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The Dharma-wardana and Perrot (DP) theory for a dense plasma is rewritten in another equivalent
form in order to clarify its structure and approximations involved in it in comparison with the exact ex-
pression of structure factors in terms of the direct correlation functions (DCF) for a plasma as an ion-
electron mixture. Thus it is shown that the DP theory breaks down when it treats a dense plasma with
large bound-electron contribution, that is, with a significant number of bound electrons, as an ion. Also,
this situation is numerically examined by using liquid metallic lithium as a test case, to which the quan-
tal hypernetted-chain (QHNC) formulation is successfully applied. The breakdown in the DP theory is
attributed to neglect of the electron-ion correlation given by the non-Coulomb part of the electron-ion
DCF, C,t (r), which is taken into account in the QHNC formulation. The non-Coulomb part C,t (r)
plays an important role in the reduction of a bare-electron —ion interaction U,l(r) to a weak pseudopoten-
tial, when a nucleus in a plasma begins to have core electrons forming an ion, since the DCF
C,t(r) =— Pu, t(r)+ C—,t (r) becomes a "weak" nonlinear pseudopotential tob (r). Nevertheless, it turned
out that one of the equations in the DP theory is useful to determine the nonlinear pseudopotential
wb (r) with use of the step-function approximation for the radial distribution g»(r) between ions. Re-
cently Perrot, Furutani, and Dharma-wardana [Phys. Rev. A 41, 1096 (1990)] tried to take account of
the electron-ion correlation by using the QHNC approximation. However, it is shown that their im-
provement is not adequate to treat a plasma with core electrons in ions because of improper handling of
the bound-electron density distribution in the definition of the electron-ion and electron-electron DCF s.
From the comparison between the DP and QHNC approaches, a simplified method for treating a dense
plasma is proposed to calculate a pseudopotential mb {r), an effective interionic potential, and the
electron-ion radial distribution function g,l{r), in addition to g»(r), with the use of the jellium-vacancy
model.

I. INTRODUCTION

A plasma and a liquid metal are fundamentally a mix-
ture of nuclei and electrons, in which interactions are
clearly known as pure Coulombic potentials. Therefore,
their properties in thermal equilibrium at a temperature
T = 1/kii13 and nucleus density no may be determined, in
principle, only if the atomic number Z~ of a constituent
nucleus is given as the only input data. However, it is a
very dificult problem to treat a plasma in general from
this standpoint, since this constitutes two coupled prob-
lems: one, to determine the internal structure of an ion in
a plasma and the other, to calculate the external struc-
ture of ionic and electronic configurations in the space
with use of a potential between these two "ions." As a
result, the atomic structure of an ion, the ion-electron
configuration in the space, and the interionic potential
must be determined to be all self-consistent in a plasma
state, if we deal with a plasma as a nucleus-electron mix-
ture. To this end, the density-functional theory [1—3] is a
very useful and realistic approach, since it can treat clas-
sical and quantum Auids in a unified manner; in a plasma
the electrons constitute a quantum liquid and the ions
behaves as classical particles. On the basis of the
density-functional theory, Dharma-wardana and Perrot

[4] (DP) derived a set of integral equations for static
correlations in a strongly coupled plasma, and tried to
obtain the various radial distribution functions in a hy-
drogen plasma by treating it as a coupled system of pro-
tons and electrons. On the other hand, a quantal version
of the hypernetted-chain equation [5] (QHNC) was de-
rived by using the density-functional method, and extend-
ed to treat a liquid metal and a plasma as an ion-electron
mixture [6—8]. As a next step, the QHNC equation was
generalized to be applicable to a liquid metal and a plas-
ma as a nucleus-electron mixture [9]. At this stage, the
QHNC formulation can determine the internal (atomic)
and external (configurational) structures of a liquid metal
and a plasma to be consistent with an interionic interac-
tion between two "ions:" Its application to a liquid lithi-
um [10] shows in comparison with the experiment that
this formalism can successfully determine both the atom-
ic [11] and configuration [10] structures in a self-
consistent manner.

The DP theory was applied to various kind of prob-
lems: The determination of eft'ective proton-proton in-
teraction [12] and the examination of the onset of a
bound state in a hydrogen plasma [13] were investigated.
Also, optical properties [14,15] and electrical resistivity
[16] in plasmas such as Fe and Xe were studied by this
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formulation in addition to the calculation of the dynami-
cal structure factors [17] of a hydrogen plasma. Further-
more, a method for calculating electric microfields in
plasmas was proposed on the basis of the DP theory
[18,19] and was applied to situations involving bound
states, such as an aluminum immersed in a hydrogen
plasma. Although there are many applications to various
systems, as mentioned above, it is not yet clear what ap-
proximations are involved in the DP theory and what is
the limitation of its applicability. Can this theory proper-
ly treat bound states to form an ion in a plasma? If it
cannot deal with "ions, " why can it not? It is already
known that the DP theory ignores the electron-ion corre-
lation in the effective potential acting ions and electrons
around a fixed ion in a plasma [7,8,20], but it is not clear
up to now what results from this neglect of the electron-
ion correlation, which is taken into account in the
QHNC formulation. Recently, Perrot, Furutani, and
Dharma-wardana [20] (PFD) tried to improve the DP
theory to take into account the electron-ion correlation
by using the QHNC approximation. However, applica-
tion of the PFD [20] and QHNC [8] methods to a hydro-
gen plasma shows only a significant but not drastic
difference between the DP and these approaches, when
the bound-electron contribution is small, that is, when
hydrogens are almost perfectly ionized so that the ionic
charge is Z& =Z„. Therefore, we attempt in the present
article to examine how the bound-electron contribution is
involved in the DP theory by taking liquid Li as a test
case.

In Sec. II we rewrite the DP equation in order to clari-
fy its structure and approximations in it on the basis of
exact expressions for the structure factors in terms of the
direct correlation functions for an ion-electron mixture:
Some exact relations are summarized in the last part of
Sec. II. In Sec. III the DP theory is examined numerical-
ly by comparing with the QHNC result for a liquid me-
tallic lithium, which has a significant bound-electron con-
tribution. Section IV is devoted to a concluding discus-
sion, where the recent work of PFD is also criticized.

Vz(r) = Zz + Vp(r)

V, (r)=—

n—o f [h (r') 1n—gzz(r')]h ( ~r
—r'~ )dr',

r

ZA + Vp(r) +Axe(n ( )) pxc(no)

where

Vp(r) = f u,', ( ~r —r' )[Zznz(v') —n, (r')]dr'

and h (r) =gzz(r) 1; Zz —is the ionic valency. Here,
pxc( n, ( r ) ) denotes the exchange-correlation potential
and v,'(r) is the pure Coulomb potential between i jparti--
cles. These effective potentials caused by the nucleus are
rewritten in the forms

Vz(r) =u»(r) r»'(r) —/p,
V, (r) =V,z(r) —r,zP(r)/p,

(4)

V„(r)= ZA + f v,', (~r —r'~)n,"(r')dr'

+axe(n,'(&)+ no ) —Vxc(&o ) .

In the above, two functions I zz (r) and l,z (r) are
defined by

(r)/p:——f vz, (~r —r'~)6n, (r')dr'

—f vzz(~r —r'~ )noh (r')dr'

+ no f [h (r') —1ngzz(—r'))h (~r —r'~)dr',

CDP([r —r /)
rDzP(r)/p—= f " 5nf(r')dr'

with the definition of a bare ion-ion and electron-ion in-
teractions,

ZA
vzz(r) =—Zz —f u,', (~r —r'~ )n, (r')dr'

II. THE DP THEORY

with

v,'I r —r' n&h r' dr', (9)

The radial distribution functions gzz(r) and g,z(r), con-
cerning ions and electrons are identical with the inhomo-
geneous ion and free-electron density distributions
nz(r)/no and n, (r)/no, around a fixed nucleus with a
charge Z~ in a plasma of uniform ion density no and
electron density no, respectively. It should be kept in
mind that the total electron density distribution n, (r)
around the nucleus is assumed to be clearly divided into
the free- and bound-electron density distributions; the
former nf(r) is taken as the radial distribution function
(RDF) between electron and ion, and the latter n, (r) con-
stitutes an ion in a plasma as an ion-electron mixture. In
the DP theory [4], the effective potentials for electrons
and ions caused by a fixed nucleus in a plasma are written
as follows:

and

5n, (r) =n, (r) no =n og,z(r) —no—
CDP( ) CXC, DP( ) p c

( (10)

Here, C„' is the exchange-correlation factor defined
by

CXC, DP( ~rf onf(r')dr'

—:Pxc(n f(r) +n, (r) ) —Pxc(n o+ n, (r) )

=S xc«, (r» —Vxc(no)

for outside the core region, (11)
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which is regarded as representing the exchange-
correlation potential caused by free electrons in the total
exchange-correlation potential W,"(r ):

IV (r)—=pxc(n (")) pxc(no)

pxc(n, (r)+ n o ) pxc(n o )

+pxc(n, (r)) —pxc(n,'(r)+no) .

1 —n roCPr'(Q» 1

S,r(Q) =
D'(Q) "1/ n on o Pu, r(Q)yg, A (Q)

pop(
Srr(Q),

QZr

where

(22)

(23)

Remember that the first and second terms in the above
equation are taken to constitute a bare electron-ion in-
teraction (7). At this stage, we introduce two further new
functions Crr (r) and C,r (r), which are expected to play
the role of the direct correlation functions (DCF's) in the
QHNC equation:

Crr (r) —=exp[ /3v—rr(r)+I rr (r)]—1 —I rr (r),
BC,r (r)=n, (rIu, r I,r /P—)/no —1 Bl,r (r)—,

where 8 denotes an operator defined by

&g[B f(&))—:(Xg) &g[f(&))

=(yg) J e'O'f (r)dr

(13)

(14)

for an arbitrary real number o., and y& denotes the densi-

ty response function of the noninteracting system. Then,
Eq. (8) is rewritten in a simple form in terms of Crrp( r):

I rr~(r) = PJ —vr, (Ir —r'I)5n/(r')dr'

+ICrr (Ir —r'I)noh(r')dr' . (16)

Finally, the RDF's in the DP theory are written in the
forms

1 no—Crr (Q), 1l O7f 0 Uie

A (Q) —=Qn on o yg [C r (Q)+Pv r(Q) )

A'(Q) =+nono Pvr(Q) A (Q) .

(26)

(27)

We can think of a plasma consisting of ions and electrons
as a one-component fluid interacting via an effective in-
teratomic potential u' (r), which yields the same RDF to
grr(r) in the ion-electron mixture. In the DP theory, this
effective potential is proved to be expressed in terms of
C,r (Q) and Crr (Q) by following the similar procedure
[21) to define u' (r) in the QHNC equation:

Pv' (Q)
—:&urr(Q)

IPu,r(Q)I nope —[1—noCrr (Q)]A'(Q)/no
1 —noC„(Q)yg —A'(Q)

Qnono Pu,r(Q)yg, 1 n—oC„(Q)yg

pop(
no@—v r(Q)gg+ A (Q)V Zr [1 n—oCrr (Q)]

e( DP(Q) 0 A l(Q)

(25)

grr(r)=exp[ ~urr(")+I rr (r)],
g,r(r)=n, /(rIv, r I,r /P—)/no,

(17)

(18) =Ijurr(Q)+I3v;r(Q)p«r (Q) .

(28)

(29)

where n, /(rI V, ) is the free-electron part of the electron
density

n, (r)=n, (rI V, ):n, (rI —V) n+, (r/I V, )

=n, (r)+ n/(r),

grr(r) —1=Crr (r)+I'rr (r),

g,r(r) 1=BC,r (r—)+BI r (v) .

(19)

(20)

The structure factors in the DP theory are obtained in
terms of Crr (Q), C,r (Q), and C„(Q) by the Fourier
transforms of Eqs. (19) and (20) in the forms

which is determined by solving the wave equation for an
electron under the external potential V, (r). Then, Eqs.
(13) and (14) are written in forms analogous to the
Ornstein-Zernike (OZ) equations in the QHNC formula-
tion, as will be described later:

On the other hand, in the QHNC formulation [3,8], the
structure factors for a plasma as an ion-electron mixture
are written in terms of the DCF's C;r (Q),

S«(Q)=I:1 noC (Q)Xg]/D(Q)

S,r ( Q) = 1/ n on o C,r ( Q )yg /D ( Q)

=pQ S„(Q),
QZr

(30)

(31)

(32)

where
"oC r(Q)Xg

p(Q) =
1 noC„(Q—)yg

"OCII(Q)]l. 1 noC„(Q)Xg]

nonoICr(Q)I xg .

(33)

(34)

The OZ relations for the ion-electron mixture are ob-
tained from the inverse Fourier transforms of the above
equations as

1, ~nono Pvr, (Q)
Srr( ) = D'(Q) A (Q), 1 n„( Q)—yg

(21) grr(r) —1=Crr(r)+ I «(r

g,r(r) —1=BC,r(r)+Pl, r(r ),
(35)

(36)
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where

I ~~(v)—:f C~, (Ir —r'I )no[g,z(r') —1]dr'

+ fC«(lr r'l)no~(r')dr',

I,~(r) —= f C„(Ir —r'I )no [g,~(r') 1 ]—dr'

+ f C,~(Ir —r'I)noh(r')dr' .

(37)

(38)

6 F;„,[n&, n, ]
(39)

which means the functional derivative of the interaction
part of intrinsic free energy E;„, at the uniform densities.
In this connection, the RDF's have been derived previ-
ously by thinking of a plasma as a nucleus-electron mix-
ture [9]:

At this point, it should be noted that Eqs. (30)—(38) are
exact expressions, provided that a plasma can be regard-
ed as an ion-electron mixture and that the ions in a plas-
ma behave as classical particles. The above equations are
derived only by the definition of the DCF's for the ion-
electron mixture [3]:

«(r)= Z
Z„—f n,"(r')dr'

III. COMPARISON BETWEEN THE DP
AND QHNC EQUATIONS

Recently, we have applied the QHNC formulation to a
liquid metallic lithium [10] and obtained structure factors
S«(Q) at two temperatures, which show excellent agree-
ment with the experimental ones [22]. A liquid metal is
considered as one kind of a strongly coupled plasma, if a
plasma can be taken to consist of ions and electrons.
Therefore, an application of a formulation determining
the structure of a plasma to a liquid metal offers a severe
test for its validity, since there are a great deal of reliable
experiments in liquid metals. A lithium atom in a liquid
metal has two 1s electrons and one valence electron; the
electron-ion correlation arising from bound electrons is
strong in comparison with a hydrogen plasma. So we
consider here the limitation of validity in the DP theory
by taking the case of a liquid metal Li. Here, we intro-
duce the following two approximations in the DP equa-
tion. The bare ion-ion interaction potential defined by
Eq. (6) can be approximated as

g«(r) =exp[ Pu~~(r)+I—~~(v)+B~q(v)],

g.i(r)=n, (r uez er/P)/no

(40)

(41)
„n,"(r')—f" ', dr

r r
ZI

=up~(r), (46)

Therefore, Eqs. (40) and (41) coupled with the OZ rela-
tions (35) and (36) constitute a closed set of integral equa-
tions [10] for Czz(r) and C,z(r), which are written in the
same forms to Eqs. (13) and (14), if the bridge function
B«(r) and the DCF C„(r) are given beforehand.

In the QHNC formulation [9,10] the number of bound
electrons forming an ion in a plasma is defined by
Z~ = f o n, (r)dr in terms of the bound-electron distribu-
tion n, (r) obtained from the one-center Schrodinger
equation for the potential u,~(r) —l,z(r)/P. In other
words, the effective ionic charge Z~ is defined by
Z~ =Z„—Z~, that is,

1
Zr =Z~ —g p, &o exp(PE; —

p, , )+1
(42)

with a chemical potential p, determined by

lim n~(r)= 2 dp
exp p 2m —p, + 1 2w

Ic,,( )I n'x
Pu' (Q) =Puzz(Q)

1 —n oC„(Q)yg

=Puf r ( Q) Ces (Q )p(Q)

(44)

(45)

if the bridge function of the equivalent one-component
fiuid is chosen to be equal with the bridge function B«(r)
of the ion-electron mixture.

(43)

The effective interatomic potential [21] in the QHNC for-
mulation is exactly represented by

since the bound-electron core in a lithium ion is small
and rigid enough. Second, the factor C„(Q)
representing the exchange-correlation effect due to the
free electrons is taken to be expressed by the local-field
correction (LFC) G (Q) of the jellium model, as follows:

Cxc, DP(Q) Puc (Q)G (Q) (47)

Then, the expression y&/[1 —noC„(Q)y&] reduces to
the density-density response function g'&" of the electron
gas in the jellium model. At this point, it should be noted
that in the DP theory there is no concept of an "ion" as
is ascertained from Eq. (2), since it cannot be divided into
the core-electron and free-electron parts to set up an
electron-"ion" interaction u,~(r). Therefore, the approxi-
mation (47) brings about "ions" in the DP theory, since
C„' (Q) becomes now independent of the bound-
electron distribution, and represents the exchange-
eorrelation effect between free electrons.

If the bridge function Bzz(r) is added to Eq. (5) in addi-
tion to the approximations (46) and (47), the DP theory
becomes identical with the QHNC formulation except
that the DCF C,~(r) in Eqs. (37) and (38) are replaced by—Pu,'~(r); we investigate below what results from this
difference. In the QHNC approach based on the
nucleus-electron model where the density-functional
theory is applied to a single-center problem to determine
density distributions around a fixed nucleus, the expres-
sions for the bare electron-ion interaction u,~(r) and the
ionic charge Zz are obtained by (7) and (42), respectively,
but the bare ion-ion interaction u«(r) remains undeter-
mined: The ion-ion interaction is assumed here to be a
pure Coulombic potential between two ions. This ap-
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while the QHNC equation gives this limit [26]

no~I
lim Sir(Q)
Q~Q

with

(56)

in the ion-electron mixture to the problem to calculate
the electron density n, (r)=n, (r)+n, (r) in the jellium-
vacancy model, since the effective potential V, (r) given
by Eq. (2) becomes

-—:1+ ', pE~——n 0Czl(0) Z—I n oC,', (0)
noK

2Z—inoC t(0) . (57) +)Mxc(n (")) pxc(n 0 )

—noe(r' —
Rws )]dr'

(60)

In the above, the dashed C -'s denote the non-Coulomb
parts of C; 's in the DP and QHNC expressions, respec-
tively, and EF is the Fermi energy, which gives the
Bohm-Staver term in the compressibility formula (57).
Since the compressibility must be positive, we obtain the
condition that 1 —y )0 and ~' )0 for the DP theory to be
valid. Hence, we can state that the bound-electron con-
tribution in the DP theory is small when y «1. The
value of y for a liquid Li can be estimated by S,t(Q) =pDp(Q)+pDp(Q)[S I(Q) —1], (61)

which represents a potential caused by a fixed nucleus at
the center of a vacancy in the jellium model. This pro-
cedure is equivalent to the method to determine the non-
linear pseudopotential as proposed by Dagens, Rasolt,
and Taylor [27] (DRT) and Manninen et al. [28]. The
Fourier transform of the OZ-like equation (20) with (9)
leads to the relation

y =3ZII (58) with

gn(r)=e(r Rws) . (59)

This approximation reduces the determination of g,I(r)

which is obtained if C t (Q) in Eq. (55) is approximated
by the Ashcroft model potential —Pwb ( Q) with
x, —= r, /(r, aIi) in units of the Bohr radius a~. This rela-
tion yields y =109 for a liquid Li at 470 K. On the other
hand, the value of y with use of C,t (Q) obtained by the
numerical method, as will be mentioned, is 91, which in-
dicates that Eq. (58) gives a good estimation. Thus, we
have shown that the DP theory cannot be applied to a
liquid metal, where the bound-electron contribution is
very important, as shown by y =91))1 for a liquid lithi-
um.

In this connection, we investigate the problem where
this breakdown in the DP theory comes from, if applied
to a liquid metal, which is a typical system of an ion-
electron mixture with a significant bound-electron contri-
bution, that is, with Zt «Z„. The RDF's, glz(r) and

g,i(r), in the DP theory are determined by the coupled
equations (13) and (14). The equation for C,z (r) [or
g, (rt)] given by Eq. (14) is insensitive to the approximate
RDF gtt(r) involved in I t (r). On the contrary, the
RDF gii(r) determined by Eq. (13) is quite sensitive to
the error in the RDF g,z(r) contained in I tl (r), as will
shown later.

In the first place, we show that the second equation
(14) of the DP theory can afford to give C,z (r) as a good
approximation to the DCF C,t(r), which plays the role of
a nonlinear pseudopotential [3,10] to determine the
effective interionic potential (44), and yields a fairly good
but not sufficiently accurate g,i(r) to be used in the first
equation (13) to determine gtl(r). It should be noted that
the second equation (14) can determine C,z (r) [or g,i(r) ]
without use of Eq. (13), provided that the RDF gal(r) is
given beforehand. Here, we approximate gtl(r) involved
in I",I (r) by the step function 8(r —R ws ) with the
Wigner-Seitz radius R ws,

(0) (Q) eCDP(Q)+jell (62)

and pDP(Q) defined by Eq. (50). The step-function ap-
proximation for gtl(r) alters the above equation in the
form

S,t(Q) =pDp(Q) —n ov, t(Q)pv(Q)py'g",

~here

(63)

v(Q)=noVg[e(r —Rws) —1] . (64)

This equation enables us to obtain plDP)(Q), once the RDF
g,t(r) is determined by solving the wave equation for an
electron under the external potential (60), since the
second term of Eq. (63) is now represented by known
functions. From pgp)(Q) with use of Eq. (62), we can ob-
tain —C,z (Q)/13, which plays the role of nonlinear pseu-
dopotential, since this procedure is essentially the same as
the determination of the nonlinear pseudopotential by
DRT. In this way, we calculate C,z (r)/P for a liq—uid
Li at temperature 470 K, with use of the approximations
(59) and (47), and the result is shown by the crosses in
Fig. 2, where the nonlinear pseudopotential
w, (r)= —C,z(r)/P calculated by the QHNC equation
and the Ashcroft model potential with r, =0.74 A are
plotted by the solid and the dashed curves, respectively,
for comparison. The circles in Fig. 2 denote
w, "(r)= C,t(r)/P obtain—ed by the QHNC equation
(41) with use of the step-function approximation for
gzt(r) in Eq. (38). On the other hand, the screening cloud
pDP(r) obtained in this way is exhibited in Fig. 1 by the
crosses, which shows a good agreement with the QHNC
result as well as C,t (r) in Fig. 2, although the step-
function approximation to gii(r) is quite a crude one.
This fact shows that Eq. (14) is insensitive to the RDF
gII(r) involved in I,I (r), and that it determines C,z (r)
and pDP(r) in an excellent agreement with the QHNC re-
sults, although the electron-ion correlation is neglected in
I,I (r). In other words, the second equation (14) of the
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0.0
~ ~ ~
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I
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r a

I
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FICx. 4. Comparison between the QHNC and DRT interionic
potentials at electron density r, =3.25. The solid and dotted
curves indicate the potentials obtained by the QHNC equation
and the DP equation with the step-function approximation, re-
spectively, while the DRT potential is denoted by the solid cir-
cles.

shows good agreement with the DP potential. The devia-
tion seen near r/a =2.8 may come from the fitting pro-
cedure based on the nonlocal pseudopotential.

In Fig. 5 the ion-ion structure factors Sll(Q) calculated
by the above interatomic potentials are shown along with
the experimental result [22] denoted by solid curve; the
improved interatomic potential (66) does not give a good
Sir(Q) as is denoted by the dashed curved, while the in-
terionic potential based on the nonlinear pseudopotential

—C,z (g)/p yields the structure factor plotted by the
crosses, which show an excellent agreement with the solid
circles, the QHNC result. Also, two other interatomic
potentials shown in Fig. 3 except for the dashed curve of
Eq. (52) provide the structure factors, which show no
significant deviation from the QHNC result. This fact
shows that the RDF gii(r) is not sensitive to the interion-
ic potential as is well known; this is attributed to the fact
that the RDF gII(r) is determined mainly by the repul-
sive part of the interionic potential and the bridge func-
tion. The improved interionic potential (66) is not accu-
rate, as is shown by comparison of the structure factor
based on Eq. (66) with the experimental one in Fig. 5, al-
though the breakdown mentioned before does not occur
in this approximation. Therefore, in order to give a more
accurate description, we must also replace pU, I(r) in
I II (r) with C,I (r)/—p as well as in I,z (r); these two
replacements make the DP theory identical to the QHNC
formulation.

In Fig. 6 the RDF's g,I(r) obtained by various approxi-
mations are shown; the results based on the QHNC equa-
tion, the jellium-vacancy model, and the Ashcroft model
potential are shown by the solid, dotted, and dashed
curves, respectively. At this point, let us remember that
the electron-ion structure factor can be evaluated by Eq.
(65) with the use of the screening cloud pIDPI(Q) obtained
by the jellium-vacancy model. The crosses in Fig. 6 indi-
cate the RDF g,i(r) calculated by the inverse Fourier
transform of Eq. (65) combined with pDP(Q); the agree-
ment with the QHNC result is quite good. It is interest-

2.0—

2.4—

1.6-

0.8-

I

I I

I
'I

l
I

I

II
I
I

T =470 K

I' = 203. )

rs = 3.308
g = 0. 48

I ~"4.
'I

-1.0

0.0 1.0 2.0 5.0 4.0 5.0 6.0 7.0 8.0
Q(a )

0.0 I

1.0

FIG. 5. Ion-ion structure factors for Li at 470 K; the solid
circles denote the QHNC Sll(Q) using parameters shown in this
figure, while the solid curve is the experimental one. An im-
proved interionic potential given by Eq. (66) yields a structure
factor significantly different from the experiment as shown by
the dashed curve, while the potential based on pop(r) of the
jellium-vacancy model yields a good Siz(Q) plotted by the
crosses.

FIG. 6. The electron-ion radial distribution functions calcu-
lated by the QHNC equation, the DP method based on the
jellium-vacancy model, and the linear response formula with the
Ashcroft model potential are shown by the solid, dotted, and
dashed curves, respectively. The crosses denote g,I(r) obtained
from Eq. (65) combined with pop)(r), which shows a fairly good
agreement with the QHNC result.
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ing to note that we can obtain more accurate g,I(r) by
this indirect procedure than by the direct calculation us-
ing the jellium-vacancy model, as may be seen from the
comparison between the crosses and the dotted curve in
Fig. 6.

the system must be divided into the bound-electron and
free-electron contributions, as is described by Eq. (69),
since the free-electron part of the exchange-correlation
potential C„' (Q) leads to the density response func-
tion

IV. CONCLUDING DISCUSSION

S,I(Q)+ n, (Q) /QZI
+I3v, (Q),

1/ ll0n0 gg
(67)

while Eq. (14) is written by the Fourier transform

4lrZI S,I ( )
( NC, DP(Q) ( DP(Q) P

I eI +PP (Q)
Q 1/ n 00' g

(68)

Therefore, the long-range behavior is different between
C,I" (r) and C,I (r), since Eq. (67) contains the nuclear
charge ZA in contrast with the ionic charge ZI in Eq.
(68). The second different point compared with the PFD
treatment exists in the expression for the total exchange-
correlation potential W,"(r), which is approximated in
Eq. (12), in the form

II. (")=Pxc(n. (r)+no) Pxc(no)
Cxc, DP(

~

r r
~ )+ f 5n/(r')dr', (69)

while the PFD approach uses an approximate expression,

Cxc, PFD(
~
r ri

~
)

(r) = f " [5n/(r')+n, (r')]dr' .

It is to be noted at this point that the exchange-
correlation potential W' (r) caused by the electrons in

The DP and QHNC formulations do not provide such
great differences in treating a hydrogen plasma, when the
bound-electron contribution is very small, that is, when
ZI =ZA . However, it is shown that the DP theory
breaks down when the bound-electron contribution be-
comes important in such a system, as exemplified by a
liquid metal with Zz &&1; its applicable limitation can be
estimated roughly by the condition y & 1, as described by
Eq. (58). In spite of this fact, the second equation (14)
can be used to determine a good nonlinear pseudopoten-
tial wl, (r) with the use of the step-function approxima-
tion (59) to the RDF gII(r) involved in Eq. (9); this equa-
tion turns out to be essentially identical with the treat-
ment by DRT on the basis of the jellium-vacancy model.
It is important to realize that the nonlinear pseudopoten-
tial —C,I (r)/f3 is defined in terms of the free-electron
density n/(r)=n0g, l(r) only. This contrasts with the
PFD treatment [20], where the bound-electron density
n,"(r) is involved in the definition of the non-Coulomb
part of the DCF C,I(Q) in the form

37TZ A( NC, PFD(Q) ( PFD(Q) P

in such a form as Eqs. (62) and (44). Therefore, it is ap-
propriate to treat the free-electron part of the exchange-
correlation potential in the nonlocal form using the LFC
G(Q) as described by Eq. (47); the exchange-correlation
factor defined by Eq. (11) should not contain the bound-
electron contribution. Due to these two different approx-
imations given by Eqs. (67) and (70), the PFD approach is
not appropriate to treat a system with a significant
bound-electron contribution, although their equations
takes account of the electron-ion correlation by using the
QHNC approximation. It is worth noting that the
bound-electron density n, (r) should be absorbed in the
electron-ion potential (7) and the bare ion-ion interac-
tions (6). There is no clear concept of an "ion" in the
PFD scheme, as shown by the example that a bare ion-
ion interaction in the PFD scheme is defined by
Ull" (r)=Z„ZI/r and, as a consequence, their DCF
CII" (r) in the long-range approaches —PZ&ZI/r in
contrast with Cli (r) = PZI /r, whic—h results from Eq.
(13).

The breakdown of the DP theory comes from the
second equation (14), which cannot yield a sufficiently ac-
curate RDF g,I(r) to be inserted in Eq. (16) determining
the RDF gII(r) based on the first equation (13), although
the second equation (14) can provide an excellent non-
linear pseudopotential i0b "(r)= —C,l(r)//3. Neverthe-
less, this comparison between the DP theory and the
QHNC equation suggests the following simple scheme to
calculate the correlations in strongly coupled plasmas:

(i) In the first step, we obtain the nonlinear pseudopo-
tential lab (r)= —C,~(r)//3 by solving the second equa-
tion (14) with the use of the step-function approximation
for gll(r) (the jellium-vacancy model), as was mentioned
in Sec. III. Here, the electron density no must be deter-
mined to be consistent with Zz of an "ion" fixed at the
center of the vacancy in the jellium in such a way as to be
n0=(Z„—Zll)n0 with Zll = f n, (r)dr.

(ii) In the second step, the effective interionic potential
v' (r) can be constructed by Eq. (44) with use of lob "(Q)
in the first step, and then the modified HNC equation for
this interionic potential is solved to obtain gII(r), which
yields the structure factor SII(Q).

(iii) In the last, the electron-ion structure factor S,I(Q)
can be evaluated by Eq. (65) or Eq. (32). In this way, we
can obtain the ionic charge ZI, the electron cloud p(r) of
a pseudoatom, the pseudopotential i0„"(r), the interionic
potential U' (r), and the RDF's gII(r) and g,I(r) in a plas-
ma. The quantities calculated by this procedure are
shown to coincide excellently with the QHNC results in
Figs. 1 —6 for the case of a liquid Li. However, note that
this approach can be applied only to the system which
has a small isothermal compressibility ~, since we have
used the re1ation



1256 JUNZO CHIHARA

n ~1 P&,[e(r —Z ws )
—1]=0=S,I(0)

in the jellium-vacancy model. In order to obtain a more
refined result for a strongly coupled plasma, these quanti-
ties based on the jellium-vacancy model can be used as
initial-guess data in solving the QHNC equation [9] for a
nucleus-electron mixture, as was done in the case of a
liquid lithium [10].

In conclusion, the QHNC equation is shown to be
applicable to systems with the large bound-electron con-
tribution exemplified by a liquid metallic lithium,
whereas the DP theory breaks down due to the neglect of
the electron-ion correlation. It is well known that in a
simple liquid metal a bare electron-ion interaction is con-
sidered to be weak owing to the presence of bound elec-
trons around a nucleus, as is represented by a pseudopo-
tential wb(r). The electron-ion correlation neglected in
the DP theory is the non-Coulomb part of the electron-
ion DCF, C,I (r), which reduces the strength of a bare
electron-ion interaction v,I(r) in the DP equation by re-
placing it with a pseudopotential

ws "(r)=v,i(r) C—,I (r)/p= —C,I(r) Ip
so "weak" that it provides an exact screening cloud p(r)
in the linear response formula (33). This is the reason the
DP theory cannot deal with "ions, " when the bound-
electron contribution becomes important. Although the
PFD approach takes account of the electron-ion correla-
tion in the QHNC approximation, it does not work well
in a liquid metal, since in their scheme the bound-
electron density n, (r) is not appropriately treated. How-
ever, it should be mentioned that the applicability of the
QHNC approach described in Eqs. (30)—(45) is limited to
"simple metallic" systems, where the core-electron over-
lap is small and there is no significant resonant state,
since the bare ion-ion interaction in Eq. (44) is taken as
the pure Coulomb potential Uzz(r) and the ionic charge
ZI is defined simply in terms of the electron number Z~
belonging to the bound states. In order to treat a "non-
simple metallic" system, the QHNC equation must be im-
proved to take account of the overlap of core electrons
and the resonance states; such an improvement is
planned to be reported elsewhere.
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