PHYSICAL REVIEW A

VOLUME 44, NUMBER 1

1JULY 1991

Classification of Cm II and Pu I energy levels using counterpropagation neural networks

Keith L. Peterson
Division of Science and Mathematics, Wesleyan College, Macon, Georgia 31297
(Received 27 June 1990; revised manuscript received 15 March 1991)

Two different types of counterpropagation neural networks are applied to the problem of classifying
unknown Cm1l and Pul energy levels according to their electronic configurations. Four features—
energy level, angular momentum, g factor, and isotope shift—are used to describe each level. Both types
of networks are trained at the 100% level for even-parity levels of Cm 11, while for odd-parity levels one
type is trained at 100% and the other at 97.5%. Performance on test sets is not as good, ranging from
80.0% to 93.3%. The two network types are trained at 98.6% and 90.5%, respectively, for even-parity
levels of Pu1, and at 98.6% and 91.6% for odd-parity levels. Test-set performances range from 64.0% to
77.7%. Classifications for 159 previously unclassified Cm 11 levels and 485 previously unclassified Pu1
levels are also obtained. Qualitative analysis of network-training results reveals several characteristics of
those levels whose configurations the networks fail to learn, the most prevalent of which is an isotope-
shift value that is consistent with two or more configurations. Rationalizations are also given for some
of the other levels the networks misclassify. These qualitative observations should form a basis for un-
derstanding and precisely interpreting the performance of counterpropagation neural networks when ap-

plied to atomic systems.

I. INTRODUCTION

In a previous paper we have demonstrated the utility of
counterpropagation neural networks as a tool in assign-
ing configurations to the atomic energy levels of Cm1 [1].
In this paper we apply the same types of networks to the
classification of CmIl and Pul energy levels. Our
motivation for doing this is twofold: (1) we wish to
characterize further the application of counterpropaga-
tion neural networks to atomic classification problems
and (2) pattern-recognition methods (such as those used
in classifying Cm1 [2], U1 [3], and U 11 [4] energy levels)
failed miserably when applied to Cm 11 [5] and Pul [6].
We will make several observations concerning the perfor-
mance of the networks when applied to these systems,
our goal being a better qualitative understanding of the
networks than was established in Ref. [1].

For an introduction to neural networks and a detailed
explanation of how counterpropagation neural nets are
applied to the classification of atomic energy levels, the
reader is referred to Ref. [1] and references therein.
However, in order to make the present paper relatively
self-contained we will, in the remainder of this section,
briefly summarize the application of networks to the
classification problem.

A neural network is provided with a set of inputs (a set
of pattern vectors, each vector describing a given energy
level with four features—energy, angular momentum J, g
factor, and isotope shift, Aig) and a set of desired outputs.
Each output represents a given category (i.e., electronic
configuration) to which the corresponding input belongs.
Upon repeatedly presenting the input and output sets to
the network, the weights between processing elements
(PE’s) are adjusted so that the network generates the
correct output when given a certain input. After this
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training or learning phase the network is provided with
an input whose corresponding output is unknown (i.e., an
unclassified energy level). The network transforms the
input into a predicted output (category or electronic
configuration prediction). The category prediction pro-
cess is referred to as recall. Recall can also be used with
inputs whose corresponding outputs are known in order
to determine the training level of the network.

Uniflow counterpropagation networks (see Ref. [1] and
references therein) in the present application consist of
four layers of PE’s. The input layer contains four
PE’s—one PE for each feature—and acts as a buffer for
the first hidden layer. This is a normalizing layer con-
taining one more PE than the input layer. It ensures that
every input vector has the same length. The second hid-
den layer is a competitive layer that acts as a nearest-
neighbor classifier and contains as many PE’s as there are
inputs (energy levels). These PE’s learn with the
Kohonen learning rule. During training each PE com-
petes with others in the layer and is equally likely to win
for any randomly chosen input. For a given input, how-
ever, only one PE in this layer wins. The output of this
winning PE serves as an input to the output layer which
consists of one PE for each possible category (electronic
configuration). The output layer uses the Widrow-Hoff
learning rule to decode the output of the competitive lay-
er into a predicted output. The normalizing layer is fully
interconnected to the competitive layer which is in turn
fully connected to the output layer.

A PE in the competitive layer of a uniflow network
may take responsibility for two or more training inputs
which belong to different categories. This may result in
an ambiguous output for any inputs which activate this
PE. A category-learning counterpropagation network
solves this problem by preconditioning PE’s in the com-
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petitive layer to learn only about a particular category.
All of the above comments concerning uniflow networks
also apply to category-learning networks except that each
PE in the competitive layer is connected to only one PE
in the output layer. Therefore there is no learning rule
for the output layer.

II. APPLICATION TO Cm 11 ENERGY LEVELS

We now discuss the application of the two types of
counterpropagation neural networks to the classification
of CmII energy levels. Data is taken from Worden, Con-
way, and Blaise [7]. Only energy levels for which four
features (energy, J, g, and A) are available are con-
sidered. This leaves us with two data sets, one consisting
of 82 odd-parity levels representing four configurations
(57752, 5f76d7s, 5£76d?, and 5f%7p) and one consisting
of 74 even-parity levels representing five configurations
(5f%s, 5f%d, S5f77s7p, 5f76d7p, and 5f76d7p
+5f8d). The networks constructed for analyzing the
odd-parity data set consist of an input layer of four PE’s,
a normalizing layer of five PE’s, a competitive layer of 82
PE’s, and an output layer of four PE’s. Networks for the
even-parity data set are similar except that they contain
74 PE’s in the competitive layer and five PE’s in the out-
put layer. All networks were run on an IBM XT (with an
8088 chip, 640 k memory, 10-Mbyte hard disk, and CGA
display) using the Neural Works Professional II™
software package [8]. All networks were trained on 9000
passes through an entire data set. As in our previous pa-
per on CmI, scaling of data was necessary in order for
the networks to function properly. The data of Ref. [7]
(with energy and A expressed in cm ') were scaled by
dividing energy by 100000, and J and g by 10, leaving Ag
the same.

The training results of various networks are summa-
rized in Table I. As in Ref. [1] we have trained networks
with all classified levels and with ‘“‘training sets.” The
even-parity and odd-parity training sets are formed by re-
moving 15 classified levels from the original 74 even lev-
els and 17 classified levels from the original 82 odd levels,
respectively. The 15- and 17-member data sets are re-
ferred to at test sets. We then trained a network (with 59
PE’s in the competitive layer) with the 59-member even-
parity training set, and a network (with 65 PE’s in the
competitive layer) with the 65-member odd-parity train-
ing set. Each network was trained with 9000 passes
through their respective training sets. Each member of
the test set was then recalled through the trained network
and the resulting outputs compared to the known out-
puts. The test-set results are generally not as good as the
training results. However, they are quite respectable and
are comparable to results obtained for Cm1 [1]. In addi-
tion, they are far superior to pattern recognition results
on Cm I [5].

We now make some observations which rationalize
some of the mistakes reflected in Table I. Our motive for
doing this is to obtain a better qualitative understanding
and characterization of network performance; for exam-
ple, we would like to begin to be able to identify those

cases or levels where a network is likely to fail and those
where it is likely to succeed. Ultimately (in later work),
we would like to be able to relate input-output weights of
the various PE’s comprising the network to the perfor-
mance of the network. Hopefully the weights of the in-
put and normalizing layer PE’s will give us insight into
the relative importance of each of the four features in
determining the classification of a given level.

A. Category-learning network; even-parity levels

The category-learning network misclassifies two levels
in the even-parity training set. These two levels with
their actual and predicted configurations are

35456.915, 5.5, 1.367, —1.042

5f76d7p classified as 5f76d7p +5f%6d
and

35556.240, 3.5, 1.858, —0.743

5f76d7p classified as 5f"7s7p .

[The ordered quartet of numbers corresponds to E
(cm™Y, J, g, and Ay (cm™Y), respectively, and are given
in their unscaled values.] We may rationalize the
misclassification of the 35456.915 level by noting that in
forming the training set one of the two existing
5£76d7p +5f%6d levels was removed from the original
even-parity data set leaving

35378.325, 5.5, 1.366, —1.041

as the only 5/76d7p +5/%6d level in the training set. We
note that the E, J, g, and Ag values of this level are very
similar to those of the misclassified level at 35456.915.
Since the network acts as a nearest-neighbor classifier, a

TABLE 1. Training percentages of counterpropagation neur-
al networks for even- and odd-parity four feature energy levels
of Cm1l. Numbers in the table are the percentage of correct
predictions when levels of a data set are recalled through a
trained network. Numbers in parentheses are the number of
misclassified levels.

Even levels Odd levels

All  Training Test All  Training Test

levels set? set® levels set? set®

(74 (59 (15 (82 (65 (17
Method levels) levels) levels) levels) levels) levels)
Uniflow 100.0 96.6 80.0 97.5 100.0 76.4

0) (2) (3) 2) 0) 4)
Category 100.0 96.6 93.3 100.0 984 82.3
learning (0) (2) (1) (0) (1) (3)

*Training set denotes the subset of classified energy levels used
to train a network which is then used to predict configurations
of levels in the test set.

"Test set denotes the subset of classified energy levels which
were treated as unknowns and recalled through a network
trained with the training set.
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misclassification results. The above observations illus-
trate the importance of having more than one level be-
longing to a configuration in a training set. It is interest-
ing to note that the configuration of the 5f76d7p +5f36d
level which was removed from the training set (and there-
fore placed in the test set) was also incorrectly predicted.
In regards to the misclassified level at 35 556.240 we note
that its Ag is a borderline value between those expected
for 5f76d7p and 5f77s7p configurations (see Fig. 5 of
Ref. [7]). This by itself cannot explain the error since iso-
tope shifts overlap for the 5f76d7p, 5f%7s, and 5f77s7p
configurations and there are levels belonging to these
configurations which are classified correctly by the net-
work. Nonetheless, it may serve as a useful rationaliza-
tion.

B. Uniflow networks; even-parity levels

We next consider the performance of uniflow networks
on even-parity levels. From Table I we see that two lev-
els are misclassified in the training set. In fact, these two
levels,

35556.240, 3.5, 1.858, —0.743
5f76d7p

and
40966.185, 3.5, 1.778, —0.743
5f7s7p

both give the same ambiguous output (i.e., a definitive
category prediction cannot be made) of the type discussed
in Ref [1]. This is somewhat surprising since there are no
ambiguous classifications when all even-parity levels are
used to train a uniflow network. This would tend to rule
out improper data scaling as a cause of the ambiguity. In
order to investigate this we tried several scalings, all of
which were similar to but slightly different from (for ex-
ample, dividing g by 9 and 11) the scaling above. All
scalings gave the same results. We therefore conclude—
as mentioned at the end of Sec. I—that this is a manifes-
tation of PE’s in the competitive layer taking responsibili-
ty for two or more training inputs which belong to
different categories. We note in passing that the
35556.240 level was also misclassified by the category
learning network and that perhaps its Ag is playing a role
in this. In the test set the levels

35280.665, 2.5, 2.255, —0.762
5f76dTp classified as 5f%7s

and
35778.500, 3.5, 1.130, —1.106

5f76d7p +5f8%6d classified as 5f%6d

are misclassified and the level

41130.390, 4.5,
5f7s7p

1.70, —0.698

gives ambiguous output. The first of these may be ration-
alized by noting the large overlap in isotope-shift values
between the 5f76d7p and 5f%7s configurations [7]; see
the above discussion. The second level has been dis-
cussed above. The third level seems unremarkable, al-
though we note that its E, J, g, and A values are quite
similar to the two ambiguous levels at 35556.240 and
40966.185.

C. Category-learning networks; odd-parity levels
The training-set level
28079.390, 5.5, 1.32, —0.757,
5f76d7s classified as 5/%7p ,

is misclassified. The isotope-shift value of —0.757, how-
ever, does not fall in the range of Ajg values expected for
the 5f76d7s configuration [7] but does fall in the range
expected for 5f%7p. It therefore appears that the net-
work has learned the correct isotope-shift “rule” in clas-
sifying the level as 5f%7p. In the test set the category-
learning network misclassifies three levels:

30550.820, 1.5, 1.045, —0.955
5£76d? classified as 5f%7p

and
33802.330, 4.5, 1.38, —0.925
53%7p classified as 5f76d?

and
37528.470, 0.5, —0.28, —0.854

5f%p classified as 5/76d? .

The last two of these were misclassified by the uniflow
network, and the isotope shifts of all three are in a range
of overlap for the 5f76d? and 5f%7p configurations.

D. Uniflow networks; odd-parity levels

The levels
24078.900, 5.5, 1.72, —0.978
5£76d*

and
27065.085, 5.5, 1.51, —0.972
5F%p

give rise to ambiguous output from a uniflow network
trained with all classified levels. Both levels are also in
the training set where they do not give rise to ambiguous
outputs. As in the even-parity case we tried several scal-
ings, all of which gave the same results. We therefore
conclude that competitive layer PE’s are behaving
differently in the two networks; apparently in the all-level
network some are taking responsibility for inputs belong-
ing to different categories. The training-set uniflow net-
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work also results in ambiguous output for the levels

31947.675, 3.5, 1.478, —0.859
5f%p

and
35291.395, 3.5, 1.382, —0.774

5£%p

of the test set. The other two test-set levels which are
misclassified are

33802.330, 4.5, 1.38, —0.925
5f%p classified as 5f76d?

and
37528.470, 0.5, —0.28, —0.854

5f%p classified as 5f76d2 .

Both of these levels belonging to configurations for which
there is a large overlap of isotope-shift values [7]. In re-
gards to the second of these levels we note that there is
only one level in the training set which has a negative g
value and that it belongs to the 5f76d? configuration.

E. Configuration predictions of unclassified levels

Finally, we turn to the classification of unknown Cm 11
energy levels. The classifications were obtained by recal-
ling unknown levels through networks which were
trained on all classified levels of a given parity. The com-
plete list of assignments can be obtained from the author
on request—here we summarize the results. With the ex-
ception of six odd-parity levels, the uniflow and
category-learning networks give the same predictions.
Each of these six levels was classified as 5f76d7s by the

uniflow network and as 5f%7p by the category learning
network. Of these six levels those at 34023.550,
39 466.380, 40285.940, and 41 134.885 all have isotope
shifts consistent with the 5f76d7s configuration. The
level at 35397.720 has a Ajg consistent with the 5f37p
configuration, while the level at 38 472.695 has a A in
between the ranges expected for the two configurations.

There is no angular-momentum coupling information
(i.e., L, S, or J) given for any of the unknowns [7] and
therefore such information cannot be used to check the
configuration predictions for consistency. All predicted
configurations of even-parity unknowns are consistent
with Table IV of Ref. [7] which gives the lowest energy
level of each configuration. For example, the unknown at
36 695.555, which is predicted as 5f8%6d, is higher in en-
ergy than the 17 150.790 value given for the lowest level
of the 5£%d configuration. The odd-parity unknown at
26525.110 is lower in energy than the 27 065.085 value
given for the lowest level of the 5/ %7p configuration. It is
likely that this level has been misclassified since its Ayg is
consistent with both the 5f%p and 5f76d?
configurations. Finally, all of the odd-parity
configurations are subject to the following caveat. Levels
belonging to all configurations expected below 50000
have been identified with the exception of the odd-parity
5f° configuration which is predicted to start around
26000 [7]. Since all of the odd-parity unknowns in our
study lie between 26 525.11 and 48 001.690 any of them
could belong to the 5f° configuration.

In order to obtain quantitative estimates of confidence
levels for the predicted configurations of the unclassified
levels, we performed the following set of computer exper-
iments [9]. For the even-parity levels nine disjoint test
sets comprised of eight randomly chosen energy levels
were formed. The 66 energy levels remaining after each
test-set selection served as the corresponding training set.
In this way all but two energy levels in the total set of 74
served as a test-set level for one of the computer experi-

TABLE II. Values of performance measures averaged over test and training sets for Cm1I even-
parity energy levels. The first number of each pair is the value for the uniflow network and the second

is that for the category learning network.

Category Sensitivity Specificity PPV FAR
(a) Test sets
f4s 0.95, 1.00 0.98, 1.00 1.00, 1.00 0.02, 0.00
fted 1.00, 0.95 1.00, 0.98 0.95, 0.94 0.00, 0.02
fsTp 0.83, 0.83 0.97, 0.97 0.91, 0.91 0.03, 0.03
fl6dp 0.72, 0.84 0.91, 0.94 0.81, 0.80 0.09, 0.06
f'6d7p+ftd 0.00, 0.00 0.97, 0.97 0.00, 0.00 0.03, 0.03
all levels 0.86, 0.89 0.99, 0.97 0.91, 0.90 0.01, 0.03
(b) Training sets

f¥s 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
fied 1.00, 0.99 1.00, 0.998 1.00, 1.00 0.00, 0.002
f7s7p 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
f6dp 1.00, 1.00 1.00, 1.00 1.00, 0.99 0.00, 0.00
f6d7p+f%d 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
all levels 1.00, 0.998 1.00, 0.9996 1.00, 0.998 0.00, 0.0004
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TABLE III. Values of performance measures averaged over test and training sets for Cm 11 odd-
parity energy levels. The first number of each pair is the value for the uniflow network and the second

is that for the category-learning network.

Category Sensitivity Specificity PPV FAR
(a) Test sets
f77s? 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
f6d7s 0.96, 0.96 0.94, 0.94 0.93, 0.96 0.06, 0.06
f'6d? 0.71, 0.71 0.92, 0.92 0.71, 0.71 0.08, 0.08
fs7p 0.44, 0.56 0.87, 0.89 0.70, 0.60 0.13, 0.11
all levels 0.80, 0.82 0.94, 0.94 0.86, 0.84 0.06, 0.06
(b) Training sets

£17s? 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
f76d7s 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
f76d? 0.94, 1.00 0.98, 1.00 1.00, 1.00 0.02, 0.00
f%p 0.94, 1.00 0.99, 1.00 1.00, 1.00 0.01, 0.00
all levels 0.98, 1.00 0.99, 1.00 1.00, 1.00 0.01, 0.00

ments. A given network was trained and tested on each
training-testing set pair. The average performance over
the nine test sets provides a measure of the probability of
correct classification [10]. For the odd-parity levels nine
disjoint test sets comprised of nine randomly chosen ener-
gy levels were formed. In this way all but one energy lev-
el in the total set of 82 served as a test-set level.

In addition to calculating the probability of correct
classification for each configuration we have calculated
several other performance measures which we now briefly
describe [11]. For a given category, four possible alterna-
tives exist for the predicted configuration of a level. The
first alternative is a true positive prediction (Prp), in
which the network correctly predicts that the level be-
longs to a given category. The second is a false positive
prediction (Pgp), in which the network incorrectly pre-
dicts that the level belongs to the given category. The
third possibility is a false negative prediction (Pgy), in
which the network incorrectly predicts that the level be-
longs to a different category. The fourth possibility is a
true negative prediction (Pyy), in which the network
correctly predicts that the level belongs to a different
category. The sensitivity (also called the true positive ra-
tio or the recall) is given by Prp /(Pyp+ Pgy); when mul-
tiplied by 100 it is the percent of correct predictions. The
specificity is given by Py /(Ppy + Pgy) and is also called
the true negative ratio. The positive predictive value
(PPV), or precision, is Pyp/(Pyp+Pgp). Finally, the
false alarm rate (FAR), or false positive ratio is
(1—S)=Pgp/(Pgp+ Pyy), where S is the specificity.

The sensitivity, specificity, PPV, and FAR were calcu-
lated for each configuration of each network and then
averaged over the networks. The results are presented in
Tables II and III and give estimates of the reliability of
the predicted configurations of the unclassified energy
levels. With the exception of the even-parity
5f76d7p +51%6d configuration and the odd-parity 5/%7p
configuration, the test-set sensitivities are all 0.71 or
greater and the corresponding PPV’s are generally larger
than the sensitivities. While the sensitivities of the two
exceptional configurations are quite low, their FAR’s are

very small. This indicates that although relatively few of
the unclassified levels which actually belong to the
5f76d7p +5f%d and S5f%7p configurations will be
classified correctly, an even fewer number of unclassified
levels which do not actually belong to these
configurations will be predicted as belonging to them.
None of the unclassified even-parity levels have been pre-
dicted to belong to the 5f76d7p +5f%6d configuration.
Sixty-eight unclassified odd-parity levels have been pre-
dicted to belong to the 5f%7p configuration. Finally, it is
encouraging that the largest FAR for all Cmil
configurations is only 0.13.

III. APPLICATION TO Pu1 ENERGY LEVELS

In this section we discuss the application of uniflow
and category learning networks to the classification of
Pul energy levels. Data are taken from Blaise, Fred, and
Gutmacher [12]. Considering only four feature levels
leaves us with an odd-parity data set consisting of 288
levels representing six configurations (5f°6d7s2,
5£36d*7s, 5f%7s7p, 5f77s, 5£%dTp, and 5f°6d7s8s) and
an even-parity data set consisting of 221 levels represent-
ing eight configurations (5f%7s%, 5f%d7s, 5f°7s*7p,
5£°6d7sTp, 5f%1s8s, 5£°6d?, 5f%d*7s?, and 5f°6d*7p).
The networks constructed for analyzing the odd-parity
data set consisted of an input layer, a normalizing layer, a
competitive layer, and an output layer having four, five,
288, and six PE’s, respectively. Similarly, networks for
the even-parity data have layers consisting of four, five,
221, and eight PE’s. The networks were run on the same
computer as were the Cm II networks, utilizing the same
software package, number of passes through data sets,
and data scaling.

The training results of various networks are summa-
rized in Table IV. The formation and use of training and
test sets is completely analogous to that described in Sec.
II for Cm11. Actual numbers of PE’s in competitive lay-
ers can be obtained from the parenthetical entries in
Table IV. We now make some observations which ra-
tionalize some of the mistakes reflected in Table IV.
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TABLE IV. Training percentages of counterpropagation
neural networks for even- and odd-parity four feature energy
levels of Pul. Numbers in the table are the percentage of
correct predictions when levels of a data set are recalled
through a trained network. Numbers in parentheses are the
number of misclassified levels.

Even levels Odd levels

All  Training Test All  Training Test

levels set? set® levels set? set®

(221 (176 45 (288 (230 (58
Method levels) levels) levels) levels) levels) levels)
Uniflow 98.6 98.3 73.3 98.6 98.2 77.6

(3) (3) (12) (4) 4) (13)
Category 90.5 914 777 91.6  92.6 75.8
learning (21) (15) (10) (24) (17) (14)

*Training set denotes the subset of classified energy levels used
to train a network which is then used to predict configurations
of levels in the test set.

"Test set denotes the subset of classified energy levels which
were treated as unknowns and recalled through a network
trained with the training set.

A. Category-learning networks; even-parity levels

The category-learning network misclassifies 21 levels in
the even-parity all-level data set. These levels with their
J, g and Ag values, and actual and predicted
configurations are given in Table V. The first observation
concerning these levels is that they are at relatively high
energy; the lowest is at 25 655.090. As energy increases,
configuration mixing increases, g values tend toward uni-
ty, and Ag values tend toward equality [12]. Thus one
would expect higher energy levels to be generally more
difficult to classify. In regards to the levels in part (a) of
the table, we note that levels belonging to the 5f%7s2
configuration, if pure, should have a Ay of 480, while
those belonging to the 5f°6d7s7p configuration, if pure,
should have a Ag of 430 [12]. These two Ag values are
more similar than for any other pair of even-parity
configurations. Thus it may not be surprising that the
network has difficulty discriminating between these two
configurations. The same two configurations are involved
in part (b) of the table. For this level the Ag is closer to
that of the predicted configuration. As regards part (c) of
the table, we note that pure 5 >7s%7p levels should have a
As of 725 and that pure 5/°7s? levels should have a Ag
of 480 [12]. All four levels have Ag values closer to the
value of 480 of the predicted 5/ %7s? configuration than to
725. A similar argument holds for the first level of part
(d) and for part (g) of the table; these levels are denoted
with a footnote indicator in Table V and in all subsequent
tables. (See the above discussion for Ag’s of the relevant
configurations; the Ag of pure 5f%6d7s levels is 250 [12].)
Unfortunately, this isotope-shift rationalization argument

does not hold for the three levels in parts (e) and (f) of the
table. (The Arg of pure 5f%7s8s levels is 360 [12].) Using
Ag values based on pure configurations may not be the
most enlightening way of rationalizing our results since
there is a large amount of configuration mixing in many
of the PuI levels. Although we will continue to point out
when this rationalization is valid, we will also consider an
argument based on the observed ranges of Ag values of
the various configurations of Pul. Using data from Ref.
[12], we have compiled the experimentally observed
ranges of Ag values which we give here for future refer-
ence (numbers in parentheses are the pure-configuration
Ajg values given in Ref. [12]):

TABLE V. Even-parity levels of Pul misclassified by a
category learning network trained with all even-parity levels

E(cm™) J g Ai(1073cm ™)
(a) 5f°6d7s7p classified as 5f°%7s?
28295.380%" 4 1.155 475
30083.102° 5 1.15 446
30461.399*° 5 0.99 461
30 544.187*° 3 0.96 502
31628.619%° 6 1.11 509
31732.582° 5 1.049 432
32404.416%° 5 1.005 499
32440.827° 6 1.12 420
34045.560*° 7 1.17 503
35323.031° 6 1.09 439
(b) 5f%7s? classified as 5f°6d7s7p
33884.230% 7 1.105 340
(¢) 5f%7s*7p classified as 5/°%7s?
30113.280*° 6 1.05 541
31413.230*° 3 0.742 526
31881.871%° 7 1.12 511
36128.425%" 7 1.06 547

(d) 5f%7s*7p classified as 5f°6d7s7p

31810.821*% 2 0.865 533

36230.135 9 1.255 580
(e) 5/°6d7s classified as 5f°%7s?

25 655.090° 4 1.165 366

30016.377 2 1.14 333

() 5/°6d7s7p classified as 5f°7s8s
33180.043° 2 1.79 445

(g) 5f°%d7s classified as 5f°6d7s7p
25979.424° 1 1.26 384

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
*Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of Ajg values within
configurations) discussed in the text is valid.
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Even parity

5£67s? 340-566 (480)
5/%d7s 237-384 (250)
5F37s%7p 507-698 (725)
5f°6d7s7sp 414-546 (430)
5f%7s8s 333-446 (360)
5£%6d? 115-349 (100)
5f%d?7s? 535 (840)
5£%6d*p 390-403 (160)
Odd parity
5f°6d7s? 420-683 (665)
51%6d?7s 370-546 (410)
5f77s 273 (187)
5f%d7p 293-383 (100)
5f%6d7s 503 (500)

There is only one observed classified level for each of the
5/£%6d*7s?, 5f77s, and 5f°6d7s configurations and hence,
no range of Ag values can be given for them. Using the
above ranges, we see that for all but four levels in Table V
(33 884.230, 36230.135, 30016.377, and 25979.424), the
A is consistent with the observed range of values for the
predicted configuration. (Levels for which this is the case
are denoted by a ® in this and all subsequent tables.) We
thus have a situation very similar to that which occurred
for Cm1I1. It is perhaps not surprising that the network
cannot discriminate between the proper configurations of
these levels.

Table VI shows the even-parity training-set levels that
were misclassified by the category-learning network.
Levels marked with an asterisk have already been dis-
cussed in relation to Table V. This leaves parts (b), (d),
(), (h), and (j) remaining to be discussed. The isotope-
shift argument based on pure configurations fails for all
six of these levels. Unfortunately, the isotope shifts of
only two of these levels are consistent with the observed
ranges of Ag values for the predicted configurations.
With regards to parts (h) and (i) of the table, we note that
the energy values of these two levels are inconsistent with
the lowest observed energies of their predicted
configurations. That is, the levels at 31471.542 and
24016.378 are both lower in energy than the energy
(31572 [12)) of the lowest level of the predicted 5f%7s8s
configuration; the network’s prediction is nonsensical.

Table VII shows the even-parity test-set levels that
were misclassified by the category learning network.
Levels marked with an asterisk have already been dis-
cussed in relation to Table V. We make the following ob-
servations concerning the various parts of the table.

(a) The Ag is consistent with the actual configuration,
not the predicted configuration. There is one 5f 6752 level
in the training set (at 9 772.532) with J =g =0. Howev-
er, there are two 5/6d7s7p levels in the training set (at
28 763.085 and 30 649.882) with J =g =0. Since these
two levels are much closer in energy to that of the level in
question, a misclassification results.

(c) The Afg of 533 is much closer to that expected for
the predicted 57 °6d7s7p configuration.

(d) The Ag of 253 is almost that expected for the actual
configuration; neither of the Ag rationalizations (based
on pure configurations or on observed ranges) invoked
above works. In addition, the energy of this level is lower
than the energy of the lowest level of the predicted
configuration [12]; this is a nonsensical result.

(e) See paragraph (d).

(f) See paragraph (a).

(g) The A is consistent with the actual configuration,
not the predicted configuration. There are no 5f°7s8s
levels in the training set with J =g =0. There is one
5/%d? level in the training set (at 34006.573) with
J =g =0; this level has a Ag close to the Aig of the level

TABLE VI. Even-parity training-set levels of Pul
misclassified by a category-learning network. Levels marked
with an asterisk are found in Table V; those with a dagger are
also found in Table V, but with a different predicted
configuration; and levels marked with a double dagger are lower
in energy than the lowest level of the predicted configuration.

E(cm™!) J g A (1073 cm™Y)
(a) 5/°6d7s7p classified as 5f°%7s?
30083.102%* 5 1.15 446
31628.619%>* 6 1.11 509
31732.582>* 5 1.049 432
34 045.560%>* 7 1.17 503

(b) 5f%7s? classified as 5f6d7s7p

22 339.429° 2 1.049 481
(¢) 5°7s¥Tp classified as 5f°7s2

31881.871>%* 7 1.12 511
(d) 5£7s? classified as 5/37s%7p

24 753.684 4 0.975 481

24921.671° 5 1.034 555

(e) 5f°7s*Tp classified as 5f°6d7s7p
36 128.425 " 7 1.06 547
36230.135* 9 1.255 580

(f) 5f°6d7s7p classified as 5f°7s*7p
29976.039 4 1.07 489

(8) 5/%6d7s classified as 5f°7s?
30016.377* 2 1.14 333

(h) 5£°6d7s7p classified as 5f%7s8s
31471.542¢ 1 2.188 546

(i) 5/%d7s classified as 5f°6d7s7p
25979.424%* 1 1.26 384

() 5£%d7s classified as 5f%7s8s
24016.378* 5 1.56 274

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
®Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of A values within
configurations) discussed in the text is valid.



44 CLASSIFICATION OF Cm11 AND Puir ENERGY LEVELS... 133

in question and a misclassification results.

(i) The Ag values of both levels are consistent with the
actual configuration, not the predicted configuration. In
regards to the level at 17 336.413, we note that there are
no 5f%d7s levels in the training set with J =g =0. As
noted in paragraph (g), there is one 5/%d? level in the
training set with J =g =0 and a misclassification results.
Both levels are lower in energy than the lowest level of
the predicted configuration [12].

B. Uniflow networks; even-parity levels

We turn next to the performance of uniflow networks
with even-parity levels. In the all-level network three lev-
els give ambiguous output:

19337.431, 1, 2.41, 256
5/%d7s

and

TABLE VII. Even-parity test-set levels of PuI misclassified
by a category-learning network. Levels marked with an asterisk
are found in Table V; those with a dagger are found in Table V,
but with a different predicted configuration; and levels marked
with a double dagger are lower in energy than the lowest level
of the predicted configuration.

31471.542, 1, 2.188, 546
5f%d7s7p

and
31572.610, 1, 2.403, 446
5f%7s8s .

These three levels also give rise to ambiguous output
from a uniflow network trained with the training set.
The distinguishing features of these levels are their rela-
tively large g values and their common J value of 1. As
with Cm1I, we tried several different scalings without
success. We note, however, that all three levels are
classified correctly with the category-learning network.
Table VIII shows the even-parity test-set levels that
were misclassified by the uniflow network. Levels
marked with an asterisk give rise to predicted
configurations identical to those obtained from the corre-
sponding category-learning network. The level at

TABLE VIII. Even-parity test-set levels of PuI misclassified
by a uniflow network. Levels marked with an asterisk are found
in Table VII; those with a dagger are also found in Table VII,
but with a different predicted configuration; and levels with a
double dagger are lower in energy than the lowest level of the
predicted configuration.

E (cm™Y J g A (1073 em™) E (cm™") J g A (1073 ecm™h)
(a) 5f%7s? classified as 5f°6d7s7p (a) 5/%7s? classified as 5f°6d7s7p
32324.169° 0 0.000 480 25707.348° 2 0.72 516
27 805.163° 5 1.024 513
(b) 5f37s*7p classified as 5f%7s2 32324.169"* 0 0.000 480
30113.280%%* 6 1.05 541 33884.230%" 7 1.105 340

(¢) 5f31s*7p classified as 5/°6d7s7p
23 806.381>° 1 0.094 533

(d) 5£%6d7s classified as 5f°6d7s7p
14 341,947} 2 0.852 253

(e) 5f%d7s classified as 5f°7s8s
26 476.068% 4 1.605 260

() 5f%7s8s classified as 5f°6d7s7p
35032.090 0 0.000 391

(g) 5f°%7s8s classified as 5/°6d>
33 304.400° 0 0.000 344

(h) 5f%7s? classified as 5£%6d7s

33884.230%> T 7 1.105 340
(i) 5f°%6d7s classified as 5f°%d?

17 336.413>1 0 0.000 257

25293.751%% 3 0.965 278

(b) 5/%7s*7p classified as 5f°%7s?
30113.280%%* 6 1.05 541

(¢) 5f°7s%7p classified as 5/°6d7s7p
23 806.381>%* 1 0.094 533

(d) 5£%d7s classified as 5f°6d7s7p
14341.947%% 2 0.852 253
(e) 5f°%7s8s classified as 5/°6d7s7p
35032.090* 0 0.000 391

() 5f°7s8s classified as 5f°6d’
33 304.400>* 0 0.000 344

(g) 51°%d7s classified as 5f°6d*
17336.413% %1 0 0.000 257
28 793.800% 3 1.083 366

(h) 5f°6d7s7p classified as 5f%7s?
26205.589*° 3 0.701 462

?Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
*Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of Ag values within
configurations) discussed in the text is valid.

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
*Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of Ag values within
configurations) discussed in the text is valid.
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33884.230 (marked with a dagger) is classified as
5f36d7s7p by the uniflow network but as 51°6d 7s by the
category-learning network. There are four levels
misclassified by the uniflow network that were classified
correctly by the category-learning network. These levels
are noted by the absence of an asterisk. Among these lev-
els the Ay rationalization argument based on pure
configurations holds for the level at 26 205.589 but fails
for those at 25 707.348, 27 805.163, and 28 793.800. The
Ajg rationalization based on observed ranges works
better, being valid for the first three of these levels, but
failing for the one at 28793.800. The levels at
14341.947, 17336.413, and 28793.800 are all incon-
sistent with the lowest levels of their predicted
configurations [12].

TABLE IX. Odd-parity levels of Pul misclassified by a
category-learning network trained with all odd-parity levels.
Levels marked with a double dagger are lower in energy than
the lowest level of the predicted configuration.

E (cm™) J g A (1073 cm™)
(a) 5°6d7s? classified as 5f°6d*7s
19426.512 3 1.435 550
24 437.792 4 1.50 584
26575.338° 7 1.15 538
26 844.163%° 4 1.020 528
28385.761»° 6 1.025 514
28 890.990*° 7 1.272 470

(b) 5£°6d7s? classified as 5f°%7s7p

24 644.996 3 1.195 552
28 749.920° 2 1.48 504
30932.959*° 6 1.34 420
(c) 5f°6d?7s classified as 5/%7s7p
22518.312° 2 1.35 419
25113.744° 6 1.302 438
25121.896° 1 1.444 428
25 397.206° 1 0.776 453
25 660.792° 1 1.146 452
26317.729° 4 1.18 405
27 651.193% 2 1.570 430
27 909.524° 4 1.27 427
28021.637° 5 1.40 407
(d) 5f%7s7p classified as 5f°6d>7s
27 334.422%" 7 1.24 417
28 595.088%° 6 1.20 380
31 130.605%° 1 2.342 397
31151.870 2 1.632 350
(e) 5f%7s7p classified as 5f°6d7p
30319.724>% 3 1.010 371
31233.379¢ 4 1.09 399

S

C. Category-learning networks; odd-parity levels

Table IX shows the 24 odd-parity levels that are
misclassified by the category-learning network trained
with all odd-parity levels. The Ag rationalization argu-
ment based on pure configurations which is valid for
many even-parity levels unfortunately does not work as
often for the odd-parity levels (the argument holds for
seven of the 24 levels). However, the argument based on
observed ranges is valid for 19 levels. The levels at
30319.724 and 31233.379 are both lower in energy than
the lowest level of their predicted 5f%d7p configuration
[12].

Table X shows the odd-parity training-set levels that
are misclassified by the category-learning network. The
Ay rationalization argument based on  pure
configurations is valid for only three of the 17 levels,
while the argument based on observed ranges is valid for
13 of the levels. There are not as many different types of
misclassifications in the training set as in the all-level set.
There are no 5f°6d7s? levels classified as 5f%7s7p and
there are no 5f%7s7p levels classified as 5£%d7p. The
two 5/°6d7s* levels at 24 644.996 and 28 749.920 which

TABLE X. Odd-parity training-set levels of Pu I misclassified
by a category-learning network. Levels marked with an asterisk
are found in Table IX; those with a dagger are also found in
Table IX, but with a different predicted configuration; and lev-
els marked with a double dagger are lower in energy than the
lowest level of the predicted configuration.

E (cm™ ) J g A (1073 ecm™))
(a) 5°6d7s? classified as 5/°6d27s
19426.512* 3 1.435 550
24 437.792* 4 1.50 584
24 644.996* 1 3 1.195 552
26575.448 % 7 1.15 538
28749.920%0 %1 2 1.48 504

(b) 5%6d*7s classified as 5f°%7s7p

22518.312>* 2 1.35 419
23281.721° 5 1.235 452
25 100.598° 2 1.43 408
25397.206>* 1 0.776 453
25 660.792%* 1 1.146 452
25959.849° 1 1.037 441
26149.538 4 1.36 424
26317.729>* 4 1.18 405
27651.193%* 2 1.57 430

(c) 5f%7s7p classified as 5/°6d%7s

22429.984*° 4 1.279 433
23274.858*° 4 1.604 418
25074.585 4 1.507 324

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
®Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of A;g values within
configurations) discussed in the text is valid.

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
"Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of A values within
configurations) discussed in the text is valid.
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are classified as 5/%7s7p in the all-level case are classified
as 5/°6d?7s in the training-set case. The reason for this
is not readily apparent. The 5f°6d 7s? level at 30932.959
is not present in the training set and is a member of the
test set. The two 5f%7s7p levels at 30319.724 and
31233.379 are classified correctly in the training set.
Table XI shows the odd-parity test-set levels that are
misclassified by the category-learning network. As in the
even-parity test-set case, there are very few misclassified
levels which are also misclassified in the all-level case;
only three such levels exist. The Ag rationalization argu-
ment based on pure configurations works considerably
better here than for previous odd-parity cases, being valid
for one-half of the levels. The rationalization based on
observed ranges holds for all but two levels. As with the
even-parity case it is possible to find arguments which ra-
tionalize some, although not all, of the misclassifications.
For example, if we consider the level at 28 385.761, we
note that in the training set the highest energy level with
J =6 belonging to the actual 5f°6d7s? configuration is at
26443.391 (with Aig=617 and g =1.045), while there is
a J =6 level of the predicted 5f°6d*7s configuration at
28036.676 (A;g=47S, g =1.216). Taken together, it ap-
pears that the four values E, J, g, and Ag for the
28385.761 level are more similar to those of the
26 443.391 level—hence the misclassification. An entire-
ly analogous argument holds for the level at 30 932.959.
The situation for the two other J =6 levels in the table is

TABLE XI. Odd-parity test-set levels of PuI misclassified by
a category-learning network. Levels marked with an asterisk
are found in Table IX.

E (cm™) J g A (1073 cm™))
(a) 5%6d7s? classified as 5f°6d*7s
24 012.505 6 1.248 574
25839.917° 6 1.25 537
28385.761%>* 6 1.025 514
(b) 5°6d7s? classified as 5f%7s7p
19281.917 2 1.822 629
30932.959>* 6 1.34 420
(c) 5£°6d*7s classified as 5f%7s7p
20769.512° 2 1.07 370
24 188.639° 1 0.667 401
27 869.060° 7 1.25 421
28021.637%* 5 1.40 407

(d) 5f%7s7p classified as 5f°6d?7s

17045.776*° 1 1.474 385
18 578.669*° 1 1.932 402
27228.191»° 1 1.767 382
28906.355%° 3 1.23 532
29295.313*° 4 1.27 480

not as clear-cut and no definitive rationalization can be
made for these levels. In regards to the remaining levels
in the table, it is sometimes possible to find training-set
levels belonging to the predicted configuration that ap-
pear to be similar to the level in question. However,
finding the most similar level by inspection is difficult at
best. We will return to this point in the conclusion of
this paper.

D. Uniflow networks; odd-parity levels

In the all-level network four levels give ambiguous out-
put: 17 500.977, 1, 2.258, 523

5f°%6d7s?

and
21307.390, 1, 2.360, 405
5£%6d*s

and
30929.516, 1, 2.26, 391
5f%7s7p

TABLE XII. Odd-parity test-set levels of Pul misclassified
by a uniflow network. Levels marked with an asterisk are those
found in Table XI; those with a dagger are found in Table XI,
but with a different predicted configuration.

E (cm™) J g A (1073 cm™)

(a) 5£°6d7s? classified as 5f°6d%7s

25839.917%%* 6 1.25 537
(b) 5°6d7s? classified as 5f°7s7p

19281.917* 2 1.822 629

30932.959%%* 6 1.34 420
(c) 5f°6d*7s classified as 5f%7s7p

16 532.104° 3 0.3 450
(d) 5/°6d?7s classified as 5f%7s7p

20769.512>* 2 1.07 370

24 188.639%* 1 0.667 401

27 869.060 * 7 1.25 421

28021.637"* 5 1.40 407

(e) 5f%7s7p classified as 5f°6d7s>
28906.355%0 3 1.23 532

(f) 5£%7s7p classified as 5f°6d*7s

17045.776*>* 1 1.474 385
21031.258 2 1.455 342
27228.191>%* 1 1.767 382
29295.313%5* 4 1.27 480

“Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
*Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges of A values within
configurations) discussed in the text is valid.

Denotes a level for which the isotope-shift rationalization
(based on pure configurations) discussed in the text is valid.
"Denotes a level for which the isotope-shift rationalization
(based on experimentally observed ranges Ajs values within
configurations) discussed in the text is valid.
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and

31130.605, 1, 2.342, 397

5(%s7p .

These four levels also give rise to ambiguous output from
a uniflow network trained with the training set. As in the
even-parity case the distinguishing features of these levels
are their relatively large g values and their common J
value of 1. We again tried several different scalings
without success. It is interesting to note that the level

23766.136, 1, 2.162, 310
5£%7s7p .

which also has J =1 and a relatively large g value, is
correctly classified. In addition, each of the four levels
with the exception of that at 31130.605 is correctly
classified by the category-learning network.

Table XII shows the odd-parity test-set levels that were
misclassified by the uniflow network. Levels marked with
an asterisk give rise to predicted configurations identical
to those obtained from the corresponding category-
learning network. The level at 28 906.355 (marked with a
dagger) is classified as 5£°6d7s? by the uniflow network
but as 5/°6d*7s by the category-learning network. There
are two levels misclassified by the uniflow network which
are classified correctly by the category-learning network.
These levels are noted by the absence of an asterisk. The
isotope shifts of six of the 13 levels are consistent with the
pure level isotope shifts of the predicted configurations.
The Ag argument based on observed ranges is valid for
all but two levels.

E. Configuration predictions of unclassified levels

Finally, we turn to the classification of unknown Pul
energy levels. The classifications are obtained in a
manner completely analogous to that for CmIl. The
complete list of assignments can be obtained from the
author—here we summarize the results. Unlike the
Cm1II unknowns where category learning and uniflow
networks gave the same predictions for all but six levels,
there is considerably more disagreement between the pre-
dictions of both networks for Pul unknowns; 97 of the
255 even-parity unknowns gave rise to two different pre-
dicted configurations while 56 of the 230 odd-parity un-
knowns did so. There are nine even-parity unknowns
whose Ag is inconsistent with the observed range of both
predicted configurations, 51 whose Ag is consistent with
only one of the predicted configurations, and 37 whose
A is consistent with both of the predicted
configurations. There are 28 odd-parity unknowns whose
Ag is consistent with the observed range of Ag values of
only one of the predicted configurations and 27 un-
knowns whose Ag value is consistent with both predicted
configurations. In light of the above observations con-
cerning the training results of networks where we noted
that misclassifications frequently arise when the A value
of a level is consistent with the observed ranges of two
configurations, we may legitimately cast doubt on the va-

lidity of the classifications of the 37 even-parity and 27
odd-parity unknowns which satisfy this condition. Of
course, an unknown which gives rise to the same predict-
ed configuration from both the category-learning and
uniflow networks is not necessarily a level for which a
highly certain prediction has been made. This may be
seen by comparing Table VII with Table VII (and Table
XI with Table XII). From these two tables we see that of
the 12 levels in the test set which were misclassified by a
uniflow network, seven of them were also misclassified by
the category-learning network, the same configuration
being predicted by each type of network.

As with Cm II there is no angular-momentum coupling
information given for any of the unknowns. Therefore
such information cannot be used to check the predicted
configurations for consistency. Not all of the predicted
configurations are consistent with Table III of Ref. [12]
which gives the lowest energy of each configuration. The
lowest levels of the even-parity configurations 5f°%6d2,
5%d?*7s?, and 5f°6d*7p lie at 31710, 36050, and
37 415, respectively, while the lowest level of the odd-
parity 5f%6d7s configuration lies at 33070 [12]. Levels
predicted as one of these configurations which lie below
the corresponding lowest levels are therefore incorrectly
classified. In many of the cases where two configurations
are predicted for a level these considerations resolve the
ambiguity. (For example, the even-parity level at
32869.165 would be assigned to the 5f°6d7s7p
configuration.) Unfortunately, in some cases we are left
with no predicted configuration—for example, the even-
parity level at 26 449.501.

In order to obtain quantitative estimates of confidence
levels for the predicted configurations of the unclassified
levels, we performed a set of experiments analogous to
those done for CmI1. For the even-parity levels 10 dis-
joint test sets comprised of 22 randomly chosen energy
levels were formed. The 199 energy levels remaining
after each test-set selection served as the corresponding
training set. In this way all but one energy level in the to-
tal set of 221 served as a test-set level for one of the ex-
periments. For the odd-parity levels nine disjoint test
sets comprised of 32 randomly chosen energy levels were
formed. In this way each of the energy levels in the total
set of 288 served as a test-set level.

The sensitivity, specificity, PPV, and FAR were calcu-
lated for each configuration and then averaged over the
networks. The results are presented in Tables XIIT and
XIV. There is a large variation in test-set sensitivity
values among configurations, ranging from 0.00 to 0.92.
The even-parity configurations 5f°6d? and 5f%6d>7s?
and the odd-parity configurations 5f77s and 5f°6d7s8s
have sensitivities of 0.00, indicating that counterpropaga-
tion neural networks are not effective in correctly classi-
fying levels belonging to these configurations. It is, how-
ever, somewhat encouraging that the FAR values of these
configurations—as for all other configurations—are very
small. None of the odd-parity unclassified levels are pre-
dicted as belonging to the 5f77s or 5f°6d7s8s
configurations. Fifteen even-parity unclassified levels are
predicted as belonging to the 5f°6d? configuration by
uniflow networks; two of these levels have energies lower
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TABLE XIII. Values of performance measures averaged over test and training sets for Pul even-
parity energy levels. The first number of each pair is the value for the unifiow networks and the second

is that for the category-learning networks.

Category Sensitivity Specificity PPV FAR
(a) Test sets

f87s? 0.38, 0.53 0.89, 0.90 0.45, 0.35 0.11, 0.10
f%6d7s 0.81, 0.75 0.94, 0.92 0.94, 0.90 0.06, 0.08
f31s¥p 0.76, 0.63 0.93, 0.89 0.78, 0.76 0.07, 0.11
f°6d7s7p 0.65, 0.61 0.85, 0.87 0.57, 0.70 0.15, 0.13
f87s8s 0.60, 0.70 0.98, 0.99 0.55, 0.47 0.02, 0.01
f%6d? 0.00, 0.00 0.99, 0.99 0.00, 0.00 0.01, 0.01
ft6d*7s? 0.00, 0.00 0.99, 0.99 0.00, 0.00 0.01, 0.01
f%6d*7p 0.00, 1.00 0.99, 1.00 0.00, 1.00 0.01, 0.00
all levels 0.65, 0.64 0.85, 0.95 0.68, 0.64 0.05, 0.05

(b) Training sets

Fo7s? 1.00, 0.96 1.00, 0.99 1.00, 0.70 0.00, 0.01
Fo6d7s 0.98, 0.95 0.99, 0.98 0.99, 0.998 0.01, 0.02
F31s¥7p 0.999, 0.89 0.999, 0.97 1.00, 0.97 0.001, 0.03
£%6d7s7p 0.99, 0.81 0.99, 0.93 1.00, 0.93 0.01, 0.07
F67s8s 0.92, 1.00 0.996, 1.00 1.00, 0.88 0.003, 0.00
fo6d? 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
f*6d¥7s? 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
£%6d*7p 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.00, 0.00
all levels 0.99, 0.90 0.998, 0.99 0.999, 0.90 0.002, 0.01

than that of the lowest-lying 5f°%6d? level. These same 15
levels and an additional six are predicted as belonging to
this configuration by the category-learning network. The
category learning network also predicts one even-parity
unknown as belonging to the 5f%6d?7s? configuration.
This level, however, lies lower in energy than the lowest
5£%d?7s? level.

IV. CONCLUSION

In this paper we have investigated the application of
counterpropagation neural networks to the classification
of unknown energy levels of CmII and Pul. We have
found that uniflow networks may be trained at nearly

TABLE XIV. Values of performance measures averaged over test and training sets for Pu1 odd-

parity energy levels. The first number of each pair is
is that for the category-learning network.

the value for the uniflow network and the second

Category Sensitivity Specificity PPV FAR
(a) Test sets

£56d7s? 0.92, 0.85 0.94, 0.90 0.92, 0.91 0.06, 0.10
£36d7s 0.62, 0.62 0.86, 0.86 0.63, 0.59 0.14, 0.14
f%s7p 0.59, 0.67 0.84, 0.87 0.63, 0.63 0.16, 0.13
f7s 0.00, 0.00 0.997, 0.997 0.00, 0.00 0.003, 0.003
fod7p 0.57, 0.71 0.989, 0.99 0.67, 0.71 0.011, 0.01
f36d7s8s 0.00, 0.00 0.997, 0.997 0.00, 0.00 0.003, 0.003
all levels 0.73, 0.73 0.95, 0.95 0.76, 0.73 0.05, 0.05

(b) Training sets

F36d7s? 0.99, 0.92 0.99, 0.95
£36d%7s 0.97, 0.87 0.99, 0.95
Fo7s7p 0.96, 0.89 0.99, 0.96
s .00, 1. .00, 1.
£ 1.00, 1.00 1.00, 1.00
£%6d7p 1.00, 1.00 1.00, 1.00
£36d7s8s 1.00, 1.00 1.00, 1.00

all levels 0.97, 0.90 0.99, 0.98

1.00, 0.96 0.01, 0.05
1.00, 0.87 0.01, 0.05
0.997, 0.87 0.01, 0.04
1.00, 1.00 0.00, 0.00
1.00, 1.00 0.00, 0.00
1.00, 1.00 0.00, 0.00
0.999, 0.90 0.01, 0.02
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100%. Although category-learning networks are trained
at a somewhat lower percentage, both types of networks
give correct predictions for about 75% of test-set energy
levels. Usually the same test-set levels are misclassified
by each type of network although sometimes the predict-
ed configurations are different. The mistakes made by
uniflow networks in the learning phase of network opera-
tion are always exhibited as ambiguous outputs, indicat-
ing that one or more competitive layer PE’s are taking
responsibility for two or more energy levels belonging to
different configurations. This is not a significant problem
since the configurations of levels that give rise to ambigu-
ous outputs are almost always correctly learned by the
category-learning network. There is a slight tendency for
the networks to make nonsensical configuration predic-
tions; i.e., a level is sometimes assigned to a configuration
whose lowest energy level is higher than the level in ques-
tion. Category-learning networks exhibit this behavior
more often than uniflow networks.

The most widely applicable remark that can be made
concerning misclassified energy levels is that they almost
always have isotope shifts which fall in the experimental-
ly observed range of isotope shifts of the predicted
configuration; i.e., they have isotope shifts which are con-
sistent with the predicted configuration. This is probably
not too surprising since the isotope shift is highly depen-
dent on configuration. If, as in Pul, there is a relatively
large amount of configuration mixing, the isotope shifts
for different configurations will overlap and the utility of
the isotope shift in making configuration assignments will
decrease. In slightly different terms, when configuration
mixing occurs the network has greater difficulty learning
the more complex or ambiguous “rules” for assigning
configurations to energy levels. Despite these shortcom-
ings in the performance of counterpropagation networks,
we feel that they have performed admirably, particularly
in regards to the Pul system which exhibits an extremely
complex  electronic  structure. Hopefully  the
classifications of the unknowns in this paper can serve as
a useful starting point for further study using more con-
ventional quantum-mechanical calculations.

Our goal in the present work has been to obtain a
better qualitative understanding and characterization of

network performance; for example, we would like to be-
gin to be able to identify those cases or levels where a net-
work is likely to fail and those where it is likely to
succeed. Ultimately (in later work), we would like to be
able to relate input-output weights of the various PE’s
comprising the network to the performance of the net-
work. Hopefully the weights of the input and normaliz-
ing layer PE’s will give us insight into the relative impor-
tance of each of the four features in determining the
classification of a given level. Such information would be
somewhat analogous to that obtained from principal
component and other statistical analyses of other atomic
systems [2—4]. In these analyses it is possible to calculate
the relative importance of each feature in determining
classifications of levels. The “weights” so obtained are
averages over an entire data set; i.e., each feature has
only one weight and this weight is a measure of the im-
portance of the feature in determining the configurations
of all energy levels in a data set. It should be possible to
obtain feature weights (from input and normalizing layer
PE weights) from a neural network which describe the
importance of a feature in determining the configuration
of a single given level. A neural network potentially con-
tains more detailed information about the atomic system
under study. In a similar manner, weights of competitive
layer PE’s should yield information about which PE is
“firing” for a given input to the network. This should be
very useful in determining why a network fails to achieve
100%  training and in rationalizing network
misclassifications quantitatively. Such arguments would
carry the qualitative discussions of this paper one step
further by casting them in a more precise and quantita-
tive manner.

Finally, we would like to mention one further possible
extension of this work. In principle it is possible in a
uniflow network for more than one output layer PE to
“fire” at the same time but with different strengths.
When applied to the classification of atomic energy levels
this would be an indication of configuration mixing. If
configuration percentages were known for the training-set
levels, a uniflow network could learn these percentages
and use them to predict the extent of configuration mix-
ing in unknowns.
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