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We have used Monte Carlo calculations to verify the classical electrodynamics result describing the
multiparticle coherent enhancement at long wavelengths for synchrotron-radiation emission. In addi-
tion we show the derivation of the result that, for a bunch of electrons in a storage ring, the
synchrotron-radiation emission has a multiparticle coherent enhancement that is given by the square of
the Fourier transform of the longitudinal spatial distribution function of the electrons. The result has
been verified for Gaussian and sinusoidal distributions. For a Gaussian distribution of particles in a
bunch, this is seen to have an effect only at wavelengths close to the bunch length. For a sinusoidal dis-
tribution as in the transverse optical klystron, the enhancement can easily be seen to occur at one specific

wavelength.

INTRODUCTION

This paper discusses and calculates multiparticle-
coherent-enhancement effects in synchrotron-radiation
emission. In particular, we extend the work of Nodvick
and Saxon [1]. Although their paper is primarily con-
cerned with the long-wavelength suppression of coherent
effects due to the size of the vacuum vessel, they also
present a formalism for calculating the coherence. We
show that their analytical result using classical electro-
dynamics can be generalized, the coherent enhancement
being given by the square of the Fourier transform of the
particle distribution function. This treatment contains
certain approximations and in order to check their validi-
ty, we have applied Monte Carlo methods to the same
problem.

We have previously calculated the long-wavelength
limit of the synchrotron-radiation spectrum [2]. This cal-
culation, however, did not take into account possible
enhancements due to the coherent superposition of the
emissions from different electrons in the circulating
bunch. In another paper, Michel [3] presented a calcula-
tion in which he predicted large coherent enhancements
starting in the middle infrared. These arise from the argu-
ment that for wavelengths equal to the bunch length the
N electrons in the bunch can be considered to be radiat-
ing coherently, as a kind of superparticle of charge Ne,
and thus the output is proportional to N2e? rather than
Ne?. For wavelengths less than the bunch length, he ar-
gues that the enhancement would be proportional to the
number of electrons in a cube whose side is of the order
of the wavelength. The coherent enhancement, then,
would be around 10'? at wavelengths equal to the bunch
length falling as A~ to shorter wavelengths. This issue
of coherence is here examined in the light of recent mea-
surements [4], which failed to show coherent enhance-
ment where it would have been expected on the basis of
the above arguments.

44

THEORY OF COHERENT EMISSION
FROM N ELECTRONS

The following theory assumes that the electrons are
contained in a bunch because of the radio-frequency cavi-
ty and the nature of electron storage rings. It is further
assumed that the beam has no emittance, i.e., that all the
electrons follow the same circular path. Finally we as-
sume that the observer is a long distance from the source
compared to the bending radius of the dipole magnet.

Using classical electrodynamics and the notation of
Jackson [5], we can write that the radiation emitted from
a particle (electron) of charge e, into a solid angle d (2, at
a frequency o, is given by

d’l  _ e’ | T auia ilt —f-r(s) /c] ’
dodQ Lnx(nxﬁ)e dt| , (1)
where o is the angular frequency of the radiation, B is the
ratio of the particle velocity to the velocity of light (v/c),
r(t) is the particle position, and 1 is a unit-direction vec-
tor close to the photon emission direction for a distant
observer.

We note that this has been solved numerically by
several authors, a comprehensive treatment being given,
using the same notation, by Krinsky, Perlman, and Wat-
son [6]. The usual method for calculating the power radi-
ated by N electrons is to multiply the result of Eq. (1) by
N and by the revolution frequency, since one usually ob-
serves the electron bunch only over a few milliradians of
orbit each revolution.

In a full calculation for N electrons the power is found
by summing the electric field of each one, paying atten-
tion to the phase. We then obtain

2 2 219 N . ~ 2
~ A —1-r(1)/
d-Il e‘w f En><(n><Bj)elw[t fi-r;(1) C]dt )

—wj=1

dodQ  47%

(2)
where B; is the ratio of the jth particle velocity to the ve-
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locity of light (v;/c) and r; is the position of the jth par-
ticle. If we now assume Bj=/3 for all particles, so that
the relative positions of the particles do not change dur-

ing the observation of the emission, and that the center of
J

d2I e2w2 N

dodQ

tmr /Bc

47TC j*l

where we have now separated the time-dependent terms
and retained them in the integral. Here we note that this
is equivalent to Eq. (1), except for the summation term
[5]. Since the particles are traveling very close to the
speed of light, we can put =1 and are left, then, with
the problem of solving

Se

j=1

lor;
zwj/c

T(w)= (4)

Following Nodvick and Saxon [1], we rewrite the squared
sum as the product

N iwr-/cN
Tw=3Fe 7 e

ji=1 k=1

—ior, /c

(5)

iolr;—r)/c

N
= 2 e J

N .
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+ 3 e Ok
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(6)

which in turn becomes

T(w)=N+ g e T
Jk=1(j#k)
We now rewrite Eq. (7) as
T(w)=N+N(N—1)f(w), (8)

where f (w) is defined by
>

—_— e

NN =1) ;o S0

im(rjfrk)/c

flo)= 9

At this stage we can see that we have an expression for
the radiated power in the following form

d1
_ = — 1
Tod [N+N(N—1)f(0)]P(w), (10
where P (®) is the power radiated by a single electron and

given by Eq. (1). The form of Eq. (10) allows us to see that
f(w) describes the coherence of the emitted radiation.
f(@)=0 represents the incoherent limit where the total
power from N electrons is simply N times the result from
a single electron and f(w)=1 represents the coherent
limit where the total power is N? times the result for a
single electron.

Equation (10) was derived for a particular
configuration of particles in the bunch and is formally
correct for any N and for an arbitrary set of coordinates
r;. However, when defined with respect to a particular
particle configuration, f(w) becomes very complicated
due to its detailed dependence on the r; terms; it can as-
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mass of the bunch is described by r(z), we can rewrite Eq.
(2) to a good approximation as follows, where now the 7;
terms refer to the positions of the particles (along the or-

bit) with respect to the center of mass of the bunch:

2

m)[t—ﬁ-r(t)/c]dt , (3)

r
sume, for example, different values for particle
configurations, which differ in detail but which neverthe-
less correspond to the same “mean” charge distribution.
Equation (10) becomes useful primarily in the context of
an ensemble average over particle configurations. The
problem is similar to that encountered in disordered sys-
tems where configurational averaging must be performed.
We now define two normalized distribution functions.
1(r) describes a specific particle configuration:

r)—*zﬁr T;) (11)
=1

and S (r) is a continuous probability distribution function
(e.g., Gaussian, sinusoidal, etc.) such that NS (r)d>r is the
probability of finding a particle in the region d3r about r.
S (r) represents a particular ensemble average {(S,(r)) of
S,(r). Specifically, if an infinite series of N-particle
bunches is created under identical (accelerator) condi-
tions, S (r) is the average of the resulting S;(r). It can be
thought of as a mean particle distribution function in
which statistical fluctuations in the charge density due to
the discrete nature of the charges have been averaged
over. Figure 1 contains a schematic illustration of S(r)
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FIG. 1 Illustration of the difference between the smooth
Gaussian function S(7), shown by the solid line; and S(r), a
Gaussian distribution statistically filled with, in this case, 10 000
particles in 100 increments between —20 and +20, shown as
filled circles. The incremental change in electric field as a
bunch of electrons passes an observer is proportional to V' Ne
(see box), and hence the intensity is proportional to Ne?or N
times the value for a single electron.
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and S (r) for a Gaussian distribution of half-width o.
In the ensemble-averaged version of Eq. (10), f(w) is
given by

flo)= e"“’"f"k”‘) , (12)

1 < g
NN =D\ SGx0

where the angle brackets explicitly denote the ensemble
average. To evaluate Eq. (12) we shall make two assump-
tions. First we assume that for N large (i.e., of the order
of the number of particles that in practice are contained
in a bunch, ~10'? at the National Synchrotron Light
Source, Brookhaven), f(w) is independent of N and is
simply a frequency-dependent function, which in turn de-
pends only on the mean particle distribution S(r). This
assumption is motivated by the behavior described by Eq.
(10) in both incoherent [f(w)=0, power proportional to
N], and coherent [f(w)=1, power proportional to N?2]
limits. An equivalent statement is that the ensemble
average of the restricted double sum in Eq. (7) is propor-
tional to N2— N for large N. We wish to express explicit-
ly the dependence of f(w) on S(r). We have, from the
ensemble average of Eq. (8)

N iolr,—
(2

r")/c>=N[1—f(w)]+N2f(co). (13)
k=1

Since f(w) is independent of N by our first assumption,
we can divide by N2 and take the large-N limit to obtain

N
flo)=lim —2( 3 T (14)
N—ow N \; =y

Although the ensemble-averaged double sum in general
contains terms proportional to both N and N? (the in-
coherent and coherent radiation terms, respectively) it is
permissible to replace it with an expression that contains
only the latter term, as the former will vanish in the limit.
Equation (14) can be rewritten exactly as

flw)=tim (| ferer/es s ) (15)

N-—> o
We now make our second assumption, that the ensemble
average in Eq. (15) can be evaluated by replacing S,(r)
with the (continuous) particle distribution function S (r)
to obtain finally

flo)=

2

Jetores (nd (16)

Note that in replacing S;(r) with S(r) we in effect threw
away the incoherent radiation term in the ensemble-
averaged double sum. Thus it is clear that one cannot
evaluate Eq. (4) directly by converting the sums to in-
tegrals involving S(r). Equation (16) yields the impor-
tant general result that f (w) is the magnitude squared of
the Fourier transform of S (r).

The above discussion is helpful in understanding the
origin of coherent and incoherent emission of synchro-
tron radiation. One can think of coherent emission as be-
ing produced by the mean particle distribution NS(r). It
is not influenced by the statistical fluctuations about the
mean (Fig. 1). Thus, if one were to imagine replacing the
ensemble of discrete charge distributions .S (r) that actu-
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ally exist in a storage ring with the corresponding con-
tinuous charge distribution S(r), any incoherent radia-
tion being generated would vanish but the coherent radia-
tion intensity would remain unchanged. In contrast, any
incoherent radiation results solely from the statistical
fluctuations of the particle density, causing an electric
field change of V'Ne—the intensity then being propor-
tional to Ne? Note that the radiation intensity associat-
ed with a continuous charge distribution must automati-
cally vary as NZ2e? since the electric field that is generated
must be proportional to the total charge (i.e., Ne).

It is interesting to compare the “incoherent” radiation
from a synchrotron with that from a conventional source
such as a discharge lamp. The total field in the latter case
is the sum of N wave trains with equal amplitude but
with random relative phases. Since the phases are ran-
dom they are averaged over in obtaining the total intensi-
ty. In the case of synchrotron radiation the relative
phases of the wave trains emitted by different volume ele-
ments d’r within the bunch are not random but are fixed
by their relative positions within the bunch. However,
the amplitudes of the wave trains vary in a random
fashion about the mean due to the statistical fluctuations
in the number of particles contained within each volume
element d>®r. Thus incoherent radiation from a synchro-
tron results from averaging over random amplitude fluc-
tuations rather than random phase fluctuations.

APPLICATION TO SPECIFIC
PARTICLE DISTRIBUTIONS

We now apply these results to two particle distribu-
tions of relevance to synchrotron-radiation users. As a
separate verification of the result of Egs. (10) and (16), we
also apply Monte Carlo methods to the direct solution of
Eq. (4), for the same distributions. For the Monte Carlo
calculation, 10° particles were chosen by first generating
a random 7; value for each particle followed by a random
number between O and 1. The latter was tested against
the chosen S (r), normalized to have a maximum value of
1. The “particle” and “position” were accepted if the
random number was less than or equal to S (7). Once the
particles were selected, then for each wavelength A, the
quantity
2

+

2

zl‘,cos(Zn-}»/rj) zl‘,sin(ZTr}»/rj)

was calculated. This is identical to the “intensity” plotted
in Figs. 2 and 3.

Gaussian distribution

If the electrons have a Gaussian distribution, then the
probability of finding a particle at a position 7 relative to
the center of the bunch is given to within a factor N by

1 —r7'/2¢72
— R (17)
V2o
where o is the standard deviation. For this case then we
have to evaluate

S(r)=
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FIG. 2. Coherent enhancement factor for emission as a func-
tion of wavelength for a Gaussian distribution of particles
within a bunch of an electron synchrotron. The solid line is the
result of the calculation described in the text for
N +N(N —1)f () from Egs. (10) and (19), while the filled cir-
cles are the result of a Monte Carlo calculation of Eq. (4) for the
same distribution for 10° particles. These were distributed in a
bunch extending from —4¢ to +40. Both calculations are
plotted as a function of the dimensionless quantity wavelength
over o, the latter describing the Gaussian bunch length.

© 2

1 f eiwr/ce—rz/ZUzdr , (18)

Sle)= 1 |

o

which is the Fourier transform of a Gaussian and yields
the result

flw)=e 4o /A (19)

In Fig. 2 we show as filled circles the result of a Monte
Carlo calculation applied to Eq. (4) for 10° electrons for a
Gaussian distribution. The particles were randomly dis-
tributed in a bunch extending from +40 to —4o0. We
have plotted the function N +N(N —1)f(w) versus
wavelength (rather than frequency), as a function of the
dimensionless quantity wavelength /o. At short wave-
lengths (incoherent limit) the intensity can be seen to be
proportional to N (10%, while at longer wavelengths
(coherent limit) it is equal to N%(10'?). The solid line
shows the result from Egs. (10) and (19). The two calcu-
lations are seen to agree closely, confirming the validity
of Eq. (16). Note that for this distribution, coherence only
plays a role for wavelengths close to the bunch length. If
the bunch length is long compared to the size of the vacu-
um vessel of the ring, considerable suppression is predict-
ed [1].

Sinusoidal distribution—free-electron lasers

In some devices a light beam of appropriate wave-
length traveling parallel to the particles is superimposed
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on the fluctuating magnetic field of an undulator to
“micro-bunch” the particles. An example is the trans-
verse optical klystron [7] (TOK) at Brookhaven. This
combination of electric and magnetic fields results in a
“micro-bunching” of the particles within the Gaussian
bunch. Although the degree of microbunching in prac-
tice is much less than 100%, for the purposes of the
present calculation we will assume full modulation. The
probability of finding a particle is, then, again to within a
factor N, the product of the Gaussian function of Eq. (17)
and the function

o'r

c

S”(r)=sin (20)

The Fourier transform of this probability distribution has
in it a 6 function, with a maximum at the frequency 2o’.
Due to the finite length of the bunch, there is also a max-
imum as before at long wavelengths. In Fig. 3 we show
the result obtained from a Monte Carlo solution of Eq. (4)
for a sinusoidal distribution of this kind. For this case we
took 10° particles distributed in a Gaussian fashion from
—40 to +40, which was then further modulated by 200
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FIG. 3. Coherent enhancement factor N + N (N —1)f (w) for
emission as a function of wavelength for a sinusoidal distribu-
tion of particles within the Gaussian bunch of electrons in a
synchrotron. [An example of the type of probability distribu-
tion S(r) is illustrated in the inset for 16 bunches for r lying be-
tween —40 and +40 of the Gaussian bunch.] The data are the
result of a Monte Carlo calculation of Eq. (4) for 10° particles,
plotted as a function of the dimensionless quantity wavelength
over o, the latter describing the Gaussian bunch length. In this
example there were 200 sinusoidal periods giving 400 smaller
bunches between —40 and +40 of the main bunch, or 50
bunches per 0. The overall behavior in the main figure is simi-
lar to Fig. 2, but an additional enhancement, predicted by Eq.
(20), is observed. The numbered bars above the spectrum indi-
cate the expected positions of the first through fourth harmon-
ics of this enhancement. The first two harmonics are clearly
seen in the Monte Carlo calculation, the third and fourth being
somewhat lost in the noise.
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sinusoidal periods. Thus the bunch was split into 400
smaller bunches, 50 per o.

The solid line is the result of the Monte Carlo calcula-
tion for N + N(N —1)f (w). The figure clearly shows the
special enhancement at a wavelength/o value of % and
in addition shows up to four harmonics, the third and
fourth of which are somewhat buried in the statistical
noise. At very short wavelengths (incoherent limit) the
single-particle function has its intensity multiplied by N
(10°) and at very long wavelengths by N*(10'?) coming
from the overall Gaussian distribution as before.

DISCUSSION

The above calculations confirm that the form factor
f(w) giving the coherent enhancement for N particles
emitting synchrotron radiation is the square of the
Fourier transform of the electron probability distribution
in the bunch. The range of coherent enhancement, then,
for a Gaussian distribution of particles within a bunch is
controlled by the bunch length, being more localized in
frequency or wavelength space for longer bunches. This

result has recently been confirmed by Nakazato et al. [8],
using picosecond bunches of electrons from a linear ac-
celerator. Experiments in the far-infrared region could
benefit from such linear accelerators and even from new
machines such as the advanced light source, which has
shorter bunches. For a sinusoidal distribution the
enhancement can readily be seen to occur at a single fre-
quency. This result may assist in the understanding and
hence development of coherent sources such as the trans-
verse optical klystron.
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