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We develop an analytical method to extend the two-parameter family of analytical solutions in chan-
nel geometry to sector geometry with arbitrary opening angle at zero surface tension. We then show
how to apply the WKB method to select the limiting finger width at very small surface tension. The re-
sult agrees very well with experiment. We also discuss stability of the pattern based on the special struc-
ture of these selected solutions.

I. INTRODUCTION

In recent years, patterns formed by the instabilities in
propagating interfaces between different phases have re-
ceived much attention [1]. One of the well-known exam-
ples is the Saffman-Taylor problem in a Hele-Shaw cell
[2], where a unique finger pattern is observed when a
viscous fluid is displaced by a less-viscous fiuid.

The analytic theory of the determination of this finger
shape is by now quite complete. The first step was taken
by Saff'man and Taylor in their original paper [3], where
they found a family of analytical solutions parametrized
by the width of the finger at zero surface tension. How-
ever, regular perturbation methods treating surface ten-
sion as a small perturbation did not reveal any evidence
of selection. The puzzle was not solved until in studying
some simple interface models it was realized that the sur-
face tension cannot be treated perturbatively [4]. In fact,
the presence of surface tension will generate exponential-
ly small terms which destroy the interface smoothness at
all but certain allowed widths IA, , I. Numerically it was
also seen that the continuous family of solutions breaks
down to a set of discrete solutions [5]. Finally, matching
the asymptotic behavior of the shape function in the
complex plane, which actually takes the surface-tension-
induced singularity into account, did indeed show the
presence of this selection mechanism [6]. It was further
shown numerically [7] and also analytically [8] using a
WKB method that the finger with the smallest width is
the only linear stable solution.

The same experiment was also done in different
geometries [9], in particular, in a sector-shaped cell with
arbitrary opening angle. It was observed that, just as in
the linear geometry, at large velocity a unique finger
tends to occupy a well-determined fraction of the cell an-
gular width. This fraction is an increasing function of the
opening angle that approaches 0.5 as the angle ap-
proaches 0. The only theoretical attempt to explain the
selected finger width in this type of geometry is by
Brener, Kessler, Levine, and Rappel (BKLR) [10]. They
applied the same WKB method used for the linear
geometry to a family of analytic solutions found by
Thome et al. [9] in the 90 cell. Their result of the select-

ed finger width at small surface tension agrees with ex-
periment. The use of the WKB method (or any analytical
method) is based on knowing the analytical zero-surface-
tension solution. Until now no analytical solution has
been found for any angle other than 90'.

In this paper, we develop a systematic method for
deriving the zero-surface-tension solutions analytically at
arbitrary opening angle. The solutions can be very easily
extended to the complex plane. By using the WKB
method, we can obtain the selected finger width at small
surface tension. We also show that the structures of the
selected solutions are different from that of the linear
geometry due to the difference of the distribution of poles
and branch cut for the phase integral. We further discuss
the stability of the selected solutions within the WKB
scheme based on the special structure of the solutions.

The outline of the paper is as follows. First, in Sec. II
we will demonstrate our general method to obtain the
two-parameter family of zero-surface-tension solutions.
Then, in Sec. III we will apply the WKB method to the
symmetric solutions for all opening angles and determine
the selected finger width. We will also discuss the stabili-
ty of the selected solutions. Finally, in Sec. IV we will
summarize our results.

II. SOLUTIONS WITHOUT SURFACE TENSION

The evolution equations for the interface in the sector
geometry are easy to derive [see Fig. 1(a)]. Inside the
viscous fiuid, the velocity potential tI) satisfies the Laplace
equation

V' /=0
with the boundary conditions

a
Y+~ AOB~ =0,

ac(aD)
(2)

where y is the surface-tension parameter and v is the
curvature of the interface. If the injection rate at
infinity is normalized to 27r, P has the behavior

P —(2sr/8~)in(x +y )' as x +y —&~. The interface
moves with the velocity
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=n'~4'~ aoa . (3)

We are interested in obtaining the zero-surface-tension
solution in this section, so we set y =0.

Following Thome et al. [9], we consider the problem
using the hodograph method, i.e., considering z =x +iy
as an analytical function of the complex velocity poten-
tial co=/+i p, with 1t the stream function. The interface
equation of motion Eq. (3) is now

Bx By By Bx
ar aq at ay=' =0

Because of the two-dimensional nature of the
geometry, instead of looking for a solution translating
with constant velocity as in the linear channel, we are
seeking self-similar solutions here, written as

x(t, /=0, $)=h (t)x (g),
y (t, /=0, it) =& (r)y (g) .

Substituting this into Eq. (4), we have (superscript aster-
isk representing the complex conjugate)

Im z* =1,)jan
Bz

B
(6)

A
B

0

while h ( t } satisfies

h(t) =1, h(r)=+2(r —r, ),dh (t)

arg(z)=8 J2

where to is the initial time.
Thus the problem of finding the zero-surface-tension

solutions reduces now to finding an analytical function z
in the region $~0, sr&g&—m [see Fig. 1(b)], satisfying
the following three conditions as stated in Ref. 9: (i)
arg(z) =+8o/2 on AC and BD, i.e., the half lines P=+m. ;
(ii) z-exp(co80/2') when P~ ~; and (iii) z satisfies Eq.
(6) on AOB, i.e. , on / =0.

Let us start by analyzing condition (iii) first.
Differentiating both sides of Eq. (6}with respect to f, and
because (Bz'/Bg)(Bz/Bi)'j) is real, we obtain

0 * B'z
Im z*

B 2
=0, /=0,

B arg(z)=-8o/2 D

so a'z/ag should be equal to z times some real function
«0 f(4):

B'z

B 2 f (4}z, (9)

To interpolate the equation from /=0 to the whole re-
gion, we can replace g by co/i, and the equation becomes

0
—Bz=2

=f( iso)z . —
Bco

(10)

Next, we consider the second condition, namely, as
Hoch/2~co~ao, z-e ' . This determines the limiting behav-

ior of f ( ico): f ( ic—o)~ (8o/—2n) as co~—~. We
substract the constant part from f ( iso) and de—fine

f ( ice) = —[—(8O/2vr—) +fi(co)] .

We also make the corresponding transformations for z:
DC

z =exp(8oco/2m)zi .

The equation for z& is then

(12)

FICx. 1. Schematic picture of the Saffman-Taylor problem in
sector geometry (AC and BD are the boundaries of the sector;
AOB is the interface) in (a) physical space, (b) the co plane, (c)
the ~ plane.

d z& go dz&+ f, (co)z, , —
77 d CO

(13)

with the conditions for f i that f (co)i~0 as co~ oo and
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f, (co) must be real for pure-imaginary co. For future con-
venience, we change the region of interest to a finite re-
gion by the transformation [see Fig. 1(c)]

r= [ —exp(c0)]

The equation for z, changes to

1 —28O/m dz, =4r f2(r)z, ,
7 d'T

(14)

(15)

where f2(r)=f, (ln( —r )). The conditions for f2 are
f2(r)~0 as r—+0 and fz(r) must be real on the unit cir-
cle, i.e., when ~r~ =1.

Finally, we come to the last condition, which requires
arg(z)=+Ho/2 on f=+m. Because of the transforma-
tions (12) and (14), this condition now requires that the
solution z, of Eq. (15) must be real on the real r axis in
the range —1 ~ ~~ 1.

Now the problem has been reduced to finding an ana-
lytic function fz(r) which satisfies all the above condi-
tions, and then solving the linear ordinary differential Eq.
(15) to obtain the mapping z, (r) from the r plane [Fig.
1(c)] to real space [Fig. 1(a)].

We first consider the behavior of z& around the singu-
lar point r=0. Because f2(r)~0 as r~0, the leading-
order behavior is determined by the two terms at the
left-hand side of Eq. (15). We can express the two solu-
tions in power series around ~=0:

z',"=1+a,r+a, H+ . . . ,

20O/~zP'=r ' (1+b,r+b2r + . ),
(16)

where a; and b; are constants, and the general solution is

z& = Azl" +Bz'I ' with A and B arbitrary constants. In
order to satisfy the condition that z, be real on the real
line segment —1 r 1, we must choose 8=0 (except for
the case Ho=sr/2, which will be discussed at the end of
this section) and f2(r) has to be a real function of r.

Other singular points of Eq. (15) will come from the
poles of fz(r). Assume that fz(r) has a pole at r=rp,
then z, (r) will map ro into z, =0, which is on the inter-
face, so ro has to be on the semi-unit-circle ~ro~ =1. This
is also required by the previous consideration, because if
z, (r) has a singular point at some r inside the unit circle,
solution z'&" cannot be extended toward ~=+1. More
strictly, because we are only interested in the physically
meaningful case where the interface has only one bump,
~o has to be +1. Generally, this problem allows more
than one bump, accomplished by choosing f2(r) to have
second-rank poles at points on the semi-unit-circle other
than r=+1. For example, if fz(r) generates a single
bump solution in angle oo, then function f2' (r) =fz(r")
will generate an n-bump solution in angle n 00. It is clear
that fz' (r) has (n —1) other poles on the semi-unit-
circle.

Let us analyze the local behavior of the mapping
around r =+1. Comparing the A corner in Figs. 1(a) and
1(c), we can see that the angle between the interface and
the boundary wall changes in these two coordinate sys-
tem. So the mapping around ~=+1 should have the

f2(r)=[c, +c2(r+r ')]/(r —r ') (19)

where c, and c2 are real constants. We make the follow-
ing transformation:

c, =—„'[—,'(A, , +A, ~)
—1], c~= —,', (A, , —A, 2) . (20)

The reason for this transformation will soon be clear.
Substituting the expression of fz(r) into Eq. (15), we
have

ZI 1 20olvr dz—l
'T

1

r(r —1)

A i+Ay —1 r+ (r +1)
2 4

(21)

We have to choose the correct solution to this equation:
the z', "(r) that has finite derivatives to any order at r=O.

Let us check the behavior of z, (r) around r=+1. At
the neighborhood of ~=1, the leading-order behavior of

(1AI)/2
z&(r) is (I —r) ' (assuming A, l~z~~0). In order that
zl(1)=0, we have 0~A, , 1; the same condition also ap-
plies for X2. Solving the linear ordinary differential Eq.
(21), we obtain a two-parameter family of solutions
par ametrized by k, and kz, analogous to the two-
parameter Saffman-Taylor solutions found in the linear
channel. The solutions with A, I%A.z will give asymmetric
interfaces, while the solutions with X&

=A, 2 correspond to
symmetric interfaces. The effective angular width X,ff of
the finger with respect to the opening angle of the sector
can be expressed as

A,,q= 1 — [1—
—,'(1,, +A~)],

2 0

where A, I and A, 2 are restricted by the condition A,,ff ~ 0.
We finish this section by analyzing Eq. (21) at the spe-

cial value of opening angle 00=~/2. At this value of Oo

there is an essential difference in the z& behavior around
r=0 from that at other angles. If A, I%A.2, then the lead-
ing behavior of z, is determined by the first-rank pole of

Syform z, (r)-(r+ 1) *, where s+( &0) are constants that
determine the relative angular width of the finger to the
sector. Substituting this behavior into Eq. (15), we can
easily see that f2(r) has two second rank poles at r=+1.

Now we can finally gather all the properties of function
f2(r) and determine its form. First, f2(r) is a real func-
tion of w, and it also has to be real on the unit circle, so

f2(e'@)=[f2(e'&)]'=f~ (e '&)=f~(e '&) .

Interpolating to the whole region, we have

f2(r) f2(1/r)

so the function f2(r) is constructed by two building
bl~cks: r+1/r and (r—1/r) . Remembering that f2(r)
has second-rank poles at r=+1 and fz(r)~0 as r~O,
we immediately have the general form f2(r):
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(1 —2,1)/2 (1+2,1)/2
(23)

The solutions correspond to any real positive constant c
and 0~A, )

~ 1. The solution found by Thome et (21. [9]
corresponds to the case c=1, which is the symmetric
solution. Unfortunately, closed-form expression such as
this can only be found when Oo=m/2.

III. SELECTIONS WITH SURFACE TENSION

As is now well known, in the linear channel geometry
the inclusion of surface tension will break the continuous
family of solutions into an infinite countable discrete set
of solutions, and all the selected finger widths will go to a
unique value as the surface tension approaches zero [5,6].
In the channel geometry, this value is equal to 0.5. Al-
though there exist more rigorous methods of determining
the selected finger width, the WKB method has proved
much simpler.

Recently, BKLR [10] calculated the selected finger
width at the small-surface-tension limit using a WKB

the coefticient of z& on the right-hand side of the equa-
tion. One of the solutions will have a logarithmic behav-
ior around &=0 and the other one will map ~=0 to
z& =0, both of them are physically unreasonable. So we
must have X& =A.2. Compensating the loss of one parame-
ter, the two solutions of Eq. (21) with Op=ir/2 and
A. ) =A2 both satisfy the requirement that z)(r) is real on—1 ~ ~+—1. The solutions therefore also form a family of
two parameters. In fact, analytic solutions can be ob-
tained in this case and have the form

( 1 —) 1)/2 ( 1+A.
1

) /2

method in 90' geometry where a family of self-similar
solutions were known. We start this section by briefly re-
viewing the WKB method.

As was noticed in the experimental paper [9], finite sur-
face tension cannot be consistent with self-similar solu-
tions. The paper suggested introducing a time-dependent
injection rate. A more interesting suggestion was made
in Ref. [10],where the authors consider a time-dependent
surface tension y phys Jot ' . They argued that because
one is only interested in the limit yphyp~07 and because
the changing rate of yo will eventually become much
smaller than any eigenvalues of the stability operator
around the selected solutions, this assumption is valid for
calculating the 1imiting value of selected finger width.

Assuming the deviation from the zero-surface-tension
self-similar solution is 6(y), and linearizing the equation
around the known zero-surface-tension solution xp(y),
they obtain for 6(y)

yp&" (y) +L [xp (y ) ]5(y ) =pplcp(y )
[1+x(')(y) ]

/ (24)

I i~.p(y)Sp(y)dy =0, (25)

where 6p(y) is the zero mode of the adjoint linear opera-
tor (Due to different coordinate system, our x (or y) coor-
dinate is the y (or x) coordinate in Ref. [10]). Using a
WKB ansatz and a local approximation of the integral
operator I. (readers are referred to Ref. [10],where this is
shown in detail), 5p(y) is expressed

where I, is some linear integral operator. The solvability
condition is then

'(y) 1 Ez 1+Ez xo z +i+0 z
Sp(y) -exp dz,

&~o g Z
(26)

where g (z) =d x() /dy () with z =dx() /dy p.
It is easy to see that the integral (25) has a stationary

phase point at z =+I'.. If one can deform the integral con-
tour without crossing any singularity to the stationary-
phase line passing through z =i, then the integral will be
dominated by the contribution from the stationary-phase
point and will never be zero, and therefore no selection is
possible. From the expression for Sp(x), it is also obvious
that the integrand of (2S) will have a branch cut at point z
with g(z)=0. In the linear geometry, the zero point of
g (z) lies on the imaginary axis and is below the stationary
point when the width of the Anger is larger than 0.5. Be-
cause the branch cut passes through the stationary point,
the contributions from left and right stationary path will
have difterent phases and therefore can satisfy condition
(2S). That is the reason behind the fact that the finger
width approaches 0.5 at small surface tension.

In the sector geometry, the distribution of the branch
points is difterent. There are two branch points in the
upper half plane distributed symmetrically around the
imaginary axis. As the branch cut no longer passes

through the stationary phase point, for condition (25) to
be satisfied, the contribution of the integral around the
branch point has to be large enough to cancel the contri-
bution from the stationary-phase point. The selected
finger width at the small-surface-tension limit is then
determined by

; (1 iz) (1—+iz)' [xp(z)+iy()(z)]'/
g(z)

(27)

In Ref. [10], this calculation was done for the 90'-
geometry case, and very good agreement was obtained
between the theoretically derived selection width and
that observed experimentally.

We now extend this derivation to a sector geometry of
arbitrary angle using the results obtained in Sec. II. Be-
cause there is no asymmetric forcing in this problem, we
assume the selected finger is symmetric around the center
line of the sector [11],i.e., /(, , =A,2

=
A, .

Before extending the solution to the complex plane, we
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would like to show how to obtain the interface shape
from Eq. (21). We first make the transformation

extension of xii and yii, are (we omit the subscript 0 from
now on}

z, (r)=(1—r')" ' 'z, (r) .

Then Eq. (21) becomes

(28) d U

dg

2
0 1 —A, 1+

4 sin2y
U, (31)

d zz 2(g —1)r2

+ +
dH 1 —r

1 —28D/m dz~

7 d~

where Ucan bex ory.
From Eq. (31), we can see that both d x/dye and

d y /dqP and therefore d x /dy are equal to zero when
( A,

—1 )( 1+A, —20()/~ )
Z2

1
(29)

(30)

The real and imaginary part of this equation can be ex-
tended from the real axis to the whole complex plane.
The equations satisfied by x(q&) and y(y), the complex

I

Because the physical solution of this equation has to be
even in ~, and because z2 has to be real on —1 & ~ 1, we
have the boundary condition zz(l)=zz( —1)=1 up to an
unimportant constant.

Let us introduce a new variable y: r =exp(iy); the in-
terface AOB corresponds to the segment on the real axis:
0 ~ qr ~ m [y is related to g by p= —,'(m —g)]. Solving the
revised equation (29) with the boundary condition
zz(y=O) =z~(tp=~), together with the transformation
(12) and (28), we can obtain the interface parametrized by
y: xi'(y)=Rez(y) andyii(y)=lmz(y) on 0+y +m.

To extend the solution to the complex plane, we substi-
tute all the transformations back to Eq. (10) and obtain a
rather simple equation for z (y):

2
dz 0 1 —X 1+ . 2

Z.
4 sin y

2
0 +
7T 4

i.e., when

1 =0,
sin y

(32)

y=+ia, rr+ia, sinh(a) = (1—
A, )'7T

2 0
(33)

It is easy to show that dx /dy ~ +,= —(dx/dy)~~ „+;)*, so the branch points of the in-
tegral (25) are distributed symmetrically around the
imaginary axis. We also know from numerical calcula-
tion that y= —ia and m —ia correspond to the two
branch points in the upper half plane.

It is convenient to calculate the integral of Eq. (27) in
the y plane. In order to do that, we have to find the
point in y plane that satisfied dx ldy =+i Writin. g y as
y=ri/2+i'' with real y' in Eq. (31) and using the condi-
tions dx/dy~~ zz=y~~ &@=0=, y (m/2+i'') is pure
imaginary x(m+iy') is pure real. So the solutions for
dx Idy =+i are y =rr/2+ ip, where p( )0) is a real num-
ber which can be obtained numerically. Now Eq. (25) be-
comes

3/4 1/4

Im f 1+i 1 i — (x +iy)' d =0
~lz —ip dy/dye dy/dqr dy

(34)

(35)

The finger width determined by our calculation agrees
with the experimental result within S%%uo. Even more
strikingly, the selected k value stays almost constant in
the range 30'~ 00~ 90, A, =0.87. Thus according to rela-
tion (35), X,s should have the behavior

k,ff-—1 —11.7'/00 . (36)

Experimentally, the same behavior was observed in ap-
proximately the same range with the constant 10 instead
of 11.7' as in our expression.

We also list the value of the real part of dx/dy at the

We integrate Eq. (31) from (m/2, 0) to (~/2, —p), and
then from (n /2, —a) to (0, —a). Next we plug the result
for x and y on the path (0, —a)~(m/2, —a)
~(m/2, —p) into the above integral to solve Eq. (34).
The results of selected A, , defined as A,

„

for diA'erent open-
ing angles are shown in Table I. The real finger width A,,ff

is obtained according to the relation

branch point: Rez in Table I. We show in the table that
the branch points approach the imaginary axis as the
opening angle decreases.

Another interesting issue of the problem is the linear
stability of the selected solutions. Experimentally, it was
found that, at least for large opening angles, the finger
pattern is unstable against tip splitting after some time
(or at a certain distance from the origin). Theoretically,
in channel geometry, it was demonstrated numerically [7]
and later analytically [8] using the WKB method that the
only stable solution is the one which has the lowest
width, and the nth solution will have n —1 unstable
modes. The analytical analysis by Bensimon, Pelce, and
Shraiman in Ref. 8 was based on the local fatness of the
interface compared with the capillary length and the use
of the Mullins-Sekarka instability result. This analysis
will certainly be applicable to the sector-geometry case,
where the self-similar interface will become Aatter as time
increases. In addition, the validity of the WKB method
in the sector geometry is proved by the accuracy of pre-
dicting the selected finger width, so the same result
should be present in the sector geometry, i.e., the lowest
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TABLE I. Various quantities (defined in the text) vs the
opening angle.

jef Re(z)

0.175
0.248
0.322
0.395
0.468
0.542
0.615
0.689
0.762
0.836
0.909
0.983
1.056
1 ~ 130
1.203
1.277
1.350
1.424
1.497
1.571

0.952
0.937
0.923
0.911
0.901
0.892
0.884
0.879
0.874
0.870
0.869
0.867
0.863
0.861
0.859
0.856
0.856
0.856
0.858
0.861

0.572
0.602
0.624
0.646
0.668
0.686
0.705
0.724
0.741
0.756
0.773
0.787
0.796
0.807
0.816
0.822
0.832
0.842
0.851
0.861

0.175
0.214
0.248
0.280
0.319
0.374
0.418
0.459
0.496
0.543
0.577
0.619
0.656
0.694
0.747
0.794
0.838
0.885
0.934
0.980

0.028
0.031
0.052
0.072
0.092
0.113
0.135
0.155
0.194
0.211
0.246
0.283
0.327
0.367
0.394
0.444
0.488
0.533
0.581
0.647

branch of solutions are linearly stable.
The experiment is certainly in disagreement with the

simple argument given above. We are going to remove
this discrepancy by demonstrating the difference of the
structure of the selected solutions in the sector geometry
from that of the channel geometry. More explicitly, we
are going to show that the lowest branch of solutions
does not exist at small enough yo [12]. As we showed be-
fore, the main contributions to the integral in (25) come
from three parts, two from the path near the branch
points y= —ia ant = —ia and n —io. and one from the path around
th t t' nary point y= —iP Neglectin. g all the slowlye saion
varying functions of yo at small yo, we can then write &

approximately as

exp +exp
V'yo

+exp

i S(@=7r ia)—
V'yo

i 6( y = vr /2 i P)—
V'yo

(37)

Let us define

R (k)= —Im[S(y= ia) — (Sq—&=~ 2/iP)], —

I(A, ) =Re[S(y= —ia) 6(y=vr/2 —iP)] . —

Because

1+exp(R (A. )/Qyo)cos[I(&)/Qyo]=0 . (38)

As shown in Fig. 2, solutions of the above equation exist

S(y = i a ) 6(&p =vr/—2 i P—)—
= [S(g=m ia) S(y—=rr/2 iP)]*, ——

we have

FIG. 2. Illustration of the solution of Eq. (38).

in the region with R (A, ) )0. The limit as yo~0 on the
selected value of A, , A,

„

is determined by the equation
R (k ) =0. We check the behavior of I(A, ) around k=k,S

and obtain numerically I(A,, ) )0 and dI/dA, ~& z )0 for

all angles. Because of this behavior of I(A, ), it is easy to
see that as yo decreases, the lowest and the second-lowest
solutions will approach A,, and eventually disappear as a
pair as yo decreases even more, the third- and thepair, as yo e
fourth-lowest solutions will disappear as a pair, and so
on.

We also list the value of I(A,, ) in Table I. As we can
see, I(A,, ) goes to zero as the angle decreases to zero,
which means that the solutions disappear at smaller yo as
we go to smaller angles. In fact, as is well known, the
solutions never disappear at finite surface tension in the
channel geometry.

Finally, we notice that for constant real surface tension

y decreases with increasing time as yoyphys~ t 0:y phy t Thus for real physical system where y physyphys
is a constant, yo will eventually decrease to the region
where the only linearly stable solution is unavailable and
the pattern will develop tip-splitting instability. For
smaller opening angles, it will take a longer time for the
tip-splitting instability to occur.

IV. SUMMARY

In the preceding sections, we have found an analytical
method to find the self-similar solutions at zero surface
tension. The solutions form a two-parameter family, ex-
actly analogous to the two-parameter-family solutions
found in channel geometry. In one special case 00=m/2,
we get a closed form of the solution, and the solutions of
Thome et al. are just the symmetric subset of our general
solutions. We extend the WKB calculation of BKLR of
the 90 geometry to arbitrary opening angles, and excel-
lent agreement with experiment is reached in the whole
range of opening angles. We also demonstrated that the
selected solutions will disappear in pairs due to the struc-
ture of the branch points and stationary point in the com-
plex plane. Based on this result and the fact that the
effective surface tension decreases with increasing time,
we are able to explain the instability found in experiment.
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Tote added. After finishing this work, we learned that
analytical solutions were also found by M. Benamar in a
difT'erent coordinate system for the same geometry. Her
one-parameter family of solutions is the same as the set of
symmetric solutions in our paper, i.e., for the case where

X2o

we have

d zi 1+28& /vr dz i

7

1 A, i+ f2 —1 r+ (r +1)
r( —1) 2

(A2)
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APPENDIX: THE CONVERGENT-GEOMETRY CASE

In Ref. [9], an experiment was also done in the conver-
gent geometry (see Fig. 3), where the finger approaches
the origin. The zero-surface-tension solutions can be
found in exactly the same fashion as in Sec. II (the diver-
gent case).

We look for self-similar solutions of the form (5). Be-
cause the finger approaches the origin as time increases,
we have

We choose the solution z i", which is finite at ~=0.
Due to the condition that z, ~~ as ~~+1, the pa-

rameters X& and A, 2 have to be greater than 1: A. &[2~~1.
The relative angular width X,z of the finger with respect
to the opening angle is

A,,(r= 1+ [1—
—,'(A, (+A2) ],2 p

(A3)

where A, , and kz are restricted by the condition A,,z 0.
When we compare the main results here [Eqs. (A2) and

(A3)] from that of Sec. II [Eqs. (21) and (22)], we can see
that they are the same if we make the change t9p~ Op.

Following the experimental paper, we therefore identify
the convergent case as the negative Op case of Sec. II.

As in the convergent case, when Op=~/2, we can find
the closed form of the symmetric solutions:

h (t) = —1, h (t) =+2(t, t), —dh (t)
dt

(A 1)

(i —i.i)/2 i (i+i, i)/2

(i —i.i)/2 i ()+i.i)/2
(A4)

where tp is the final time when the interface touches the
origin.

The problem is now reduced to finding an analytical
function z(co) in the negative infinite strip vr & P~ ~, —
—~ ((//~ 0, with the boundary conditions (i) arg(z)
=+8O/2 on /=+sr, (ii) z -exp(coOO/27r) when P~ —oo,

and (iii) z satisfies Im(z*Bz/()i)'/) = —1 on |I)=0.
By going through exactly the same analysis discussed

in detail in Sec. II, and making the transformations

z =exp(Hoch/2m)z(,

r = ( —exp'�)'

with 1 ~ A, , ~ 2. The reason that we cannot obtain
closed-form asymmetric solutions such as Eq. (23) is that
z, has to be finite as ~ goes to zero.

In order to use the WKB method, we have to find the
zero point of d x/dy (we only consider the symmetric
case A, (

= A, 2
=

A, here, just as in the divergent case. ).
Changing ~ to ~=expiy, it is easy to see that the inter-
face solution can be extended to the complex plane by us-
ing the same equations as in the divergent case: Eq. (31).
The zero point of d x/dy is therefore determined by

1.00

0.75

divergent case

convergent case

A
B

0.50

0.25

0.00
-vt/2 -xt/4 0

e,
n/4 Tt/2

FIG. 3. Illustration of the convergent case.
FIG. 4. Angular width of the selected finger vs the opening

angle.
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2
o +

4
1 =0.

sin y
(A5)

Because X is defined in different range from that in the
divergent case, we discuss the solutions of the above
equation in two regions: (i) 1 & A, & [ I+ (28o/vr) ]'~; here
the solutions of Eq. (A5) are p=a and m —a, where
sina=(vr/28o)(AI, )—'~ . This corresponds to the case
where the tip region of the pattern has negative curva-
ture .(ii) [1+(28o/m. ) ]'~ & A, I+28o/vr; here the
solutions of Eq. (A5) are y =~/2+i a, where
cosha= (vr/28o)(A1, )—'

The solutions in region (i) correspond to real dx/dy
and according to the analysis in Sec. III, the solutions in

region (ii) correspond to pure imaginary dx/dy. So as X
increases, the branch points of integral (25) in the dx/dy
plane will approach and eventually exceed the stationary
point dx/dy =+i .The critical value of 1, is determined
by the condition that the branch point coincides with the
stationary point, just as in the linear channel case. The
resulting A,,~ is plotted against the opening angle in Fig.
4, together with the results from the divergent case.

The results agree with experiment with Oo 40 ~ It
differs from experiment beyond this range, where only
two data points were shown in Ref. [9] (8o= —60' and
—90'). Finally, we have to point out here that the validi-
ty of the &KB method in this case is not justified because
we have assumed a time-varying surface tension,
1 p 1 ~h~ ( to t) ', which increases with time.
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