suggests that one introduce three
quasivelocities, namely,

=co* (0„02) 02 +@(0,, 02, 03) y(0~ . 03„6).
04

(40)

so that the kinetic energy now reads

1 0 0
0 p 0
0 0 psin0

0 0 0
P
0

0

2T=(p0$ O„fl 0, 0, . 0,„6 co co~co )

0 0
04

(41)

0 0
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Here, the quasivelocities are introduced to facilitate the
transformation of the Lagrangian into the Hamiltonian
expression of the kinetic energy. Indeed (see Sec. II), all
matrices appearing in Eq. (39) must be inverted, and the
one defining the quasivelocities is trivially inverted,
namely,

T

where Ggi and b are defined in Eqs. (33); the additional
quasivelocities introduced by Eckart are

n 3n —6 n ()6 ~
cogf = g Gszbf~= g g hfdf. I9

A, =1 p=1 A, =1 p

1 0 0 0
0 co* 4 y 0
0 0 1 0
0 0 0 1

1

0

1 0 0 0
0 co* ' —co* '@.y 0
0 0 0
0 0 1

3n —6
g= X X~s'& gg

p
—4 . g' l,=l p

(g =x,y, z; f =4, . . . , n) (43)
In this context Eckart's brightest original idea appears.
Indeed, Eckart thinks of the orthogonal matrix g as being
defined from the Jacobi vectors; as such, all its elements
(and not only those of the three first lines) can be invoked
to define quasivelocities. In particular, if the following
notation is used (see above, Sec. III):

by analogy with the possible expression of A (g =x,y, z):

n 3n —6
&g= X Ggi.G, -~.= &

A, =1 p=1

aG, ,,
& ao "'"

A, =1 p

[hfdf. ]

(42)

3 3n —6= X ~s,,+30,+ X
p=1 p —4 g

(gg'g" ) being a circular permutation of (xyz).

(44)

1 2

With the help of these quasivelocities, the expression of
the kinetic energy takes the remarkably simple form of
Eq. (45) on the following page.

In matrix form, the transformation from the internal
angular velocities 0„to the angular quasivelocities is

~x4

r0* (8„02) N(0„82,0, ) y(8~ . I93„6) 02

03

04

(46)

~zn

0 Dn

and, formally, the inverse of the matrix in Eq. (46) is
—1~eT @ y roeT I roeT 1,@,y, (Dn) I

0 D" 0 (Dn) —i .(47)

C. Inversion of D"

According to Eq. (43), a matrix element of D" is by
construction,

At this point, Eckart obviously suggests that one
should canonically associate quasimomenta with the
quasivelocities of Eq. (46), in order to preserve, in the
Hamiltonian context, the wonderful simplicity of Eq.
(45). All the problem thus amounts to is the question,
"Does the (3n —9)-dimensional matrix D" always have
an inverse?" The answer is "yes."

as, ,
Dsf,i„g ss' g gg fi

g A, =1 p

where g =x,y, z; f =4, . . . , n; and @=4, . . . , 3n —6

Let us introduce n —3 auxiliary 3X(3n —9) matrices
Qf (f =4, n), of element
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(49)
and all the difficulty of the inversion of D" is transferred
to 5".

Matrix Dn is written as 1. Algebraic properties of b, "

Dn

n

Let us first show by recursion that 6' and D' are block
upper triangular matrices, namely,

4

44 45

0 a5s

4n

a5n

0
gn

(50)

0 0 nn

(52a)

We denote by b, " the last matrix on the right in Eq. (50).
In the same way as D", b, " is a (3n —9)-dimensional
square matrix. Therefore

0

0 a

0 0

@'a44 @'a4s @ a4„
@.a5„

@.ann

(52b)

(Dn) —1 (gn) —1

0
(51) where the current block af„ is a 3 X3 matrix. This prop-

erty will turn out to be very important below (see Sec.
IV C2)

For five particles, n =4 and b4=g(3) g(3),

cosO6 —sinO6 0 0

cosO5sinO6 cosO5cosO6 —sinO5 0

cosO4sinO5sinO6 cosO4sinO5cosO6 COSO4COSO~ —sinO4

sinO4sinO5sinO6 sinO4sinO~COSO6 sin O4cosO5 cos04

where the indices of the rows and columns are, by construction, respectively, x, y, z (g-type), and 4 (f-type) for the
rows; and 1, 2, 3, and 4 (A, -type) for the columns. In addition, D =N 6 =@ a~4 is a 3X3 matrix, where

0 0

6 =a44= 0 —sinO44

0

—sin O4sinO5

0

0

For six particles, n =5, b&=g(3) g(4),

b =
5

cosO6

cosO~sinO6

cosO4sinO&sin 06

sinO4sinO&sinO6

—sinO6

cosO~COSO6

0
—sinO&

0 0

0 0

sin 04 0

sinO4sinO~COSO6 sinO4cosO5 cosO4 0

COSO4S1nO5cosO6 cos04cosO5

0 0 0 1

0

0 0
cosO9 —sinO9

cosO8sin09 cosO8cosO9

0
0

S1IlO8

0
0

0 cosO7sinO8sinO9 cosO7sinO8cosO9 cosO7cosO8 —sinO7

0 sinO7sinO8sinO9 sinO7sinO8cosO9 slnO7cosO8 cosO7

whence
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44 45
g5

0 a55

—sin04

—sin 04sin0& 0 0

cos04sin0, cosO,

—cosO, cos0,

sin06(sin 04cosO, cos08

+cos04cos07sin08 )

—cos06(sin 04cos08

+cos04cos05cos07sinO~ )

—sinO, cos06cos07sin08

0

0

0

0 0

sin04

sinO, sin 07

—cos04cosO, sin 07

sin06sin07sinO,

—cos0,cos06sin07sin08

cos04sin05cos06

X sin07sin08

The following points are noticeable: (i) h. is a block upper triangular matrix; (ii) 6 =a44 remains unchanged in the
upper left corner of 6; (iii)

—sinO, 0 0 0 0 —sinO7sinO8

55 cosO5cosO6 —sinO5 0 ~ 0 —sinO7 0

cosO4sinO5cosO6 cosO4cosO5 —sin O4 0

(iv)

sinO4cosO5sinO6 0 cosO4sinO6 0 0 cosO8

a45 = —sinO4cosO6 cosO4sinO5 —cosO4cosO5cosO6 . 0 cosO7 0

0 cosO5 —sinO5cosO6 0 0 cosO7sinO8

I» the general case, n ~, b, =g(3) - g~„z~.g~„1~=b, 1 g~„1~ is, in matrix form,

0

b n
0 0 g(n —1) (53a)

n —4 n —3. . .n

or, still, with the indices appropriate for row (x,y, z, g type; and 4 to n, f type), columns (l to n, A, type), and internal
Eulerian angles (4 to 3n —6), the matrix given in Eq. (53b) on the following page.

From Eq. (53b), on the following page, at the expense of long and intricate calculations not presented here, the three
following properties are demonstrated.

(i) In 5, the 3 X (3n —9) block of 6, if fWn, i.e., if 4 (f ( n —I, since by construction,

if p ( 3n —8, i.e., for all blocks af but the last one on the right (m (n), it is easy to check that

f 8b
Q 1 f $ 0b

P7 1 f 3
— ab n 1 f

gg ~ —
~ gg ~ —

~ ~ gg
A, =1 p P X=1 p

The second equality holds because b„", =b„", ' =0. Similarly,

gf = y
A, =l

Bb„'

gO n —1

P
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In other words, apart from the last 3 X 3 block on the right, af„, the block 5 of 6" is the same as block Sf of b, " '; or
still h, " ', as a block, remains unchanged in the upper left corner of 6".

(ii) In 6",
s"=(o . o a )

is the last 3 X(3n —9) submatrix, in which each indicated block is a 3 X3 matrix, i.e., 6, actually is an upper triangular
block matrix. Moreover,

~nn

bx, n 3
n —1

by, n —3
n —1

bz, n —3
n —1

0
by, n —2

n —1

bzn 2
n —1

0

0
bz, n —1

n —1

0 0

0 —sin 83n

0

Sln83n 8sln83n 7

0

0

is recursively identified with

—sin86 0 0

ann cos6tscos86 —sin85 0

cos84sin85cos86 cos84cos8~ —sin84

—sinO&„

COS83n 1pCOS83n 9

0
—sin 83 1Q

0

0

COS83n 11sln83n 1QCOS83n 9 COS83n 11COS83n 1p
—sin83n»

0 0 —sin 83n Ssin83 —7

0 S1n83n 8

0

0

0
(54a)

so that

1
( l)n+1

nn

0

0

sin83n 8sin83 7

0

sinO&„

0

0

0

sinO&„

COS83n —10COS83n —9

sin83n 1psin83 9

COS83n 11COS83n 9

sin83n» sin83 10sin83 9

0 0

sin 83 1Q

0

COS83n —11COS83n —10 1

sin83n, 1sin83n 10 sin83

1

sin86

cos85cos86

sin 85sin86

cos84cos 86

sin 84sin85sin 86

0

1

sinO&

cos84cos 85

sin84sin85

0

0

1

sin84

(54b)

always exists.
(iii)»r @=3&—g, 3n —7, and 3n —6, i.e., for the last 3 X 3 blocks in the right of 6, we have (4 &f & n —I )..
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This form holds whatever n & 5 and 4 f n —1, pro-
vided that the formula is limited as indicated below if
f =4or f =n —1.

Indeed, six 3X3 matrices are explicitly displayed in
Eq. (55b). It should be noted that there are two implicit
series products between the first and the second matrices
on the one hand, and between the fourth and the fifth
ones on the other hand. If f =4, the matrix product in
Eq. (55b) must be restricted to the third, fourth, and fifth
matrices ( 03f s 03f 7 and 03f 6 are then 04, 03, and 06,
respectively) whereas, iff = n —1, it must be restricted to
the first three matrices (03f 8 03f 7 and 0» 6 are then
03 1 1 03 1O and 03 9 respectively).

2. Inuersion of Is."

Since 6" ' is an invariant block in 5", the following
open (i.e., nonfinite) upper triangular block matrix is

introduced:

44 a45 46 47 48

55 56 57 58

0
0

66 67 68

0 0 a77 a78

0 0 0 0 a88

0

aI„(f~n)

(56a}

Formally, the inverse of h, is Eq. (56b) on the following page, where A&„ is the current 3 X 3 block of g
In the same way as 5" is block invariant in h, ", according to known algebraic properties of block triangular ma-

trices, (6" ') ' is block invariant in (5") '. Indeed,

(gn}—1

akn (gn —1)—1

fn

(57)

0 0 —1
nn

where

n —1

Af g Afk a~„a„„'(4~f~n —1)
k=f

(58)

and AIk in the right-hand side (rhs) of Eq. (58) is a block of (b," ')
The explicit result (recursively deriveddem, onstration not given) is

A fn

n —1 n —2

In g BIk Bkn+
k=f+1 k=f+1

n —i n —i+1
+( '}'

k=f+1 1=k+1

n —1

B„.Bki.B,„—
1=k+1

n —1

BIk Bk1. B„„B,„+
v=u+1

+( —1)" 'Bf I+1 Bf+\ I+2. . . .B„2„,B„,„a„„(n&5; n —1&f &4), (59}

where BI„(3X 3) stands
(n & 5; n —1 &f &4). Moreover,

for
—1

ff fn matrix products, so that, on the whole, there are

A„„=a„„' (n &4) . (60)
n —f—1

i=0

n f —1—
In the expression of AI„, Eq. (59), there are (n f)—

terms in large parentheses, and the ith term
(i =0, . . . , n f —1) is in turn a sum of—(",. I ') 3X3

matrix products in Afn.
Let us particularize the results for five and six bodies

(n =4 and 5, respectively):
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A =a44 44

0

0

1

sin g4sings

0 1

1
0

sing4

0

—1 —1
A4s = —

a44 a45as
—1= —845ass

cotg6
cotgs +

sing~

A =a55 55 0

1

sin g7singq

0 1

1
0

sinO&

0 0

cotg6

—cotgs

cotgs

sing7

—cotg4

0

0 0

0

cotg4

sing~

1

sing6

~ cotgscotg6

cotg4cotO6

s1Ilgs

1

sinO&
0

1
cotg4cotgs

s1Ilg4

0 cotg7 0

cotg7 0 0

A45 turns out to be the simplest particular case of a total-
ly general analytical expression of Af„ that we have ac-
tually derived at the expense of terrible calculations
(demonstration not given), namely,

0

Afg ( —1 )" cot83f

cotg3f 7

cotg3f

—COtg3f

0

cotg3f

Slng3f

0

COtg3f

sinO&&

1

sing3f 9

0

0

0

Slng3 f ]Q

0

0

cotg3f JQcotg3f 9

1

s1Ilg3f

1

sing6
0 0

1

sing3f 4
0 cotg3f scotg3f

0
1

cotgscotg6
S1Ilg5

0 1

sinO&&
0

0 0 1

sing6
0 0

sin g3f

sing3„—tQ

0

0

0

sin g3„»
0

Cotg3 ]]Cotg3 $Q

0

sinO&„ »

cotg3„

sing&„

0

cotg3„

0 0

cotg3„8 0

0 0

(61)

where the expression must be restricted if f =4
f =n —1. If f =4, the second and third matrices in Eq.
(61), and the implicit product in between them, must be
ignored. If f =n —1, the fourth and fifth matrices, and
the implicit product in between, must in turn be ignored.

Remarkably, Af„ is a triangular 3X3 matrix of the
type

%0 WO 0
%0 %0 0
%0 0 0

Since A,„=a,„' is of the type

WO %0 WO

WO %0 0
WO 0 0

[see Eq. (54b)], the property is also true for Af„, whatev-
er f andn

Finally, it is worth reminding the reader that
(D") ' —in the same way as (6") ' —is the left upper
block of the following open matrix:
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0 A66.0'

A44-e A45 e A46 e
0 Ass'@ As6

Af„@

matrix transforming the conjugate momenta into quasi-
momenta is the transpose inverse of the previous one [cf.
Sec. II, Eqs. (10a) and (10b)], one obtains Isee Eq. (36b)]

Pg

Pg

0 Pg

N4 (DnT) —1. T. T (DnT) —1

Pg

D. Hamiltonian expression of the kinetic energy

Now that D" is inverted, the Eckart quasivelocities in
Eq. (46) are used to define conjugate quasimomenta (cf.
Sec. II), Pz=dT/de (K =1,3n), with

N,„

where

Pg
3n —6

(66a)

Vt'c =
I p, 0, P, 0„,0,Q„co„~, . . . , co,„,co„ccrc,co, ] .

From Eq. (45), we obtain Eq. (63) on the following page.
The remaining inversion problem thus reduces to the

following 2 X 2 one:

—sinO, cot02 cosH, sinO, /sin02

co (01,0p) = cos01cot02 s11101 COSO, /sinOz

0

(66b)

2 2 —1a ~ +a- —2a a-
2 2—2a .a -a ~ +a-

2 2a ~ +a-2a a-
2 2 —2

2a .a .a ~ +a

and

C T. s —1 T(0 0

'g —1( —1

C
—1g —1 (64a)

sinO&/sino2 cos03 —coto2sin03

cos03 /sin02 sin03 cot02cos03

where (gg'g" =xyz, yzx, zxy):

0 0

(66c)

(as. —a. )
2 2 2

2 2a ~ +a-
(a, —a ~ )

2 2 2

C =
2ag&ag~&

(64b)

In terms of the quasimomenta of Eq. (63), the Hamiltoni-
an form of the kinetic energy thus reads

2T=P + P +- P1 2 1
C 2 20

n

(65)

where p is the mass-weighted hyperradius defined in Eq.
(20a).

- This exceptionally concise expression of the kinetic en-

ergy of an N-particle system presents several noticeable
characteristics.

(i) The usual rotational and Coriolis energies reduce,
respectively, to —,

' g (1/Bs)js and g (1/C )J K, all

the rest being pure internal deformation kinetic energy.
(ii) All coefficients in Eq. (65) depend solely on p, 0,

and P. All the other (internal) coordinates, namely, 0,
(i =1,3n —6), are contained in the quasimomenta them-
selves, respectively, IC and i1i (g =x,y, z; a=4, n).

(iii) From the matrix in Eq. (46) that transforms the ve-
locities into quasivelocities, and from the fact that the

K„ Pg

K = K =co '(0 0) P
2

K, Pg
3

(67)

E.

Algebraically, the vector K is an angular momentum.
This is clearly seen by analogy with J, cf. Eq. (3):

co l,p2'

P

Pp

P

This is why, in the PA-hyperspherical Hamiltonian ex-
pression of the kinetic energy, Eq. (65), both K and J are
on the same footing. We call K "pseudo-angular-
momentum, " in accordance with our previous work on
four-particle systems in which K was identified for the
first time. Obviously, the pseudo-angular-momentum
K is not a rotational angular momentum, since it refers
to the internal coordinates 01, 02, and 03, and not to the
rotational Eulerian angles a, P, and y. In particular, it is
not a constant of the motion However, bein. g defined by
the same explicit relationships as the true angular

As a mathematical consequence of the factorization of a
three-dimensional Euler ian rotation g ~, ~

( 0, )g I z ~
( 02, 03 ) on

the left side of g [see Eqs. (27) and (28)], the expression of
the general rotation of R" (see Sec. III 8), one has
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momentum, in quantum mechanics, its components as
operators obey the same commutation rules as those of
the angular momentum, namely [K„,E ]=—iA'E„and
so on, so that

where

(g =x,y, z) (69b)

A2T=P +
P 2

(68a)

where

A=P+ P1
0

sin 0

+ g (e ~
—e ., ) [b (K +J )+2d K J ]

+e gX
a=4

(68b)

is the PA-hyperspherical version of the so-called "grand
angular momentum, ' ' and

e„=sing cosP, e = sing sing, e, =cos{9,

b =1—sin Ocos P, b =1—sin Osin P, b, =sin 0,
(68c)

d =sin20sing, d =sin28cosg, d, =sin2gsin2$ .

It should be noted here that there are no K and no»
for three particles, and that there are even no» for
four particles, thus indicating that the general »-particle
regime settles in, according to the PA-hyperspherical
description, for fiue particles

(v) The following completely diagonal expression of A
is worth mentioning:

A=P + —PI
0

sin 0
r

n

+ g (es. —eg ) b (J') +b 'K +e g X
o.=4

(69a)

K 'lK, k & =A'K(K+1)lK, k &,

K, lK, k & =ok K, k &,

(K. + iK, )
l K, k & =X&K (K+ I ) k (@+1)lK @+1&,

where K is a positive integer (or zero), k E [
—K, +K]

aIld

(8„0~,03 K, k & =2)ok(83, 8~, 0, ),
where 2)ok denotes a Wigner matrix element.

(iv) 2T can be rewritten as

is a generalized angular momentum component of the
Darling-Dennison type (see Sec. II), adapted to large
amplitude deformations of the system described in terms
of PA-hyperspherical coordinates.

V. CONCLUSION

The aim of the present article is twofold. First, an ex-
plicit definition of a set of PA-hyperspherical coordinates
has been proposed. The basic algebraic ingredients are
not new: we owe them to Eckart, in a very old and
surprisingly ignored article, the rediscovery of which
we owe to Robert and Baudon. ' Our contribution has
been to create coordinates and completely calculate all
the formal quantities identified by Eckart; in particular,
the quasivelocities Q, A, A„co„4, . . . , co„and the quasi-
momenta Kx~Ky~Kz, »x4~ ' ' ~ »zn ~ thus allowing utiliza-
tion of Eckart's ideas in practice. No singularities have
appeared in the course of the extremely long and tricky
calculations, thus proving that the PA-hyperspherical
scheme is always applicable to the»-body problem for-
mulated in terms of 3» —6 internal coordinates and the
three components of the total angular momentum mea-
sured in the body-fixed frame.

Second, the Hamiltonian expression of the kinetic ener-
gy expressed with the help of the quasimomenta has been
put in a very concise form, which is well adapted to
quantization. To quantize Eq. (65), nothing new is need-
ed for both J —the usual body-fixed component of the
total angular momentum —and K —the internal
pseudo-angular-momentum (cf. Sec. IV D). All the
difhculty therefore lies in the quasimomentum operators
that are to be associated with the» 's. This is planned
to be the subject of a future article. '
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