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The local stress tensor is defined as the field thermodynamically conjugate to the local strain ten-
sor. Any free-energy change resulting from a strain can then be expressed either in terms of the
stresses or in terms of the equivalent single-particle external force field. Using this equivalence, one
obtains a well-defined expression for the local stress tensor in terms of this force field. On this basis
we obtain unambiguous expressions for the surface tension and for the location of the surface of ten-
sion of a planar interface.

I. INTRODUCTION II. THE DISPLACEMENT FIELD
AND THE STRAIN TENSOR

Statistical-mechanical expressions for the surface ten-
sion of a planar liquid-vapor interface based on an expli-
cit calculation of the mechanical stresses in an interface
were introduced some 40 years ago by Kirkwood and
Buff. ' A formulation in terms of the stress tensor of Irv-
ing and Kirkwood was subsequently provided by Buff.
The Irving and Kirkwood stress tensor involves a line in-
tegral over a path connecting a pair of molecules, and it
was recognized ' that, in a nonuniform Auid, the result
was path dependent. The recent reformulation of this
stress tensor by Schofield and Henderson emphasized
that any path was consistent with the original formula-
tion and that the surface tension calculated from this ex-
pression was in fact path independent. In contrast, how-
ever, the corresponding expression for the location of the
surface of tension remained path dependent, and the re-
sulting failure to obtain a well-defined expression was tak-
en then as symptomatic of a general defect in this type of
description of interfacial properties.

In the present investigation we will show that these
problems originate from restricting all the considerations
to the hydrostatic force balance equation which yields
only an incomplete specification of the stress tensor. No
such difficulties will appear if we redefine the local stress
tensor as the field which is thermodynamically conjugate
to the local strain tensor. As a result all free-energy
changes which result from a strain will be well defined.
%'e will show that, in particular, this is the case also for
the position of the surface of tension of a planar interface.

In Sec. II we will discuss in detail the relation between
the strain tensor and the displacement field while in Sec.
III we will do the same for the stress tensor and the exter-
nal force fieM. In Sec. IV we will compute a few free-
energy changes (corresponding to the pressure, the sur-
face tension, and the location of the surface of tension)
for a Auid at two-phase coexistence with a planar inter-
face. Our conclusions will then be gathered in the final
section, Sec. IV.

r' =r+ u(r) r =r' —u(r'), (2.1)

at least for a single valued u(r). The Jacobian of this
coordinate transformation corresponds to the deter-
minant of the distortion tensor d(r):

d(r) =Vu(r), (2.2)

where we have used a dyadic notation and V=c)/c)r. The
physical content of (2.2) can be made explicit by separat-
ing d into a symmetric [d,„=—,'(d+d )] and an antisym-
metric [dan&isim= —,'(d —d )] part [with d denoting the
transpose of d]. The symmetric part of (2.2) defines then
the strain tensor field or local strain tensor e(r):

V(r) =
—,
'

I Vu(r)+ [Vu(r)]t], (2.3)

while the antisymmetric part of (2.2) defines the local ro
tation tensor co(r):

co(r) =
—,
'

I Vu(r) —[Vu(r)] ], (2.4)

which can also be related to the (axial) rotation vector
R(r):

co(r) = —R(r) X 1, R(r) =
—,'V Xu(r), (2.5)

where 1 denotes the unit tensor. The geometric interpre-
tation of (2.1)—(2.5) can now be made obvious by consid-
ering a small neighborhood 5r of r and Taylor-expanding
u(r+5r) around u(r) as

In the classical theory of elasticity the deformation of
a continuous medium is described in terms of a displace-
ment field u(r) which describes the way in which the
matter at r has been displaced to a new position
r'=r+u(r). Mathematically such a deformation can be
described by a local change of coordinates, and for smaO
deformations, i.e., when all calculations are carried out to
first order in u only, this change of coordinates can al-
ways be inverted as
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u(r+5r)=u(r)+5r d(r)

=u(r)+ R(r) X 5r+7(r) 5r, (2.6)

which shows clearly how a deformation in the neighbor-
hood of r can always be decomposed into a translation, a
rotation, and a strain. From the physical point of view it
is often useful to distinguish those coordinate transforma-
tions (2.1) which correspond to a global translation or a
global rotation of the system as a whole. In order to dis-
tinguish such global displacements from the genuine local
deformations of interest to us it is necessary and sufficient
to assume that during the deformation described by (2.1)
there is at least one point of the system whose vicinity
remains fixed in space. If we denote such a "fixed point"
by ro then the conditions characterizing a local deforma-
tion are

u(ro) =0, R(ro) =0, (2.7)

since according to (2.6) the vicinity of ro will undergo nei-
ther a translation nor a rotation, and hence the system
will remain fixed in space during the deformation de-
scribed by (2.1) and (2.7). Notice, however, that while the
vicinity of ro remains fixed as far as its position and orien-
tation in space are concerned it still can undergo a strain
deformation [provided e(ro)%0]. The strain appears thus
as the irreducible part of any local deformation. This
then raises the question of whether the strain also com-
pletely determines the deformation. The answer is clearly
not trivial since a general symmetric tensor such as e(r)
has six independent components which could easily over-
determine the three components of the displacement field
u(r). The clue to the answer stems from the observation
that (2.3) defines u(r) to be some sort of vector potential
for the tensor field e(r), a situation quite analogous to
that prevailing between the electric field and its scalar po-
tential in electrostatics where the relation is known to be
unique (up to a constant). To see this more clearly, let us
write

dR= —,'VX(du)

=
—,'VX(dl Vu)

=Vx(e dl)

so that, gathering the results, we obtain

u(r, ) —u(r, )

=R(r2) X (r2 —a) —R(r, ) X (r, —a)

+ f Ie(l )+(1—a)X [Vxe(l )]J dl,
C&z

(2. 1 1)

(2.12)

while taking a = r2 and relabeling the variables
( i'i i 2 )~ ( io r ) we finally obtain

where C(ro, r) is now an arbitrary path from the fixed
point ro to the point of observation r. As is obvious from
(2.8), the expression (2.13) is path independent for any
e(r) of the form (2.3). This can also be shown directly by
considering the difFerence between two arbitrary contours
which amounts to evaluating the line integral of (2.13)
around a closed contour, which can then be transformed
into a surface integral as

f I e(1)+(1—r) X [VXe(l )]].dl

=f fdS, [ince(l)]X(1—r), (2.14)

where incV(r) is defined by the following double curl
operation on e(r) (or any other tensor field):

inc e(r):—V X [V XV(r)] (2.15)

u(r) =u(ro)+R(ro) X (r —ro)

+ f I e(l)+(1—r) X [VXV(l)]] dl, (2.13a)
Co

where Co is an arbitrary path from the arbitrary point ro
to r. Taking ro to be a fixed point we obtain from (2. 13a)
and (2.7) the equivalent relation for a local deformation:

u(r)= f Ie(l )+(1—r) X [Vxe(l)]].dl, (2.13b)

u(r2) —u(r, ) = f 1u(1) = f dl Vu(l ),
C, 2 C&2

where 7=8/Bl and the line integral extends over an arbi-
trary path C, z from r, to r2. Using d(r) =e(r)+B(r) and
(2.5) we obtain

But from (2.3) it follows that

[V X e(r ) ]t= —,
' VV X u(r)

and hence, using (2.15) and (2.16), we have

inc e(r) =0

(2.16)

(2.17)

u(r, )
—u(r, )=f e(l).dl+ f R(l ) xdl .

C, 2

(2.9)

R Xdl =R Xd(l —a)

(2.10)

where a is an arbitrary constant vector to be specified
below. The second term in the rhs of (2.10) can now be
transformed by using

The second term in the right-hand side (rhs) of (2.9),
which originates from the local rotations, can be ex-
pressed in terms of the strain by using

so that the rhs of (2.14) vanishes identically and hence
(2.13) is indeed path independent for any e(r) of the form
(2.3).

Historically, the relation (2.13) is knowns as the
Kirchhoft-Cesaro-Volterra relation. It allows one to cal-
culate the displacement field from a knowledge of the
strain tensor, up to a global translation [u(ro)] and a glo-
bal rotation [R(ro)]. The latter displacements can be
viewed as the integration "constants" resulting from solv-
ing (2.3) with respect to u(r) for a given e(r). In the
physically interesting case of deformations with a fixed
point these "constants" vanish [see (2.7)] which, in the
partial differential equation language, corresponds to tak-
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ing the solution of the homogeneous equation corre-
sponding to (2.3) to vanish. Taking this into account,
(2.3) and (2.13) establish a unique relation between u(r)
and e(r). This relationship is similar to the well-known
relation between the electrostatic potential and the line
integral of the electric field (in which case one usually
takes the "fixed point" to be at infinity where the electro-
static potential vanishes). In the same way as not every
vector field is an electrostatic field, not any symmetric
tensor field will be a strain field. For this to be the case
the vector field has to be curl-free and the tensor field has
to be inc-free, i.e., it has to satisfy (2.17). Historically,
this condition is ascribed to Saint-Venant. ' In the par-
tial difFerential equation language it corresponds to the
integrability condition for (2.3) viewed as an equation for
u(r). The double curl operation (2.15) was termed "in-
compatibility" (inc) by Saint-Venant because it measures
the extent to which a given symmetric tensor field is in-
compatible with a physically realizable strain field. For a
real strain field the incompatibility vanishes, i.e., the
strain field must satisfy (2.17). The relation (2.17) can
also be viewed as stating that out of the six components
of e(r), only three can be varied independently, or in oth-
er words a physical strain tensor field V(r) always derives
from a vector field, namely u(r). The easiest way to see
this is to transform (2.17) into Fourier space as

k Xe(k) Xk=o, (2.18)

where e(k) is the Fourier transform of e(r). From (2.18)
it follows then that all the transverse (with respect to k)
components of e(k) have to vanish, leaving only the
longitudinal-longitudinal and the two longitudinal-
transverse components ofV(k) as possible degrees of free-
dom. In the electrostatic analog the equivalent statement
would be that the transverse components of the electric
field have to vaniS, leaving one with a purely longitudi-
nal field, i.e., there is only one field component. The same
conclusion can also be reached from a closer examination
of (2.17) in ordinary space (in the electrostatic case the
conclusion follows in real space from the observation that
the electric field is curl-free).

The above discussion of the relations between the vec-
torial [u(r)] and the equivalent tensorial [e(r)] descrip-
tion of a given deformation will now be exploited to find
the corresponding relations between the vectorial (the
external forces) and the tensorial (the stresses) description
of the causes of this deformation.

5p(.r) = —V [p(r)5u(r)], (3.1)

5Q—J«[i 4(r—)]
5t

(3.2)

while the two field variables p(r) and p —P(r) can be el-
iminated one in favor of the other by using one of the
conjugate relations"

50 p —P] 5F[p]
5[@

—P(r)] '
5p(r)

(3.3)

Since the relation between p(r) and p,
—P(r) is known to

be invertible the solution of (3.3) will be unambiguous (for
simplicity we omit henceforth the implicit T dependence).
Within this density-functional approach the thermo-
dynamics of a deformation can then be studied by consid-
ering the underlying density change. Using (3.3) we ob-
tain for the reversible work, 6F, corresponding to a small
reversible deformation:

5F= Jdr[p P(r) —]p5(r), (3.4)

where p —P(r) refers to the undeformed system and 5p(r)
is related to the small displacement 5u(r) by (3.1). In or-
der to reinforce the relation between the density-
functional expression (3.4) and the theory of elasticity of
Sec. II we will rewrite (3.4) in either of the two equivalent
forms:

where the prefix 6 is used to emphasize the smallness of
these changes. The field which is thermodynamically
conjugated to p(r) is the external single-particle potential
p(r), or more precisely, p —p(r), where p is the chemical
potential. This external potential is assumed to contain,
among other things, all the information about the physi-
cal boundaries of the Quid and of the different phases. As
a consequence one can consider the r space to be formally
infinite, all boundary conditions being taken care of by
P(r), even if the physical system is in fact finite. The
thermodynamic description of this system can then be
formulated" either in terms of the grand potential
Q=Q(T; [p, —P]) or in terms of the (Helmholtz) free en-
ergy F=F(T;[p]), where T denotes the temperature, p,
the chemical potential, and the square brackets indicate a
functional dependence on either p P(r) o—r p(r). The
two thermodynamic potentials Q and F are related by a
functional Legendre transformation:

III. THE EXTERNAL FORCE FIELD
AND THE STRESS TENSOR

5F= Jdr f(r) 5u(r)

= Jdr o-(r):5e(r),

(3.5)

(3.6)

In the modern density-functional theory of nonuniform
equilibrium Auids" the basic variable is the average local
number density p(r). In terms of this variable such a sys-
tem will look like a continuous medium and all the con-
siderations of Sec. II are thus equally applicable to
nonuniform Auids such as a two-phase liquid-vapor sys-
tem or a Quid-wall system. For instance, a small defor-
mation, r~r+5u(r), will induce a small density change,
p(r)~p(r)+5p(r), given by

5e(r) =
—,
' [V5u(r)+ [V5u(r)]t], (3.7)

f(r) is the external force density corresponding to the
external potential p(r) acting on the undeformed system
of density p(r):

(3.8)

where 5e(r) is the change in strain resulting from 5u(r)
[see (2.3)]:
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while the strain-stress relation (3.6) defines the local stress
tensor o (r) of the undeformed system.

The relation between (3.4) and (3.5), which obviously
represents the work done by the external forces against
the deformation 5u(r), can easily be obtained by using
(3.1) in (3.4) and integrating by parts. In doing so one en-
counters the following surface term:

f fdS [[p—P(r)]p(r)5u(r)j, (3.9)

5F= —fdr[V o(r)] 5u(r) (3.10)

if the surface term vanishes, i.e., if Vo(r) vanishes outside
the finite physical system. The equivalence of (3.10) with
(3.S) for any 5u(r) implies then that we have

V.o.(r) = —f(r), (3.11)

which is the well-known (hydrostatic) force balance equa-
tion at the basis of the earlier treatments ' (notice also
that the pressure tensor is minus the stress tensor). The
thermodynamic definition of o (r) based on (3.5) and (3.6)
thus contains the mechanical definition based on (3.11).
Next, we observe from (3.6) that since 5e(r) satisfies
inc 5P(r) =0 [see (2.17)], o.(r) is defined by (3.6) only up
to a tensorial gauge field of the form inc Var) where a(r) is

I

which vanishes because for any system confined by p(r)
to a finite volume the density p(r) will vanish outside the
system's physical boundaries. The passage from the sca-
lar description (3.4) to the vectorial description (3.S) is
thus always possible. Notice, however, that the converse
is not true since (3.4) is more general than (3.5). Indeed
(3.4) is valid for any density change, not just those
changes resulting from a pure strain deformation of the
system [see (3.1)]. The passage, now, from the vectorial
description (3.5} to the tensorial description of (3.6) is
clearly less trivial. Whereas the reversible work relation
(3.5) indicates that the forces (f) and the displacements
(u) are thermodynamically conjugate variables (or fields),
the stress-strain relation (3.6) defines the stress tensor (o )

as the variable (field) conjugate to the strain tensor (e).
Since, from Sec. II, we know the exact relation between
the displacement field [u(r}] and the local strain tensor
[e(r)] we can now use this relationship in order to deduce
from (3.5) and (3.6) the corresponding relation between
the force field (f) and the local stress tensor (cr) The.
present approach to the stress tensor definition is thus
purely thermodynamic. Before considering this relation
in detail we establish its connection with the traditional
hydrostatic approach. To this end we first observe that
since in (3.6) 5e(r) is by definition [see (3.7)] a symmetric
tensor, o.(r) has to be likewise a symmetric tensor. Using
then (3.7) into (3.6) and integrating by parts we obtain

an arbitrary symmetric tensor field which vanishes out-
side the physical system. Indeed, integrating twice by
parts we obtain, for the contribution of inc a(r) to (3.6),

fdr[inca(r)]:5e(r)= f drear):[inc 5e(r)]=0, (3.12)

so that any stress tensor of the form inc a(r) performs no
work. The same conclusion follows from (3.11) since the
corresponding homogeneous equation

V oo(r)=0 (3.13)

has the general solution oo(r) =inca(r) for a symmetric
tensor o.o(r). The general solution of our problem can
thus always be written

o (r) =oo(r)+o. ,(r), (3.14)

fdr[inco(r)]:5e(r)= fdro(r):[inc 5e(r)]=0 (3.15)

for any 5e(r) and hence in the context of (3.6) we may re-
quire that o (r) satisfies the stronger condition:

inc o (r) =0 (3.16)

so that both o.(r) and e(r) will belong to the same (inc-
free) functional space. Both symmetric tensor fields will
have then only three independent components (see the
discussion at the end of Sec. II), a property which follows
also from the requirement of the equivalence between the
tensorial description (3.6) and its vectorial counterpart
(3.5). Indeed, from (3.16) it follows that o.(r) can always
be written as [Vv(r) j,„with v(r) being some sort of vec-
tor potential for o.(r). Using this form of Vo(r) in (3.11)
then shows that V v(r) is the potential for V f(r) while
—,'VXv(r) is the potential for VXf(r). To proceed we

will thus first look for a particular solution o, (r) and next
(partially) fix the gauge field o'o(r) in (3.14) so that (3.16)
be satisfied. The remaining gauge invariance then con-
cerns the contributions o.o(r) =incQar) satisfying

inc[inc~(r) j =0, (3.17)

where Jar) is a symmetric tensor vanishing outside the
system. This gauge invariance is inherent to the tensorial
description but is physically irrelevant since the resulting
gauge field performs no work.

We first consider the particular solution o. ,(r). Using
(2.13) in (3.5) we obtain

where o.o(r) denotes an arbitrary gauge field and o,(r) a
particular solution of our problem. This gauge invari-
ance of o.(r) can be restricted somewhat by observing
that with the same boundary conditions for o (r) as above
we must have

5F=5u(ro} f dr f(r) +R(ro) fdr(r —ro) X f(r) + fdr f(r) f [5e(l )+(I—r) X [VX5e(1)]j dl .
0'

(3.18)

The first two terms in the rhs of (3.18) will vanish if ro is a
fixed point, i.e., if the deformation is local [see (2.7)], or
equivalently if the external force density produces no glo-

I

bal acceleration [fdr f(r) =0] nor a global torque
[ Jdr rX f(r) =0]. This is consistent with our boundary
conditions for o (r) since from (3.11) it also follows that
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r or= rfr=0,
JdrV. [o(r)Xr]=fdrrXf(r)=0,

(3.19}

(3.20}

because o (r) vanishes outside the system. Assuming then
that the system remains globally at rest we obtain, after
integrating the third term of (3.18) by parts,

5F= f dr I I f(r)+[f(r)X(l —r)]XV& j 5e. (l) dl,

which comparing with (3.6) yields

(3.21)

o,(r) = Jdr, f dl I f(r, )+ [ f(r, ) X(1—r, )]X 7& I5(r —I ) .
0' 1

sym

(3.22)

where I t I,„ is a shorthand notation for the symmetric
part of the tensor t, e.g. , [ t I,„=—,'(t+t ). Notice also

that the same result can be obtained from [see (3.6)]

(3.23)

and computing the functional derivative of the free ener-

gy directly from (3.18) or (3.21) by using the following
identity for symmetric tensor fields:

We now determine (partially) the gauge era(r) so as to
satisfy (3.16). Because of (3.14) this is equivalent to

inc o 0(r) = —inc o,(r), (3.25)

kX[kXgak) Xk]Xk=kXo, (k)Xk, (3.26)

where o, (r) is given by (3.22). This equation for oa is
most easily solved in Fourier-transform space [see (2.18)].
Writing o 0(r) =inc+a r), we obtain from (3.24)

5e, (r) =
—,'(5;k 5 1 +5;i5 k )5(r—r'),

5&k((r'}
(3.24)

and using the identity

kX tkX [k Xa(k) Xk) Xkj Xk=k Xa(k) Xk,
where, for clarity, we have used the indicial notation
V= [ e,~ }.The present definition (3.23}of the stress tensor
as a (functional) derivative of the free energy with respect
to the strain tensor is a straightforward extension to
nonuniform Auids of the standard definition, usually as-
cribed to Thomson, ' prevailing for uniform continuous
media.

where k=k/~k~, we obtain from (3.26) and PD(k)= —k Xgak) Xk

P,(k) = —k x [k XF,(k) Xk] Xk, (3.27)

which is the desired solution of (3.25). Taking the inverse
Fourier transform of (3.27) we obtain finally

1 1
Vc (r)= — dr, , inc dr,

~

inca, (r )
4m ~r —r&

(3.28)

where P, (r) is given by (3.22). The complete stress tensor
cr(r) =o 0(r)+o, (r) satisfying (3.16) will thus be given by
the sum of PD(r) of (3.28) and of o, (r) of (3.22), with the
understanding that only o.i(r) is responsible for doing the
work described by (3.6) while o 0(r) does not contribute to
(3.6).

In Sec. II we have already shown that the line integral
in (3.18) is independent of the path C(ra, r) from r0 to r
while for r0 one can choose any fixed point of the local
deformation. One can show similarly that (3.21) and also
o(r), i.e., the sum of (3.22) and (3.28) but not each term
separately, are independent of the chosen contour. To
this end one again considers the difFerence between two
arbitrary contours and transforms the closed contour in-
tegral into a surface integral of the curl of the integrand.
Some lengthy but straightforward algebra shows that this
curl vanishes both for (3.21) and 0.(r), because of, respec-
tively, (2.17) and (3.16). For (3.21) the result is also obvi-
ous from the fact that (3.21) and (3.6) are equivalent to
(3.5) while the latter equation has no contour depen-
dence.

We have now completed the study of the relation be-
tween the vectorial description (3.5) in terms of the forces
and the displacement fields and the equivalent tensorial
description (3.6) in terms of the stress and strain fields.
The resulting relation between the forces and the stresses
[see (3.22)] is thus seen to closely parallel the correspond-
ing relation [see (2.13)] between the displacement and the
strain. ' In conclusion, the stress tensor, defined as the
tensor field thermodynamically conjugate to the strain
tensor [see (3.6) and (3.23)], has the following properties:
(1) it is symmetric, (2) it satisfies the force balance equa-
tion (3.1), (3) it is inc-free [see (3.16)] so that there are
only three independent components, (4) it is independent
of the path used to compute it, and (5) it leads to path-
independent free-energy changes (3.6) or (3.21).

IV. FREE-ENERGY CHANGES IN TERMS
OF THE DISTRIBUTION FUNCTIONS

One of the most common applications of the Irving
and Kirkwood stress tensor in nonuniform equilibrium
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Auids has been the derivation of an expression for the
surface tension of a planar liquid-vapor interface in terms
of the one- and two-particle distribution functions, re-
spectively, p(r) and p2(r, r'), for a system with pairwise
additive interactions. We now reconsider this problem in
the light of Sec. III. To this end we first have to elimi-
nate from the expressions of Sec. III the external force
density f(r) in terms of the distribution functions. From
the lowest-order Born-Green-Yvon hierarchy equation
we obtain the desired relation in the form

f(r) =kii TVp(r)+ f dr'pz(r, r')V V( ~r —r'~ ), (4.1)

where V(~r~) is the pair potential. We will thus substi-
tute, everywhere in the expressions of Sec. III, f(r) by the
rhs of (4.1). Notice also that corresponding expressions
in terms of the direct correlation function, C(r, r'), can
be obtained by using instead of (4.1) the relation

f(r) =kii TVp(r) k~ Tp(—r) f dr'C(r, r')V'p(r') .

(4.2)

relates it to the free-energy change 6F produced by an
isotropic strain leading to a volume change 6V. A con-
stant isotropic strain corresponds to E(r)=1 (the unit
tensor; notice that inc 1=0). Returning to (3.6) we write
henceforth 5V(r)=XV(r), with X a small parameter to be
determined. From the general results of Sec. II or from a
trivial integration of (3.7) one finds that the displacement
5u(r)=A, u(r) corresponding to 57(r)=k. l is 5u(r)=l, r.
This deformation [r~(1+A, )r] corresponds thus to an
overall dilatation (k )0) or compression (X (0). Its fixed
point is r=O [notice that here R(r)= —,'VXu(r)=0]. The
relative volume change is given by V.6u=31, =6V/V, or
A, =5 V/3 V with V the system's volume and 5 V its
infinitesimal change. Having determined the deformation
we compute the resulting free-energy change 6F from
(3.5) and (3.6) while (4.2) yields

This is planned to be shown in more detail elsewhere, '

here we will concentrate on (4.1).

A. Pressure

fdrr f(r)1

dr Tro. r

(4.3)

(4.4)

We first consider the pressure. As is well known, the
thermodynamic definition of the pressure p whereas using (4.1) in (4.3) we obtain

p =kiiT f p(r) — fdr f dr'p2(r, r')(r —r').V, „V(~r—r'~),dr 1
(4.5)

fdr V. [rp(r)) =0, (4.6a)

which is correct since p(r) vanishes outside the finite sys-
tem, and (2) we have symmetrized (r+-+r') the contribu-
tion to (4.3) of the second term in the rhs of (4.1). Notice
also that Eq. (4.6a) is a particular case of the more gen-
eral property

f dr5p(r)—:—f dr V [p(r)5u(r)]=0, (4.6b)

which results from the fact that the local density change
(3.1) is performed at a constant number of particles. The
present procedure establishes thus the equivalence of the
expressions of the pressure in terms of the virial of the
external forces (4.3), the trace of the stress tensor (4.4),
and the distribution function expression (4.5).

B. Surface tension

which can equally well be obtained by using (4.1) in (4.4)
and following the more complicated route via (3.22) and
(3.21). To obtain (4.5) we have assumed that (1) the sur-
face term originating from integrating by parts in (4.3)
the contribution of the first term in the rhs of (4.1) van-
ishes:

t

it follows that we have to look for a strain which will pro-
duce a change 6 3 in the area 3 of the interface and com-
pute the corresponding free-energy change 6F. Taking a
constant traceless strain so as to produce no volume
change, we can take 5e (r)= —5e„(r)=A, and 5e,~(r)
zero otherwise, for an interface parallel to the x-y plane.
The corresponding displacement field in the Cartesian
coordinates r=(x,y, z) is now 5u(r)=A(x, 0, —z). We
again have inc 5e(r) =0, R(r) =0, and r=O as fixed point.
Taking A, =53 /3 we obtain then for y from (4.7) and
(3.5) and (3.6)

y= drx r —z, r1
(4.8)

f dr[o (r) —o.„(r)],1
(4.9)

while using (4.1) in (4.8) yields

y= fdr f dr'p2(r, r')(xV„—zV, )V(~r —r'~), (4.10)
1

a result which can equally well be obtained from (4.1),
(4.9) and (3.22) or (3.21). To obtain (4.10) we have
dropped the surface term

From the thermodynamic definition of the surface ten-
sion y

f drIV [xp(r)] —V, [zp(r)]j (4.11)

(4.7)
on account of the fact that p(r) vanishes outside V [see
also (4.6b)]. Symmetrizing (r~r') the rhs of (4.10) and
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(4.12)

which is a standard expression for the surface tension in
terms of the pair distribution function. In the limit of an
infinite system the A factor of (4.12) can be removed as
usual by assuming p2(r, r') to be translationally invariant
parallel to the interface. In this limit one can thus recov-
er the standard Kirkwood and Buff expression' from
(4.12).

C. Surface of tension

The location z, of the surface of tension of the planar
interface considered above is defined in terms of the first
moment of the integrand of (4.9) as

(4.13)

where y is given by (4.9). In order to find the distribution
function expression corresponding to z, we proceed as
above and first determine the strain leading to (4.13).
This time we must have 5e„(r)=l,z = —5e„(r)
and 5e; (r) zero otherwise, with A, =5A/z, A. The
corresponding displacement field is 5u(r)
=A(xz, O, —(x +z )/2). We again have inc 5e=O,
V.5u=O and r=O as fixed point (notice, however, that
this time VX5uAO for rAO). According to (3.5) and
(3.6) the equation (3.5) corresponding to (4.13) is now

z, y= dr xz r —,r1 (x+z )

A
(4.14)

while using (4.1) in (4.14) yields

z,y= f dr f dr'p2(r, r') xzV, — V,
1 (x+z )

A

X V(ir —r'i), (4.15)

which can also be obtained directly from (4.13) using (4.1)
and (3.22) or (3.21). To obtain (4.15) we have neglected
the surface term

f dr V„[xzp(r)] —V, p(r)
(x+z)

(4.16)

for the same reason as above [see (4.6b)]. Symmetrizing
(4.15) and introducing the coordinates (r r', (r+r'—)/2)
one obtains from (4.15)

using V„V(r)=( x/r ) V'(r), with r = ~r~ and V'(r )

=d V(r)/dr, one obtains from (4.10)
r

1 (x —x') —(z —z')
y = dr dr'p2(r, r')

2A

which should be divided by y of (4.12) in order to obtain
z, . Again, one can remove the A dependence of (4.17) by
going to the limit of an infinite system with translational
invariance parallel to the interface. The discussion of
such a limiting procedure is outside the scope of the
present investigation but will be considered in more detail
elsewhere. '

Before closing this section let us also observe that one
often inquires for the higher-order moments of the inter-
facial stress profile:

(4.18)

with, say, g(z)-z" (n ) 1). In relation with (3.6) this
corresponds to 5e„,(r)= —5e„(r)=kg(z) and 5e; (r)=0
otherwise. Integrating the corresponding equation for
5u(r) one finds, however, that this is possible only when
g (z) is a constant, i.e., when g (z) is a linear function of z,
g (z) =ci+czz, so that only the first two moments (i.e. , y
and z, y) correspond to a physically realizable strain de-
formation. Notice that this is all that is required by ther-
modynamics. If higher moments are required per se then
this will be possible only if one also adds shear com-
ponents to (4.18), i.e., when 5e„,&0. Although one ex-
pects that for a fluid the corresponding shear stresses
[cr,(r)] will eventually vanish in the bulk phases of an
infinite system, it is less obvious to show that their contri-
bution to (4.18) will also disappear in the thermodynamic
limit. It is therefore prudent to conclude that although
the surface tension and the surface of tension of a planar
interface always correspond to a well-defined strain de-
formation, the calculation of the higher-order moments
of the interfacial stress profile may pose some more deli-
cate problems which will not be considered here any fur-
ther.

V. CONCLUSIONS

%"e have defined' the stress tensor of a nonuniform
equilibrium fiuid as the (field) variable thermodynamical-
ly conjugate to the local strain tensor. The unique rela-
tion (for a system globally at rest) which exists between
the displacernent field and the strain tensor was then used
to induce a similar relation between the force field and
the stress tensor. This leads to a stress tensor which is
uniquely defined in terms of the force field and which is
symmetric, path independent, and satisfies the usual force
balance equation. Any free-energy change resulting from
a strain can then be computed either from the stress ten-
sor or from the forces. Some simple examples which il-
lustrate the general procedure have been given. They in-
clude the surface tension and the surface of tension of a
fluid with a planar interface. The more dificult case of
the curved interfaces is planned to be considered later.

z, y = f dr' f drp2(r, r'), (z+z')

X (x —x') —(z —z')

(4.17)
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