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The Dharma-wardana and Perrot (DP) theory for a dense plasma is rewritten in another equivalent
form in order to clarify its structure and approximations involved in it in comparison with the exact ex-
pression of structure factors in terms of the direct correlation functions (DCF) for a plasma as an ion-
electron mixture. Thus it is shown that the DP theory breaks down when it treats a dense plasma with
large bound-electron contribution, that is, with a significant number of bound electrons, as an ion. Also,
this situation is numerically examined by using liquid metallic lithium as a test case, to which the quan-
tal hypernetted-chain (QHNC) formulation is successfully applied. The breakdown in the DP theory is
attributed to neglect of the electron-ion correlation given by the non-Coulomb part of the electron-ion
DCF, C)C(r), which is taken into account in the QHNC formulation. The non-Coulomb part C}(r)
plays an important role in the reduction of a bare-electron-ion interaction v5(r) to a weak pseudopoten-
tial, when a nucleus in a plasma begins to have core electrons forming an ion, since the DCF
C. (r)=—Pv§(r)+CNC(r) becomes a “weak” nonlinear pseudopotential wN*(#). Nevertheless, it turned
out that one of the equations in the DP theory is useful to determine the nonlinear pseudopotential
wi'(r) with use of the step-function approximation for the radial distribution g;;(r) between ions. Re-
cently Perrot, Furutani, and Dharma-wardana [Phys. Rev. A 41, 1096 (1990)] tried to take account of
the electron-ion correlation by using the QHNC approximation. However, it is shown that their im-
provement is not adequate to treat a plasma with core electrons in ions because of improper handling of
the bound-electron density distribution in the definition of the electron-ion and electron-electron DCF’s.
From the comparison between the DP and QHNC approaches, a simplified method for treating a dense
plasma is proposed to calculate a pseudopotential w)NX(r), an effective interionic potential, and the
electron-ion radial distribution function g, (r), in addition to g;;(r), with the use of the jellium-vacancy
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model.

I. INTRODUCTION

A plasma and a liquid metal are fundamentally a mix-
ture of nuclei and electrons, in which interactions are
clearly known as pure Coulombic potentials. Therefore,
their properties in thermal equilibrium at a temperature
T =1/kpp and nucleus density n{ may be determined, in
principle, only if the atomic number Z , of a constituent
nucleus is given as the only input data. However, it is a
very difficult problem to treat a plasma in general from
this standpoint, since this constitutes two coupled prob-
lems: one, to determine the internal structure of an ion in
a plasma and the other, to calculate the external struc-
ture of ionic and electronic configurations in the space
with use of a potential between these two “ions.” As a
result, the atomic structure of an ion, the ion-electron
configuration in the space, and the interionic potential
must be determined to be all self-consistent in a plasma
state, if we deal with a plasma as a nucleus-electron mix-
ture. To this end, the density-functional theory [1-3]is a
very useful and realistic approach, since it can treat clas-
sical and quantum fluids in a unified manner; in a plasma
the electrons constitute a quantum liquid and the ions
behaves as classical particles. On the basis of the
density-functional theory, Dharma-wardana and Perrot
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[4] (DP) derived a set of integral equations for static
correlations in a strongly coupled plasma, and tried to
obtain the various radial distribution functions in a hy-
drogen plasma by treating it as a coupled system of pro-
tons and electrons. On the other hand, a quantal version
of the hypernetted-chain equation [5] (QHNC) was de-
rived by using the density-functional method, and extend-
ed to treat a liquid metal and a plasma as an ion-electron
mixture [6—8]. As a next step, the QHNC equation was
generalized to be applicable to a liquid metal and a plas-
ma as a nucleus-electron mixture [9]. At this stage, the
QHNC formulation can determine the internal (atomic)
and external (configurational) structures of a liquid metal
and a plasma to be consistent with an interionic interac-
tion between two ‘““ions:” Its application to a liquid lithi-
um [10] shows in comparison with the experiment that
this formalism can successfully determine both the atom-
ic [11] and configuration [10] structures in a self-
consistent manner.

The DP theory was applied to various kind of prob-
lems: The determination of effective proton-proton in-
teraction [12] and the examination of the onset of a
bound state in a hydrogen plasma [13] were investigated.
Also, optical properties [14,15] and electrical resistivity
[16] in plasmas such as Fe and Xe were studied by this
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formulation in addition to the calculation of the dynami-
cal structure factors [17] of a hydrogen plasma. Further-
more, a method for calculating electric microfields in
plasmas was proposed on the basis of the DP theory
[18,19] and was applied to situations involving bound
states, such as an aluminum immersed in a hydrogen
plasma. Although there are many applications to various
systems, as mentioned above, it is not yet clear what ap-
proximations are involved in the DP theory and what is
the limitation of its applicability. Can this theory proper-
ly treat bound states to form an ion in a plasma? If it
cannot deal with “ions,” why can it not? It is already
known that the DP theory ignores the electron-ion corre-
lation in the effective potential acting ions and electrons
around a fixed ion in a plasma [7,8,20], but it is not clear
up to now what results from this neglect of the electron-
ion correlation, which is taken into account in the
QHNC formulation. Recently, Perrot, Furutani, and
Dharma-wardana [20] (PFD) tried to improve the DP
theory to take into account the electron-ion correlation
by using the QHNC approximation. However, applica-
tion of the PFD [20] and QHNC [8] methods to a hydro-
gen plasma shows only a significant but not drastic
difference between the DP and these approaches, when
the bound-electron contribution is small, that is, when
hydrogens are almost perfectly ionized so that the ionic
charge is Z, =Z ,. Therefore, we attempt in the present
article to examine how the bound-electron contribution is
involved in the DP theory by taking liquid Li as a test
case.

In Sec. IT we rewrite the DP equation in order to clari-
fy its structure and approximations in it on the basis of
exact expressions for the structure factors in terms of the
direct correlation functions for an ion-electron mixture:
Some exact relations are summarized in the last part of
Sec. II. In Sec. III the DP theory is examined numerical-
ly by comparing with the QHNC result for a liquid me-
tallic lithium, which has a significant bound-electron con-
tribution. Section IV is devoted to a concluding discus-
sion, where the recent work of PFD is also criticized.

II. THE DP THEORY

The radial distribution functions g,;(r) and g (), con-
cerning ions and electrons are identical with the inhomo-
geneous ion and free-electron density distributions
ni(r)/n§ and nf(r)/n¢, around a fixed nucleus with a
charge Z, in a plasma of uniform ion density n{ and
electron density n§, respectively. It should be kept in
mind that the total electron density distribution n,(r)
around the nucleus is assumed to be clearly divided into
the free- and bound-electron density distributions; the
former n/(r) is taken as the radial distribution function
(RDF) between electron and ion, and the latter n2(r) con-
stitutes an ion in a plasma as an ion-electron mixture. In
the DP theory [4], the effective potentials for electrons
and ions caused by a fixed nucleus in a plasma are written
as follows:
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—Ing,(r")Jh(Ir—r'|)dr’ , (1

V,(r)=— (r) | +uxclnr))—pxc(ng) , (2)
where

r= [vS(r—r'DIZmn (r)—n,(r)])dr’ (3)
and h(r)=g,(r)—1; Z; is the ionic valency. Here,

Bxcln,(r)) denotes the exchange-correlation potential
and v;;(r) is the pure Coulomb potential between i-j parti-
cles. These effective potentials caused by the nucleus are
rewritten in the forms

=, (=T (r) /B, 4)
—12%r) /B, (5

with the definition of a bare ion-ion and electron-ion in-
teractions,

Z
v (r=2Z; —ri—fvfe(lr—r’l)nf(r’)dr’ , (6)

VA
v, (r)= ——;A—-f-fve‘e(|r—r'|)neb(r')dp

+uxc(ni(r)+ng)—puxc(ng) . 7
In the above, two functions T'RFY(r) and T'DF(r) are
defined by
%) /B

=— [vetr—r'Donf(rdr
—fu,,(!r r'n
—nof

CDP
DP(,) /8= f___(_l/;_i_l.),

_f”ecl(]r—l"l)n{)h(r')dr’ , )

h (r')dr’

~Ing, (r")]a(|r—r'|)dr’ , (8)

nf(r')dr

with

Snf(r=nf(r)—n¢=nig, (r\—n§

and
COP(r)=CXCPP(r)—Bus(r) . (10)
Here, CXSPPF is the exchange-correlation factor defined
by
CXCPP([r—r'])
f—eiB—Snef(r')dr’

=pxc(n{(N+nb(r)—puxc(n§+nkr)
~pxc(nf(r)— Hxc(ng)

for outside the core region , (11)
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which is regarded as representing the exchange-
correlation potential caused by free electrons in the total
exchange-correlation potential W:(r):

W:e(r)Eﬂxc(ne(r))—ch(ng)
= pxc(nd(r)+n§)—puxc(ng)
+uxcln, (1) —pxc(n2(r)+ng) . (12)

Remember that the first and second terms in the above
equation are taken to constitute a bare electron-ion in-
teraction (7). At this stage, we introduce two further new
functions CR¥(r) and CR¥(r), which are expected to play
the role of the direct correlation functions (DCF’s) in the
QHNC equation:

CRP(r)=exp[ — B, (r)+TP(r)]—1—TPF(r) , (13)
BCR*(ry=n¥(rlv,, — TP /B) /ng—1—BTO(r),  (14)
where B denotes an operator defined by
FQlBf (N]=(xQ)*Folf (1]
=(x)* [ e’ Tf (r)dr (15)

for an arbitrary real number «, and X% denotes the densi-
ty response function of the noninteracting system. Then,
Eq. (8) is rewritten in a simple form in terms of CR¥(r):

P =—B [ v (Ir—r'onf(r")dr’
+fCBP(|r‘—r'l)n(’,h(r’)dr’ ) (16)

Finally, the RDF’s in the DP theory are written in the
forms

gu(r)=exp[ =B, (r)+TPF(N], (17)
g(r=n¥(rlv, —TOF/B) /0§ , (18)

where n0/(r|V,) is the free-electron part of the electron
density

n,(r)=n2r|V,)=n2%r|V,)+nd(r|V,)
=nl(r)+nf(r),

which is determined by solving the wave equation for an
electron under the external potential V,(r). Then, Egs.
(13) and (14) are written in forms analogous to the
Ornstein-Zernike (OZ) equations in the QHNC formula-
tion, as will be described later:

gu(r—1=CR¥(r)+ TPk, (19)
8 (r)—1=BCP?(r)+BTDP(r) . (20)

The structure factors in the DP theory are obtained in
terms of CHY(Q), CR2P(Q), and CLP¥(Q) by the Fourier
transforms of Egs. (19) and (20) in the forms

1,  Vnla§BuS(Q)

1
SII(Q)_ D'(Q) A(Q), 1—n(e)C£P(Q)X% ’

S, (Q)=—1— :iéCBP(Q)’ 1 (22)
e D(Q) V' nln§BuS(Qxy, A(Q)
=%(2_QI_)S”(Q) , (23)
where
1-niCBP(Q),  Vning BuE(Q)
PUO= e susiond, 1-nicrons |’ Y
—n§BuG( QxS + 4 (V' Z,[1-n{CR(Q)]
PoelQ)= 1= n§CEF QN — 4'(Q) ’
(25)
A(Q) =V 1l xS ICBPQ) +Bu5(Q)] (26)
A(Q=Vnfng oS 4(Q) . 27

We can think of a plasma consisting of ions and electrons
as a one-component fluid interacting via an effective in-
teratomic potential v°¥(7), which yields the same RDF to
gy (r) in the ion-electron mixture. In the DP theory, this
effective potential is proved to be expressed in terms of
CPP(Q) and CRF(Q) by following the similar procedure
[21] to define v°¥(7) in the QHNC equation:

BveT(Q)
= Brn(Q)
_ 1Boa(Q)Pnixp —[1—noCRUQI 47(Q) /ng
1—-n§CRP QY — 4'(Q)
(28)
=B (Q)+Bvg(Q)ppp(Q) . (29)

On the other hand, in the QHNC formulation [3,8], the
structure factors for a plasma as an ion-electron mixture
are written in terms of the DCF’s C;;(Q),

Si(Q)=[1-n§C,(Q)x31/D(Q), (30)
S.(@)=V'nln§C.(Q)xy /D (Q) (31)
=J‘3/‘—92—31s,,(Q) , (32)
where . o
p(Q)z% : (33)
D(Q)=[1—n{Cy(Q[1—n§C,(Q)xD]
—nin§lC (D)%Y - (34)

The OZ relations for the ion-electron mixture are ob-
tained from the inverse Fourier transforms of the above
equations as

gII(r)—1=C11(r)+F11(r) ’ (35)
g(r)—1=BC,;(r)+ BT ,(r), (36)
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where
Tu(n= [ Cpllt—r'Dnglg.(r)—11dr
+ [ cplr—r'Dndn(rdr 37
r,(r= fCee(|r—r'l)ng[gd(r’)—l]dr’
+ [ C r=r' Dk (r)dr (38)

At this point, it should be noted that Egs. (30)-(38) are
exact expressions, provided that a plasma can be regard-
ed as an ion-electron mixture and that the ions in a plas-
ma behave as classical particles. The above equations are
derived only by the definition of the DCF’s for the ion-
electron mixture [3]:

8zFim[nffne]

Cyllr=rD==b g om () |,

(39)
which means the functional derivative of the interaction
part of intrinsic free energy F;,, at the uniform densities.
In this connection, the RDF’s have been derived previ-
ously by thinking of a plasma as a nucleus-electron mix-
ture [9]:

gII(V)ZCXP[—/3”5(’)+F11(")+Bu(")] > (40)
8P =n(rlv,;— T, /B) /n§ . (41)

Therefore, Egs. (40) and (41) coupled with the OZ rela-
tions (35) and (36) constitute a closed set of integral equa-
tions [10] for C;;(#) and C,;(r), which are written in the
same forms to Egs. (13) and (14), if the bridge function
B;(r) and the DCF C,,(r) are given beforehand.

In the QHNC formulation [9,10] the number of bound
electrons forming an ion in a plasma is defined by
Zy= [Znl(r)dr in terms of the bound-electron distribu-
tion n’(r) obtained from the one-center Schrddinger
equation for the potential v, (r)—T,(r)/B. In other
words, the effective ionic charge Z; is defined by
Z,=27Z,—2Zg, that is,

1
Z, =7 ,— , (42)
r=ad ego exp(Be; —ud)+1

with a chemical potential 40 determined by

2 dp
exp(Bp2/2m —u)+1 (27)}

=n§=2n @)

lim nef(r)=f

r— o0

The effective interatomic potential [21] in the QHNC for-
mulation is exactly represented by

|C.r(Q)Pngxy
1—=n§C..(Q)xD
=pvi(Q)—C(Q)p(Q) , (45)

if the bridge function of the equivalent one-component
fluid is chosen to be equal with the bridge function B;(r)
of the ion-electron mixture.

BvH(Q)=Pv§(Q)— (44)
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III. COMPARISON BETWEEN THE DP
AND QHNC EQUATIONS

Recently, we have applied the QHNC formulation to a
liquid metallic lithium [10] and obtained structure factors
S;;(Q) at two temperatures, which show excellent agree-
ment with the experimental ones [22]. A liquid metal is
considered as one kind of a strongly coupled plasma, if a
plasma can be taken to consist of ions and electrons.
Therefore, an application of a formulation determining
the structure of a plasma to a liquid metal offers a severe
test for its validity, since there are a great deal of reliable
experiments in liquid metals. A lithium atom in a liquid
metal has two 1s electrons and one valence electron; the
electron-ion correlation arising from bound electrons is
strong in comparison with a hydrogen plasma. So we
consider here the limitation of validity in the DP theory
by taking the case of a liquid metal Li. Here, we intro-
duce the following two approximations in the DP equa-
tion. The bare ion-ion interaction potential defined by
Eq. (6) can be approximated as

[ZA - forne"(r’)dr’ }

r

v(r)=2;

2

w n(r") Z;
— [T dr | ===, 46)
r r r

since the bound-electron core in a lithium ion is small
and rigid enough. Second, the factor CXEPF(Q)
representing the exchange-correlation effect due to the
free electrons is taken to be expressed by the local-field
correction (LFC) G (Q) of the jellium model, as follows:

CXEPP(Q)~Bus(Q)G(Q) . @7)

Then, the expression )(% /[l—nSCeEP(Q)X%] reduces to
the density-density response function )(Jé" of the electron
gas in the jellium model. At this point, it should be noted
that in the DP theory there is no concept of an ‘“‘ion” as
is ascertained from Eq. (2), since it cannot be divided into
the core-electron and free-electron parts to set up an
electron-“‘ion” interaction ¥,;(r). Therefore, the approxi-
mation (47) brings about “ions” in the DP theory, since
CXCDPP(Q) becomes now independent of the bound-
electron distribution, and represents the exchange-
correlation effect between free electrons.

If the bridge function B, (r) is added to Eq. (5) in addi-
tion to the approximations (46) and (47), the DP theory
becomes identical with the QHNC formulation except
that the DCF C,(r) in Egs. (37) and (38) are replaced by
—pBv5(r); we investigate below what results from this
difference. In the QHNC approach based on the
nucleus-electron model where the density-functional
theory is applied to a single-center problem to determine
density distributions around a fixed nucleus, the expres-
sions for the bare electron-ion interaction 7,;(r) and the
ionic charge Z; are obtained by (7) and (42), respectively,
but the bare ion-ion interaction v;;(r) remains undeter-
mined: The ion-ion interaction is assumed here to be a
pure Coulombic potential between two ions. This ap-
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proximation is only valid when the overlap of core elec-
trons is small. In addition, the ionic charge is simply
defined in terms of the number of electrons belonging to
the clearly defined bound states: Thus, resonant states
cannot be treated in this formalism. Therefore, applica-
bility of the QHNC and modified DP approaches are lim-
ited to “simple metallic’’ systems where the overlap of
core electrons and the resonant states is negligible. In the
numerical calculation, we use the Hubbard-Geldart-
Vosko form [23] for G (Q) and the Gunnarson-Lundqvist
approximation [24] for the exchange-correlation potential
pxcln,(r)). Also, the bridge function B (r) in Eq. (40) is
taken to be that of the Percus-Yevick equation for the
hard spheres specified by the packing fraction 7, as was
done in the modified HNC equation [25].

As a first step, we try to examine the approximation in-
volved in the factor ppp(Q) of Eq. (25) in the DP theory.
The free-electron distribution ngg,;(r) around the fixed
ion in a plasma can be regarded as the superposition of
surrounding “neutral pseudoatoms,” each of which car-
ries about a screening cloud p(r) in such a way as is de-
scribed by the following exact equation:

négu(r=p(r)+nf [ pllr—r g, (r')r, (48)

which results from the inverse Fourier transform of Eq.
(32). For a liquid Li at 470 K, a screening cloud p(r) and
a total screening cloud pp,(7) of a pseudoatom calculated
by the QHNC equation are exhibited in Fig. 1 along with

PPIA(I’) '
Papin) 1

pA (r)

Pis (r) ¢ free atom
Pg, (r)

P (r)

ool S e e,

FIG. 1. Screening clouds of a neutral pseudoatom in a liquid
metal lithium at 470 K calculated by various approximations in
comparison with the QHNC result denoted by p(r), which
shows similar behavior to the density distribution p,.(r) of a
free lithium atom. The curve of p{ii(r) is a simple linear
response density to a bare Coulomb potential, which contains
some contribution of the bound-electron density as the total
densities p,(7) and ppa(r), of free and pseudoatoms. The 1s
_electron density distribution n2(r) of the pseudoatom coincides
with p;(7) of the free atom. The crosses display the density
pPX(r) based on the jellium-vacancy model, while the dotted
curve denotes the linear response density with the use of the
Ashcroft pseudopotential. Here, density distributions are nor-
malized by the uniform density n§, and the distance r in units of
a=(3/4mn)>.
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the 1s electron density distribution p,,(r) of a free lithium
atom, which coincides with the bound-electron density
distribution n2(r) calculated by the QHNC equation.
Here, in addition to Eqgs. (46) and (47), we introduce the
random-phase approximation (RPA)

CF(Q~—Pri(Q), (49)
which reduces Eq. (25) to a simple expression,
pop(Q)=pHh(Q)= —nSng(Q)XJE” . (50)

This expression means that ppp(Q) in the RPA becomes
the linear response density ppp(Q) to a disturbance po-
tential v5(Q) in the uniform electron gas. It should be
noted that the linear response density pi)(Q) contains
some contribution of the bound-electron density distribu-
tion as shown in Fig. 1, where we can see that p{i)(r) is
very large in the core region similarly to the total elec-
tron density distribution p 4(r) of a free Li atom. From
this fact, the electron cloud ppp(Q) is considered to in-
volve the bound-electron contribution to some extent,
since ppp(Q) given by Eq. (25) has essentially the same
structure as pp(Q). On the other hand, the electron
cloud in the pseudopotential theory is given by

p(Q)=—ngBw,(Q)IXE" (51)

which takes the same linear response expression as
Pad(Q) except that the bare Coulomb potential vG(Q) is
replaced by the pseudopotential w,(Q). Due to the pseu-
dopotential w,(Q), Eq. (51) does not contain the bound-
electron contribution as is shown in Fig. 1, where the
cloud p(r) calculated by the QHNC equation is also
shown to exclude the bound-electron density and to ex-
hibit a behavior quite similar to 2s electron density p,(r)
in a free Li atom. Here, the calculation of Eq. (51) is
made by the use of the Ashcroft model potential with the
core radius r,=0.74 A. The comparison of p{i}(r) with
the QHNC and model-potential results suggests that the
DP theory breaks down when the bound-electron contri-
bution becomes significant, since their expression for
pop(Q) in Eq. (25) contains the bare Coulomb potential
vS(Q). For the same reason, the effective interionic in-
teraction given by Eq. (28) becomes invalid when the
bound-electron contribution becomes large, because it
reduces to

BvM(Q)~Brvi(Q)—|BvF(Q)*n§x" (52)

in the RP approximation.

Next, we obtain a criterion that the limitation of appli-
cability in the DP theory is as follows. The zero-wave-
number limit of S;;(Q) in the DP equation results in

1

. nok'
élEIOS”(Q)z B (1—y), (53)
where
B

o= 1+2BE—n{C'PF(0)—Zn{C'DP(0), (54)
0

yz—éifonB[CBP(Q)+Bv§<Q)] , (55)
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while the QHNC equation gives this limit [26]
I

lim S, (Q)=—2% (56)
Qlino II Q - B >
with
B__ 1 +2pE,—nicy(0)—2z2niC,,(0)
noK
—2Z,;n{C,(0) . (57)

In the above, the dashed Cj;’s denote the non-Coulomb
parts of C;;’s in the DP and QHNC expressions, respec-
tively, and Ep is the Fermi energy, which gives the
Bohm-Staver term in the compressibility formula (57).
Since the compressibility must be positive, we obtain the
condition that 1—y >0 and «’ > O for the DP theory to be
valid. Hence, we can state that the bound-electron con-
tribution in the DP theory is small when y <<1. The
value of ¥ for a liquid Li can be estimated by

y=3Z,Tx?, (58)

which is obtained if C3¥(Q) in Eq. (55) is approximated
by the Ashcroft model potential —pBw,(Q) with
x.=r./(ryag) in units of the Bohr radius az. This rela-
tion yields ¥ =109 for a liquid Li at 470 K. On the other
hand, the value of ¥ with use of C3¥(Q) obtained by the
numerical method, as will be mentioned, is 91, which in-
dicates that Eq. (58) gives a good estimation. Thus, we
have shown that the DP theory cannot be applied to a
liquid metal, where the bound-electron contribution is
very important, as shown by ¥y =91 >>1 for a liquid lithi-
um.

In this connection, we investigate the problem where
this breakdown in the DP theory comes from, if applied
to a liquid metal, which is a typical system of an ion-
electron mixture with a significant bound-electron contri-
bution, that is, with Z; <<Z ,. The RDF’s, g,(r) and
g.;(r), in the DP theory are determined by the coupled
equations (13) and (14). The equation for CD¥(r) [or
g.;(r)] given by Eq. (14) is insensitive to the approximate
RDF g (r) involved in TDP(r). On the contrary, the
RDF gy () determined by Eq. (13) is quite sensitive to
the error in the RDF g, (r) contained in T'D¥(r), as will
shown later.

In the first place, we show that the second equation
(14) of the DP theory can afford to give C5¥(#) as a good
approximation to the DCF C,;(r), which plays the role of
a nonlinear pseudopotential [3,10] to determine the
effective interionic potential (44), and yields a fairly good
but not sufficiently accurate g,;(#) to be used in the first
equation (13) to determine g (7). It should be noted that
the second equation (14) can determine C2¥(r) [or g,;(r)]
without use of Eq. (13), provided that the RDF g (r) is
given beforehand. Here, we approximate g, (r) involved
in TDP(r) by the step function 6(r —Ryg) with the
Wigner-Seitz radius R g,

gr(r)=O(r —Rysg) . (59)

This approximation reduces the determination of g,;(7)
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in the ion-electron mixture to the problem to calculate
the electron density n,(r)=nf(r)+n(r) in the jellium-
vacancy model, since the effective potential V,(r) given
by Eq. (2) becomes

Z
Ve(r)=——A+ fvef(lr—r’[)[ n,(r')
r

—n{O(r'—Ryg)ldr

+I.Lxc(ne(r))_l~l-xc(n8_) N (60)

which represents a potential caused by a fixed nucleus at
the center of a vacancy in the jellium model. This pro-
cedure is equivalent to the method to determine the non-
linear pseudopotential as proposed by Dagens, Rasolt,
and Taylor [27] (DRT) and Manninen et al. [28]. The
Fourier transform of the OZ-like equation (20) with (9)
leads to the relation

S (Q)=pSNQ) +pUNQS,(Q)—1], 61)
with
POMQ)=niCRR( QX" (62)

and p{)(Q) defined by Eq. (50). The step-function ap-
proximation for g, (r) alters the above equation in the
form

Ser(Q)=pPH Q) —nipS(QIBVQ)BYE" (63)
where
UQ)=n{Fo[O(r —Rys)—1] . (64)

This equation enables us to obtain p{9(Q), once the RDF
8.;(r) is determined by solving the wave equation for an
electron under the external potential (60), since the
second term of Eq. (63) is now represented by known
functions. From p{y(Q) with use of Eq. (62), we can ob-
tain —C35¥(Q)/B, which plays the role of nonlinear pseu-
dopotential, since this procedure is essentially the same as
the determination of the nonlinear pseudopotential by
DRT. In this way, we calculate —CL5¥(r)/B for a liquid
Li at temperature 470 K, with use of the approximations
(59) and (47), and the result is shown by the crosses in
Fig. 2, where the nonlinear pseudopotential
wNM(r)=—C,;(r)/B calculated by the QHNC equation
and the Ashcroft model potential with r,=0.74 A are
plotted by the solid and the dashed curves, respectively,
for comparison. The circles in Fig. 2 denote
wNM(r)=—C,;(r)/B obtained by the QHNC equation
(41) with use of the step-function approximation for
gy (r) in Eq. (38). On the other hand, the screening cloud
ps(r) obtained in this way is exhibited in Fig. 1 by the
crosses, which shows a good agreement with the QHNC
result as well as CQP(r) in Fig. 2, although the step-
function approximation to gj(r) is quite a crude one.
This fact shows that Eq. (14) is insensitive to the RDF
gy (r) involved in T'DP(r), and that it determines C3¥(r)
and p%(7) in an excellent agreement with the QHNC re-
sults, although the electron-ion correlation is neglected in
I'DF(r). In other words, the second equation (14) of the
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FIG. 2. Nonlinear pseudopotentials w}'(r) calculated in
terms of electron-ion DCF’s with various approximations. The
solid curve is that of the full QHNC calculation, while the
crosses and white circles denote those of the DP and QHNC
equations using the step-function approximation for g, (r), re-
spectively. The Ashcroft model potential is shown by the
dashed curves. Near the origin, w}*(r)’s are displayed in the
reduced scale with .

DP theory may provide an accurate formula to determine
the nonlinear pseudopotential wp-(r)=—C,,(r)/B,
which is equivalent in essence to the DRT procedure. At
this point it is interesting to note that this equation pro-
vides the pseudopotential for a plasma at arbitrary tem-
perature and density. Also, it should be emphasized that
the RDF g,;(7) in the definition of the function CR¥(r) by
Eq. (14) does not involve the bound-electron density, as
contrasted with the PFD procedure, where the total elec-
tron density n,(r) is used to define the DCF C,;(r).

In the second place, we show that the first equation
determining g,;(7) is quite sensitive to the error in g ;(r)
contained in Eq. (16); in other words, the effective in-
terionic potential v*f(r) to determine g, (r) is strongly
dependent on g, (r) specified by another coupled equa-
tion (14). The breakdown of the effective interionic po-
tential given by Eq. (28) comes from p{)(Q) in Eq. (61),
which contains the bound-electron contribution, as is
shown in Fig. 1. Therefore, at this point let us replace
ppp(Q) in Eq. (61) by p{9h(Q); this replacement gives rise
to the relation

(0)
s.0=""% g 0, (65)
Z;

which is substituted in Eq. (4) to give an effective in-
terionic potential in the form

BoMQ)=PBufi(Q)+Bui(Q)pH Q) . (66)
The approximation (65) to derive v°f(Q) of Eq. (66) is
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equivalent to the replacement of Bv§(r) in T'OF(r) by
—CE¥®(r), while Bv§(r) in TPP(r) is retained as it is.
Therefore, the breakdown shown previously is rescued by
this improvement, since y in Eq. (53) becomes zero in this
approximation. The interionic potential v*(7) calculated
by Eq. (66) is plotted by the curve with solid circles in
Fig. 3 along with the curve with crosses, which denotes
v°f(7) calculated by Eq. (44) with the use of C5¥(Q) based
on the jellium-vacancy model. In the same figure, the in-
terionic potentials evaluated by the QHNC equation, by
the QHNC equation with the step approximation for
g1(r), and by the Ashcroft model potential are plotted by
the solid curve, the curve with circles, and the dotted
curve, respectively; the dashed curve is the result of Eq.
(52). The procedure to determine the effective interionic
potential by the QHNC equation is simplified by solving
the DP equation with the step-function approximation,
which is nothing else but the DRT procedure if the ion-
ion RDF is approximated by the trapezoidal form instead
of the step function. In the DRT method, the nonlocal
pseudopotential with fitting parameters is determined so
as to yield the nonlinear electron density in the linear
response formula. In Fig. 4 the QHNC interionic poten-
tial at electron density r,=3.25 and plasma parameter
I"'=200 is compared with the DRT potential in conjunc-
tion with that obtained by the DP equation with the
step-function approximation. The difference between the
QHNC and DRT potentials near the potential minimum
is ascribed to the trapezoidal approximation to g (r)
made in the DRT method, since there the DRT potential

10

(r) (10°Ry)
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FIG. 3. Effective interionic potentials for a liquid lithium at
470 K with r,=3.308 and I'=203.1. The dashed curve, Eq.
(52); the curve with solid circles, Eq. (66); the solid curve, the
QHNC equation (44); the curves with white circles, the QHNC
with the step-function approximation; the curve with crosses,
the DP equation with the step-function approximation; and the
dotted curve, the Ashcroft model potential.
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FIG. 4. Comparison between the QHNC and DRT interionic
potentials at electron density »,=3.25. The solid and dotted
curves indicate the potentials obtained by the QHNC equation
and the DP equation with the step-function approximation, re-
spectively, while the DRT potential is denoted by the solid cir-
cles.

shows good agreement with the DP potential. The devia-
tion seen near r/a =2.8 may come from the fitting pro-
cedure based on the nonlocal pseudopotential.

In Fig. 5 the ion-ion structure factors S;;(Q) calculated
by the above interatomic potentials are shown along with
the experimental result [22] denoted by solid curve; the
improved interatomic potential (66) does not give a good
S1(Q) as is denoted by the dashed curved, while the in-
terionic potential based on the nonlinear pseudopotential

5y (Q)

FIG. 5. Ion-ion structure factors for Li at 470 K; the solid
circles denote the QHNC S, (Q) using parameters shown in this
figure, while the solid curve is the experimental one. An im-
proved interionic potential given by Eq. (66) yields a structure
factor significantly different from the experiment as shown by
the dashed curve, while the potential based on p{J3(r) of the
jellium-vacancy model yields a good S;;(Q) plotted by the
crosses.

JUNZO CHIHARA 44

—CPP(Q)/B yields the structure factor plotted by the
crosses, which show an excellent agreement with the solid
circles, the QHNC result. Also, two other interatomic
potentials shown in Fig. 3 except for the dashed curve of
Eq. (52) provide the structure factors, which show no
significant deviation from the QHNC result. This fact
shows that the RDF g;(r) is not sensitive to the interion-
ic potential as is well known; this is attributed to the fact
that the RDF g;;(r) is determined mainly by the repul-
sive part of the interionic potential and the bridge func-
tion. The improved interionic potential (66) is not accu-
rate, as is shown by comparison of the structure factor
based on Eq. (66) with the experimental one in Fig. 5, al-
though the breakdown mentioned before does not occur
in this approximation. Therefore, in order to give a more
accurate description, we must also replace BvS(r) in
I'PP(r) with —CER¥(r)/B as well as in TDF(r); these two
replacements make the DP theory identical to the QHNC
formulation.

In Fig. 6 the RDF’s g,;(r) obtained by various approxi-
mations are shown; the results based on the QHNC equa-
tion, the jellium-vacancy model, and the Ashcroft model
potential are shown by the solid, dotted, and dashed
curves, respectively. At this point, let us remember that
the electron-ion structure factor can be evaluated by Eq.
(65) with the use of the screening cloud p{Jp(Q) obtained
by the jellium-vacancy model. The crosses in Fig. 6 indi-
cate the RDF g, (r) calculated by the inverse Fourier
transform of Eq. (65) combined with p{9(Q); the agree-
ment with the QHNC result is quite good. It is interest-

2.0 .

0.0 L ’ :
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FIG. 6. The electron-ion radial distribution functions calcu-
lated by the QHNC equation, the DP method based on the
jellium-vacancy model, and the linear response formula with the
Ashcroft model potential are shown by the solid, dotted, and
dashed curves, respectively. The crosses denote g,;(r) obtained
from Eq. (65) combined with p{9}(#), which shows a fairly good
agreement with the QHNC result.
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ing to note that we can obtain more accurate g,;(r) by
this indirect procedure than by the direct calculation us-
ing the jellium-vacancy model, as may be seen from the
comparison between the crosses and the dotted curve in
Fig. 6.

IV. CONCLUDING DISCUSSION

The DP and QHNC formulations do not provide such
great differences in treating a hydrogen plasma, when the
bound-electron contribution is very small, that is, when
Z,~Z,. However, it is shown that the DP theory
breaks down when the bound-electron contribution be-
comes important in such a system, as exemplified by a
liquid metal with Z >>1; its applicable limitation can be
estimated roughly by the condition ¥ <1, as described by
Eq. (58). In spite of this fact, the second equation (14)
can be used to determine a good nonlinear pseudopoten-
tial wp'(r) with the use of the step-function approxima-
tion (59) to the RDF g, (r) involved in Eq. (9); this equa-
tion turns out to be essentially identical with the treat-
ment by DRT on the basis of the jellium-vacancy model.
It is important to realize that the nonlinear pseudopoten-
tial —CXRP(r)/B is defined in terms of the free-electron
density nf(r)=ngg,/(r) only. This contrasts with the
PFD treatment [20], where the bound-electron density
nb(r) is involved in the definition of the non-Coulomb
part of the DCF C,;(Q) in the form

3nZ ,
QZ
S.(Q) +nX0)/V'Z;
- al@ — o T BY(Q),(67)
\/n O”SXQ
while Eq. (14) is written by the Fourier transform
"Z, _ SuQ)

2 = 1.0
Q \/”énSXQ

CNSPFP(Q)=CE(Q)—B

4
cNePrQ)=CcRP Q)-8 +BV,(Q) .

(68)

Therefore, the long-range behavior is different between
CEFP(r) and CR®(r), since Eq. (67) contains the nuclear
charge Z , in contrast with the ionic charge Z; in Eq.
(68). The second different point compared with the PFD
treatment exists in the expression for the total exchange-
correlation potential W/4(r), which is approximated in
Eq. (12), in the form

W:e(’):#xc‘”f(")*‘n(e))_#xc(”s)

CXC,DP( |I'_I'" )

+fee_—3

while the PFD approach uses an approximate expression,

dnl(rdr' (69)

Ce)gc,PFD( |r_r:|

)
—5 (8nf(r")+nl(r'))dr .

wen= [

(70)

It is to be noted at this point that the exchange-
correlation potential W:¢(r) caused by the electrons in

the system must be divided into the bound-electron and
free-electron contributions, as is described by Eq. (69),
since the free-electron part of the exchange-correlation
potential CXPP(Q) leads to the density response func-
tion

Xo/I1—n§C2R Qg 1=x5"

in such a form as Eqgs. (62) and (44). Therefore, it is ap-
propriate to treat the free-electron part of the exchange-
correlation potential in the nonlocal form using the LFC
G (Q) as described by Eq. (47); the exchange-correlation
factor defined by Eq. (11) should not contain the bound-
electron contribution. Due to these two different approx-
imations given by Egs. (67) and (70), the PFD approach is
not appropriate to treat a system with a significant
bound-electron contribution, although their equations
takes account of the electron-ion correlation by using the
QHNC approximation. It is worth noting that the
bound-electron density n2(r) should be absorbed in the
electron-ion potential (7) and the bare ion-ion interac-
tions (6). There is no clear concept of an “ion” in the
PFD scheme, as shown by the example that a bare ion-
ion interaction in the PFD scheme is defined by
vifP(r)=Z,Z,/r and, as a consequence, their DCF
CHFP(r) in the long-range approaches —BZ 4 Z,/r in
contrast with CR¥(r)~ —BZ?/r, which results from Eq.
(13).

The breakdown of the DP theory comes from the
second equation (14), which cannot yield a sufficiently ac-
curate RDF g,;(r) to be inserted in Eq. (16) determining
the RDF g;;(r) based on the first equation (13), although
the second equation (14) can provide an excellent non-
linear pseudopotential wN“(r)=—C,,(r)/B. Neverthe-
less, this comparison between the DP theory and the
QHNC equation suggests the following simple scheme to
calculate the correlations in strongly coupled plasmas:

(i) In the first step, we obtain the nonlinear pseudopo-
tential w, “(r)=—C,;(r)/B by solving the second equa-
tion (14) with the use of the step-function approximation
for g;;(r) (the jellium-vacancy model), as was mentioned
in Sec. III. Here, the electron density n{ must be deter-
mined to be consistent with Z; of an “ion” fixed at the
center of the vacancy in the jellium in such a way as to be
ng=(Z 4—Zg)n{with Zy= [nb(r)dr.

(i) In the second step, the effective interionic potential
v°f(r) can be constructed by Eq. (44) with use of wFL(Q)
in the first step, and then the modified HNC equation for
this interionic potential is solved to obtain g, (r), which
yields the structure factor S;;(Q).

(iii) In the last, the electron-ion structure factor S,;(Q)
can be evaluated by Eq. (65) or Eq. (32). In this way, we
can obtain the ionic charge Z;, the electron cloud p(r) of
a pseudoatom, the pseudopotential wN(r), the interionic
potential v°(r), and the RDF’s g;;(r) and g,;(r) in a plas-
ma. The quantities calculated by this procedure are
shown to coincide excellently with the QHNC results in
Figs. 1-6 for the case of a liquid Li. However, note that
this approach can be applied only to the system which
has a small isothermal compressibility «k, since we have
used the relation
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in the jellium-vacancy model. In order to obtain a more
refined result for a strongly coupled plasma, these quanti-
ties based on the jellium-vacancy model can be used as
initial-guess data in solving the QHNC equation [9] for a
nucleus-electron mixture, as was done in the case of a
liquid lithium [10].

In conclusion, the QHNC equation is shown to be
applicable to systems with the large bound-electron con-
tribution exemplified by a liquid metallic lithium,
whereas the DP theory breaks down due to the neglect of
the electron-ion correlation. It is well known that in a
simple liquid metal a bare electron-ion interaction is con-
sidered to be weak owing to the presence of bound elec-
trons around a nucleus, as is represented by a pseudopo-
tential w,(r). The electron-ion correlation neglected in
the DP theory is the non-Coulomb part of the electron-
ion DCF, Cel}lc(r), which reduces the strength of a bare
electron-ion interaction v5(7) in the DP equation by re-
placing it with a pseudopotential

JUNZO CHIHARA
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wik(r)=v5(r)—CYXr)/B=—C,(r)/B

so “weak” that it provides an exact screening cloud p(r)
in the linear response formula (33). This is the reason the
DP theory cannot deal with ‘“ions,” when the bound-
electron contribution becomes important. Although the
PFD approach takes account of the electron-ion correla-
tion in the QHNC approximation, it does not work well
in a liquid metal, since in their scheme the bound-
electron density ne"(r) is not appropriately treated. How-
ever, it should be mentioned that the applicability of the
QHNC approach described in Egs. (30)-(45) is limited to
“simple metallic”’ systems, where the core-electron over-
lap is small and there is no significant resonant state,
since the bare ion-ion interaction in Eq. (44) is taken as
the pure Coulomb potential v5(7) and the ionic charge
Z,; is defined simply in terms of the electron number Zp
belonging to the bound states. In order to treat a “non-
simple metallic”” system, the QHNC equation must be im-
proved to take account of the overlap of core electrons
and the resonance states; such an improvement is
planned to be reported elsewhere.
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