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Vesicle shapes of low energy are studied for two variants of a continuum model for the bending energy
of the bilayer: (i) the spontaneous-curvature model and (ii) the bilayer-coupling model, in which an addi-
tional constraint for the area difference of the two rnonolayers is imposed. We systematically investigate
four branches of axisymmetric shapes: (i) the prolate-dumbbell shapes; (ii) the pear-shaped vesicles,
which are intimately related to budding; (iii) the oblate-discocyte shapes; and (iv) the stomatocytes.
These branches end up at limit shapes where either the membrane self-intersects or two (or more) shapes
are connected by an infinitesimally narrow neck. The latter limit shape requires a certain condition be-
tween the curvatures of the adjacent shape and the spontaneous curvature. For both models, the phase
diagram is determined, which is given by the shape of lowest bending energy for a given volume-to-area
ratio and a given spontaneous curvature or area difference, respectively. The transitions between
different shapes are continuous for the bilayer-coupling model, while most of the transitions are discon-
tinuous in the spontaneous-curvature model. We introduce trajectories into these phase diagrams that
correspond to a change in temperature and osmotic conditions. For the bilayer-coupling model, we find
extreme sensitivity to an asymmetry in the monolayer expansivity. Both models lead to different predic-
tions for typical trajectories, such as budding trajectories or oblate-stomatocyte transitions. Our study
thus should provide the basis for an experimental test of both variants of the curvature Inodel.

I. INTRODUCTION

Lipid bilayers form closed surfaces or vesicles in aque-
ous solution in order to prevent any contact between the
hydrocarbon chains of the lipid rnolecules and the water
[1—3]. These vesicles can be isolated and studied in a con-
trolled way. Three classes of experiments have been per-
formed so far: (i) Transformations between a wide
variety of different shapes which include prolate and ob-
late ellipsoids, biconcave discocytes, and cup-shaped
stomatocytes can be induced, e.g. , by changing the tem-
perature or the osmotic conditions [4—6]. Recently, the
phenomenon of budding, i.e., the expulsion of a smaller
vesicle out of a larger one, has attracted a lot of interest
[7]. (ii) For quasispherical vesicles the long-wavelength
fluctuations which are thermally excited bending modes
have been investigated by light microscopy and video
recording [8—11]. (iii) Micropipet aspiration techniques
yield information about thermal and mechanical proper-
ties and allow the study of the mutual adhesion of giant
vesicles [12—14].

These experiments tend to confirm the theoretical idea
that the shape of a vesicle is mainly determined by bend-
ing elasticity and, thus, by curvature. The theoretical
work on these different conformations of vesicles is based
on continuum models for the bending elasticity [15—17].
In these models, the membrane is viewed as a two-
dimensional surface embedded in three-dimensional
space. Its elastic properties are described by two bending
rigidities. Several studies applied these concepts in order
to (i) calculate vesicle shapes [18—25], (ii) analyze the
Aicker spectrum of the bending modes [26,27], and (iii)

calculate the shapes and phase diagram of bound vesicles
[28,29].

Two variants of a continuum description have been in-
troduced and studied: (i) the spontaneous-curvature
model [16] and (ii) the bilayer-coupling model [24,25]. By
minimization of the bending energy for given area and
enclosed volume, Deuling and Helfrich [18] obtained a
rich catalog of axisymmetric vesicle shapes for the
spontaneous-curvature model. Several further studies of
this model were devoted to modifications of the numeri-
cal algorithm or the investigation for particular values of
the parameters [19—23]. However, the systematics of the
phase diagram, which is determined by the shape of
lowest energy, has not been elucidated so far.

In a somewhat different approach, Svetina and Zeks
[24,25] combined bending elasticity with the bilayer-
coupling hypotheses [17,30]. In this approach, the two
monolayers are considered to be coupled at a fixed dis-
tance but are not allowed to exchange lipid molecules.
This leads to an additional constraint which can be incor-
porated into the continuum model. The corresponding
phase diagram has already been partially investigated
[25].

In this paper, we systematically study axisymmetric
shapes which minimize the bending energy and determine
the phase diagram for both the spontaneous-curvature
and the bilayer-coupling model. We find a new branch of
shapes, the pear-shaped vesicles, and limit shapes consist-
ing of several spheres connected by narrow necks. The
occurrence of these shapes is intimately related to the
budding phenomenon.

Although the bilayer-coupling and the spontaneous-
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curvature model are related via a Legendre transforma-
tion, the corresponding phase diagrams are quite
different. Therefore, our results make it possible to test
both models experimentally since they lead to different
predictions for the sequence of shape transformations. In
particular, all transitions found in the bilayer-coupling
model are continuous while most of the transitions in the
spontaneous-curvature model are discontinuous.

In order to facilitate the comparison with experiments,
we introduce trajectories into the phase diagrams for two
experimentally convenient parameters, the temperature
and the osmotic conditions. For variations in the tem-
perature, our theory shows extreme sensitivity of the se-
quence of shape transformations to a small asymmetry in
the thermal expansivity of the two monolayers [31]. This
provides an explanation for the variety of shape transfor-
mations which have been observed recently even in sim-
ple binary systems consisting of one lipid and water [31].

This paper is organized as follows: In Sec. II we define
both models and introduce our notation. In Sec. III we
derive the shape equations in a certain parametrization
and discuss the branches of stationary shapes. In Secs.
IV and V we discuss the phase diagram for the bilayer-
coupling model and the spontaneous-curvature model, re-
spectively. Trajectories in these phase diagrams are then
calculated in Sec. VI as a function of temperature and
osmotic conditions. A summary concludes the paper in
Sec. VII.

B. Bilayer-coupling model

(2.4)

of the areas 3" and 3'" of the exterior and interior
monolayer can then be expressed by the integrated mean
curvature M,

M:——,
' fdA(C, +C2),

since
53 =2DM,

(2.5)

(2.6)

up to order D /A, where D denotes the distance between
the two monolayers. The bilayer-coupling model requires
the minimization of Gb for a given area 3, for a given
volume V, and a given area difference hA, i.e., integrated
mean curvature M [24,25]. If we denote the correspond-
ing Lagrange multipliers with X', P, and Q, respectively,
the shape equations derive from

The bilayer-coupling model is based on the assumption
that the two monolayers do not exchange lipid molecules,
i.e., area, on experimentally relevant time scales. The
bending energy of the vesicle is taken to be

Gb
—= (K/2)fdA(C, +C2) (2.3)

where the integration is over a suitably defined reference
surface of the two coupled monolayers. A possible
definition of the reference surface is discussed in Appen-
dix A. The difference

II. BENDING ENERGY
AND CURVATURE MODELS

A. Spontaneous-curvature model

5F'—=5(Gq+ X'A +PV+ QM ) =0 .

With the identifications

X' =X+K CD /2 and Q = —2KCD,

(2.7)

(2.g)

In the spontaneous-curvature model of Helfrich, the
bending energy of the vesicle with surface area A and
volume Vis given by [16]

Fb =—(K/2) f0A(C, +C2 —CO) +KG fdA CiCq .

(2.1)

The variables C1 and Cz denote the two principal curva-
tures, while the spontaneous curvature Co is phenomeno-
logically introduced in order to account for a possible
asymmetry of the bilayer. The second term gives the in-
tegrated Gaussian curvature which is constant for topo-
logically equivalent shapes. In this paper we will focus
on shapes which have the same topology as a sphere and,
thus, we will omit this term in the remainder.

The shape of a vesicle is now determined by the
minimum of Fb for a given area 3 and a given volume V.

These constraints are incorporated via Lagrange multi-
pliers X and P. The shape equations are then obtained
from

one finds
F=F' . (2.9)

Thus, both models lead to the same shape equations, as
previously observed by Svetina and Zeks [25].

C. Consequences of the scale invariance

R~kR, (2.10)

provided one transforms K~K and Co ~Co/A, , while one
has 3 —+A, 3, V—+A, V, and M~A, M. For any solution
of (2.7), F' must be stationary under an infinitesimal scale
transformation (2.10) with small A,

—1, which leads to

dF' =0=
dA,

dGb

dA,

dA
d X

Any shape of the vesicle is given by a vector-valued
function R=R(s„s2),where s, and s2 denote suitable
coordinates. The bending energies as given by (2.1) and
(2.3) are invariant under the rescaling transformation

5F=5(Fb+XA+PV)=0 . (2.2)
dM
dXwhere 6 denotes variation with respect to the shape of the

vesicle and X and P are adjusted in order to guarantee the
prescribed area and volume.

dV
d Al

=0+2X' A +3PV+ QM . (2.11)
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The Lagrange parameters P, X', and Q are given by the
partial derivatives of Gb,

S)
F=2rra I L (P, g,X,X,y )dS,

0
(3.2a)

and

BGb

BGb

V, M

(2.12a)

(2.12b)

with the "Lagrange function"
2

L—:—P+ —Co +XX+—X sing
X sing — P z

2 X 2

+y(X —
cosset )

and rescaled parameters

(3.2b)

BGb

~M ~v'
as found by differentiating (2.7).

(2.12c)
and

P =P/ir

X=X/v .

(3.3a)

(3.3b)

III. SHAPE EQUATIONS AND STATIONARY SHAPES

A. Parametrization of vesicle shape

We restrict our search for minimal solutions to axisym-
metric shapes and use as coordinates the arclength S
along the contour and the azimuthal angle P (see Fig. 1).
The shape is then determined by the tilt angle f(S), as
defined in Fig. 1. We use moreover the coordinates X
and Z, which are perpendicular and parallel to the axis of
symmetry, respectively. Then, the geometrical relations

H =— L+ Q—r)L / "r)Q+XBL /BX
rJ

2
sing —Co ——X sing —XX+y cosg

2

(3.4)

is conserved, since dL /BS =0.

The last term in (3.2b) which involves the Lagrange pa-
rameter function y=y(S) must be introduced since the
variables g and X are related by (3.la). Note that the
"Hamiltonian function"

X=cosg,
Z = —sing,

Ci=

(3.1a)

(3.lb)

(3.1c)

B. Shape equations and boundary conditions

The set of Euler-Lagrange equations for I, which are
the shape equations, read

=U, (3.5a)

C2 =sing/X (3.1d)

are evident, where the dot denotes a derivative with
respect to S. The advantage of using the parametrization
g(S) compared to Z (X) is that points with infinite
derivative dZ/dX are regular in this parametrization.
The total energy F as given by (2.2) may now be ex-
pressed as [22]

i 2

y = ( U —Co ) /2 — +PX sing+ X,
2X

X=cosl( .

The boundary conditions for lt and X are obvious:

g(0) =0,
P(S, ) =m. ,

X(0)=0,

(3.5c)

(3.5d)

(3.6a)

(3.6b)

(3.6c)

X(S, )=0 . (3.6d)

FIG. 1. Parametrization of vesicle shape. The axis of sym-
metry is denoted by Z. S denotes the arclength along the con-
tour measured from the north pole of the shape and lt the az-
imuthal angle. %(S) is the angle between the tangent to the
contour and the X axis.

Since the length of the integration interval S& is free, the
extremal conditions (2.2) lead to H(S, )=0, which im-
plies together with (3.4) the boundary condition

y(Si)=0 . (3.7)

y(O) =H(0) =0 . (3.8)

It then follows from the conservation of H that the initial
condition for y is given by
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C. Branches of stationary shapes

We describe in Appendix B a systematic algorithm
which leads in principle to a complete set of solutions of
the shape equation (3.5) for given parameters X, P, and
Cp ~ These solutions which are the stationary shapes con-
tain local minima and saddle points in the space of all
shapes. Physically relevant are the local minima, while
the saddle points give the activation energies for transi-
tions between di6'erent minima. Whether a shape is a
minimum or a saddle point can be investigated by a sta-
bility analysis and may depend on the particular variant
of the curvature model under consideration. In this pa-
per, we have not attempted to perform such an analysis
in general. However, stability in the spherical limit is ad-
dressed in Sec. IV C below, while stability with respect to
axisymmetric deformations can be investigated by a close
inspection of the bifurcation structure (see Sec. VA for
an example).

In the remainder of this section, we describe the sys-
tematics of the stationary shapes and those features of
these shapes which hold in both variants of the curvature
model. A comparison of the energy of these shapes and
the available information on their stability is given in
Secs. IV and V for each variant separately. The station-
ary shapes can be classified according to branches.
Within a branch, the shape varies smoothly as a function
of the parameters.

In fact, a discrete but infinite set of branches is known
to exist from analytic work in which one considers small
deviations from the spherical shape [32—34]. Indeed, the
sphere with radius Ro is a solution to 5F=0, if [16]

PR o+(2X+ Co )Ro —2CO =0 . (3.9)

R OP, i =2[l (l + 1)—ROCO], (3.11)

which defines the critical pressure P, 1. At P=P, 1, the
spherical shape becomes unstable with respect to a Y'
perturbation in an ensemble where the pressure instead of
the volume is prescribed [32].

For l =2, the axisymmetric shapes that arise from the
instability are prolate and oblate ellipsoids. We focus in
this paper on the shapes that develop from this instabili-
ty, since the (I =2) shapes are known to have the lowest
bending energy in the vicinity of the sphere. Moreover,
Peterson, [34] has found that shapes that arise from the
(l & 3) instability are unstable with respect to ellipsoidal
deformations (see Sec. IV C below).

We now discuss five examples for the behavior of vari-
ous branches in the [U(0),X] plane. Here U(0) denotes

For given P and Cp, this relation defines two curves in
the [ U(0), X] plane, which denote spheres for
U(0)—:1/Ro & 0 and inverted spheres for U(0) & 0.

A slightly deformed sphere can be parametrized by

R(8,$)=RO+gai Y' (6,$), (3.10)
1, m

where R denotes the distance from the center of the un-
deformed sphere and 8 and P are spherical coordinates.
The second variation 6 I vanishes for a deformation with
fixed l for

the curvature at the north pole of the shape and X the
Lagrange multiplier for the area, respectively; compare
Appendix B. These examples are displayed in Figs. 2(a)—
2(e).

Example (a) with P &0 and Co=0 [see Fig 2(.a)J. The
starting point at which the prolate and oblate branches
bifurcate from the sphere branch follows from (3.11) with
l =2 and from (3.9) with P=P, 2 T. he prolate branch
first leads to prolate ellipsoids, which look more and
more like dumbbells as one moves further along this
branch. These dumbbells approach finally the shape of
an (infinitely) long capped cylinder of radius R,„,as
[U(0),X] spiral to the limit point [U(0),„~,X,„i].It fol-
lows from (2.2) and (2.11) that the parameters of an
infinitely long open cylinder are related by

and
P=2R,„i(1—COR,„i) (3.12)

X yi:(3 COR yi)(COR i 1)/(2R )) (3.13)

C +C =C (3.14)

In the present case, the shapes A and B are identical and
symmetric. Then this relation simplifies to

U(0)=CO/2 . (3.15)

This value is indicated in Fig. 2(b) by an arrow.
Example (c) with P &0 and Co=2P '~ /see Fig 2(c)j.

As the spontaneous curvature Cp is further increased, the
spiral prolate branch and the additional branch which
connects the sphere and the prolate branch rearrange.
Moreover, additional branches arise which terminate at
the branches already present. At these limit points, the
shapes approach limit shapes which consist of three seg-
ments involving two ideal necks, as displayed in Fig. 2(c).

Example (d) with P &0 and Co=i.27~P~ ~ /see Fig.

These relations were derived previously in Ref. [33] by a
somewhat diA'erent argument. Eliminating Rzy) deter-
mines X,„i(P,Co) and, thus, the X coordinate of the limit
point. There is, however, no obvious relation between
the curvature at the top of the cap U(0), , and the pa-
rameters P and Cp. For a discussion of the other
branches, see further below.

Example (b) with P & 0 and Co=1.5P ~ [see Fig
2(b)J. For Co &P, an additional branch (dashed) arises
which connects the prolate and the spherical branch. It
is important to emphasize that this second branch does
not bifurcate smoothly from the spheres or the prolates.
In fact, the two end points of this new branch denote
shapes which consist of two spheres and two prolates, re-
spectively. The two spheres or prolates are connected by
a narrow neck. Such necks arise frequently in the shapes
and involve diverging curvatures C& and C2, which how-
ever, have compensating signs. Therefore, it is possible
to obtain a neck which has no energy in the limit of zero
diameter, i.e., in the limit where this branch approaches
either the sphere or the prolate branch. We will call such
a neck an ideal neck. We have only found such ideal
necks if the curvatures C ~~ =C2 ——C ~ and C

&

=C2 ——C
of the two limiting shapes A and B adjacent to the neck
fulfill the relation



1186 UDO SEIFERT, KARIN BERNDL, AND REINHARD LIPOWSKY

gp -2/3

OO0.

-0.5

stomato

inverted spheres

in
$ ~ ~a~

spheres
/

/
I

gp -2/3

0

prolates+
: dUmbbells

l = 3- shapes

U(0) P
0.4 0 0.8 1.2 1.4

v(p) p-1/3

yp -2/3

0.5

0

-0.5

1.2 I

1

/
spheres /

~r
/e

/

/

~ ~/ ~

/ ~

oee
~ ~

~r

-1.5 0.8
pear-shaped

vesiclds
~,P

~0
oo

~ ~ +

1.5 2
v(o) p ~' 0.5 ' v(o)(-p) "'

1
—-2/3

Z(-P)

stomatocytes

spheres!
I
I

I

b
I
I
l

'. inverted
',spheres

\

I
\

'\

\

\

go

~ ~

0 1

U(o) (-P) '"

FICx. 2. Stationary shapes for fixed pressure P and spontaneous curvature Co in the (X, U(0)) plane, which denote the lateral ten-
sion and the curvature at the north pole, respectively. The sphere and inverted sphere branch are shown dashed-dotted. Symmetric
branches are shown by solid and dashed lines, asymmetric branches by dotted lines. Bifurcations and limit points are marked with a
solid and an open dot, respectively. Limit shapes are displayed. The length scale is set by ~P~ '~'. lai P&0, Co=0. The prolate-
dumbbell branch spirals to a limit point (not shown) which corresponds to a long capped cylinder. The I = 3 branch is also displayed.
The oblate-discocyte shapes are self-intersected beyond the diamond. (b) P )0, Co =1.5P ' . A further symmetric branch (dashed)
has emerged. The two loci of its limit points fulfill (3.15), as indicated by an arrow. The limit shapes at the upper and lower limit
point are two spheres and two prolates, respectively. (c) P & 0, Co =2P ' . Four symmetric branches are shown. The solid line cor-
responds to the prolate-dumbbell branch bifurcating from the sphere branch. It approaches again the sphere branch with a limit
shape given by two spheres. The long-dashed line denotes a branch which approaches the normal prolate branch with a limit shape
given by two prolates and spirals to the capped cylinder. The two short-dashed lines correspond to branches which approach at the
limit points shapes consisting of three segments. Additional branches without up-down symmetry occur but are not displayed. (d)
P (0, CO=1.27~P'~'. The dotted line corresponds to pear-shaped vesicles bifurcating from the prolate-dumbbell branch. The two
limit points for the pear-shaped vesicles fulfill (3.16). The limit point for the prolate-dumbbell branch is given by {3.15). {e) P &0,
Co = —~P ~

'~3. The dotted lines in the right and left corners denote stomatocytes which approach the limit shapes given by an invert-
ed sphere embedded in a larger sphere. The left part seems to merge with the solid line which denotes discocytes approaching the
same limit point at the sphere branch with the symmetric limit shape.
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2(d)j. In this case, the (1=2) instability of the sphere is
not present in the [ U(0), X] plane. Nevertheless,
prolate-dumbbell shapes are found which approach the
sphere branch as U(0) goes to 0 and as U(0) approaches
the value Co/2 as given by (3.15). In the latter case, the
shape approaches again the limit shape of two spheres
connected by an ideal neck.

The important novel feature in case (d) is the oc-
currence of pear-shaped vesicles which break the up-
down symmetry of the prolate shapes and bifurcate from
this branch. This pear-shaped branch contains each
shape twice since mirror shapes arise separately. There-
fore, the Lagrange multiplier X acquires its extremum at
the bifurcation point. For Co ) ~2P

~

'~, which is the case
considered here, these pearlike shapes approach limit
shapes which consist of two spheres of different radii R,
and Rz again connected by an ideal neck. Both radii
obey the relation (3.9) valid for spheres. It then follows
from (3.14) that the end points of the pear-shaped vesicles
are characterized by the relation

into the structure of the branches of the stationary
shapes. We now turn to the determination of the phase
diagram in each of the two ensembles separately.

IV. PHASE DIAGRAM
FOR THE BILAYER-COUPLING MODEL

where

V

(4~/3)R o

(4.1)

In this section we discuss the phase diagram for the
bilayer-coupling model. First, we determine the region of
existence of the prolate-dumbbell, the pear-shaped, the
oblate-discocyte, and the stomatocyte branches, respec-
tively. Secondly, we compare the bending energy in re-
gions where solutions of different branches overlap. Be-
cause of the scale invariance of the bending energy, the
phase diagram depends only on two dimensionless vari-
ables U and ha. The reduced volume U is given by

X=CO/2 . (3.16) Ro—= ( A /4~)' (4.2)

Now return to Fig. 2(a) for Co=0 and focus on the ob
late branch which bifurcates from the spherical branch to
the other side. This branch crosses the axis U(0)=0.
For U(0) &0, the shapes are biconcave discocytes, which
look like red blood cells. Thus, a continuous variation
leads from the oblate ellipsoids to discocytes.

Eventually, the oblate branch becomes unstable with
respect to the up-down symmetry. At this point, the
stomatocyte branch bifurcates which also contains each
shape twice since mirror shapes arise separately. In the
limit of large U(0), the stomatocyte branch approaches
the sphere branch and the inverted sphere branch, re-
spectively. In fact, in this limit, the stomatocytes ap-
proach a shape that consists of a sphere and of an invert-
ed sphere of equal radii which are connected by an ideal
neck.

If the oblate-discocyte branch is continued beyond the
bifurcation of the stomatocytes, a point is reached where
the discocyte shape self-intersects. This defines the physi-
cal limit of the model although the shapes can be
mathematically continued beyond this point. Then, these
shapes also approach the spherical branch as U(0) goes
to —~. The mathematical limit shape is given by two
inverted spheres embedded in a sphere with the same ra-
dius.

Example (e) with P &0 and Co= —~P~ /see Fig
2(e)J. In this case, the discocytes approach a limit shape
where two inverted spheres of radius R, &0 are embed-
ded in a larger sphere of radius Rz & 0. The end point of
the discocytes approach the sphere branch for X=C~/2.
Moreover, two identical stomatocyte branches approach
a limit shape which consists of a small inverted sphere of
the same radius R, embedded in a large sphere. Once
again, these limits are given by the intersection of (3.16)
with the sphere branches. It is numerically rather
difficult to reach this limit point, since the branches are
so close together.

The diagrams shown in Fig. 2 lead to general insight

is the radius of a sphere with the same area. The reduced
area difference Aa is determined by the area difference
b, 3 or the integrated mean curvature M, from (2.5) and
(2.6), as

b,a =M/(4~R—O) . (4.3)

A. Prolate, dumbbell, and pear-shaped states

As shown in Fig. 3, shapes of the prolate-dumbbell
branch exist in a certain region of the phase diagram
which is, for v )&2/2, bounded by the lines L(" and
Lf". In the region where these symmetric solutions ex-
ist, the line C "' denotes an instability line of these
shapes. They become unstable with respect to a mode
which has no up-down symmetry. Between the curves
C "' and L "', pear-shaped vesicles exist, which always
have a lower bending energy than the symmetric states
for the same b,a and v (compare Fig. 4), where the func-
tional dependence of G&(b,a ) is given for v =0.8. In the
region bounded by the lines C '" and LP', the sym-
metric states correspond to locally unstable shapes. In
Fig. 5 we show symmetric and asymmetric shapes for
u =0.8.

At the transition line C "', the amplitude g of the un-
stable mode can be considered as an order parameter in a

For a sphere, one has U =ha =1.
The phase diagram in the (v, Aa ) plane is shown in Fig.

3. It turns out that (i) the region where solutions of the
oblate and stomatocyte branches exist and (ii) the region
where the solutions of the prolate and pear-shaped
branches exist do not overlap. Therefore, the phase dia-
gram consists of two parts which we discuss separately.

As a fundamental result, we find that all shape trans-
formations are continuous, i.e., the first derivative of the
energy Gb with respect to U or ha is continuous at the
transformation point.
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R
&
+R =UR0 ~2

A little bit of algebra then leads to

vP"(ba)=1 —3(ba —1) /2 —(ba —1) /2,

(4.5c)

(4.6)

1.5

Gb
8@x

ob

with ha & 1, which describes the line L""'. At L ~'", the
bending energy Gb approaches the value 16~~ corre-
sponding to two spheres.

The symmetric shapes assume simple limit shapes at
the lines LP', Lf", and L " . The limit shape L~" of
the unstable part of the prolate branch is given by two in-
tersecting spheres of the same radius. This limit, shape
has infinite bending energy and therefore Gb diverges as
the limit is approached. This implies with (2.8) and (2.12)
that Cp ~ (x) and P~—~ at this limit. The limit shape
Lf" of the stable part of the prolate branch is given by a
cylinder capped with half-spheres. Such a shape has a
finite bending energy. Numerically, we find that the ap-
proach to this limit shape is governed by

Gb(ba') —Gb(ba ) =(ba —ha*)

with cz =0.2, if Aa * denotes the value of the limit shape.
The three curves C~"",L (", and L ~'" meet in the spe-

cial point B2, with the coordinates

(4.7)

1.48

1.46

1.02

2.5

2

stomat

Idls

1.025 1.03 1.035 1.04

where two spheres of equal radii are connected by an
ideal neck.

For v (&2/2, the phase diagram becomes more com-
plex since an increasing number of limit shapes becomes
available. These limit shapes consist of several spheres
(with at most two different radii) connected by ideal
necks which obey (3.14) or ellipses connected by ideal
necks with spheres [35]. We have not yet attempted to
investigate this region of the phase diagram systematical-
ly.

B. Oblate, discocyte, and stomatocyte shapes

Since this part of the phase diagram has already been
described by Svetina and Zeks [25], we give only a short
summary for completeness. Oblate and discocyte shapes
exist in the region bounded by the curves L'", L ", and
SI' (see Fig. 3). The limit shapes at L' consist of two
spherical caps. At I. ", the limit shapes are given by a
sphere which encloses two smaller spheres. The curve
SI'" denotes shapes where the north and south poles
touch each other, i.e., the shapes begin to self-intersect.
For even smaller volume beyond SI', self-interaction of
the bilayer must be taken into account in order to prevent
this self-intersection [36]. If one allows for topological
changes of the vesicle shape, this line of the phase dia-
gram will be related to formation of a hole through the
vesicle and, thus, to the occurrence of toroidal vesicles
[37].

At the line C"', the oblate and discocyte shapes be-
come unstable with respect to a deformation that breaks
the up-down syrnrnetry and undergo a shape transforma-
tion towards the stomatocytes. Therefore, the symmetric
states are locally unstable in a region bounded by the

1.5

0.5 0.6 0.7 0.8 0.9 1
h, a

FIG. 6. Bending energy as a function of the reduced area
difference for v=0. 8. Note the different scales for ha. C"'
denotes the continuous transition from symmetric (solid) to
asymmetric (dashed-dotted) shapes. The points L', L ", and
L"' denote limit shapes for these branches, which are given by
two opposing spherical caps, two inverted spheres embedded in
a larger one, and the inclusion of a spherical cavity in a larger
sphere, respectively.

0.476 0.6 0.8 1.034 1.039

0.62 0.7 0.8 0.9 1.0309

FIG. 7. Stationary shapes for v =0.8 and several values of
ha. (a) Syrnrnetric shapes; the three leftmost shapes are locally
unstable. (b) Stomatocytes; all shapes are locally stable.
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lines C"', L ", and SI' (see Fig. 3). This shape transfor-
mation can again be understood by a Landau-type expan-
s1011, as 111 (4.4).

The stomatocytes exist in a region bounded by the lines
C"', L"', and SI",where they always have lower energy
than the symmetric shapes. At L"', the limiting shapes
consist of a sphere that encloses a smaller sphere. Both
spheres are connected by an ideal neck. The locus L"' is
given by (4.6) with 0(b,a (1. In Fig. 6 we show the
bending energy and in Fig. 7 the shapes of the two
branches for v =0.8. The bending energy diverges at L'
and remains finite at L "and L"'.

C. Further branches of solutions

So far, we have discussed prolate and oblate shapes
arising from the (I =2) bifurcation of the sphere and the
symmetry-breaking pearlike and stomatocyte shapes. In
the phase diagram of Fig. 3 the gap between the limit
shapes L1" and L' implies that this region contains no
axisymmetry (l =2) shapes. On the other hand, this re-
gion contains shapes that derive from the (l ~ 3) bifurca-
tion of the sphere. Peterson [34] has found, however,
that these shapes are locally unstable with respect to el-
liptical deformations in the spherical limit, i.e., as v goes
to 1. His argument is based on the general expression for
the second variation of the bending energy in this limit.
It holds irrespectively whether the spontaneous-curvature
model or the bilayer-coupling model is considered. This
implies that if the gap contains locally stable shapes at
all, these must be nonaxisymmetric (l =2) shapes. How
far this region of stable nonaxisymmetric shapes extends
into the prolate and oblate region cannot be answered
without a more detailed analysis.

Finally, it is remarkable that the boundary lines LP',
L('1", and L' approach the sphere point (v, ha)=(1, 1)
with the same derivative

derivative of the energy Fb is discontinuous at the transi-
tion point.

A. Phase diagram for zero spontaneous curvature

This case is certainly the minimal model for vesicle
shapes and deserves a special presentation. In Fig. 8 we
show the bending energy Fb as a function of the reduced
volume v for the prolate-dumbbell, oblate-discocyte, and
stomatocyte branches. The pear-shaped vesicles do not
exist for this choice cp =0.

The prolate-dumbbell branch exists for all 0(v ~1.
With decreasing reduced volume v, the shapes along this
branch vary smoothly from a prolate ellipsoid via
dumbbell-like shapes to a long and narrow capped
cylinder.

For v ~ 1, the shapes of the oblate-discocyte branch
correspond to oblate ellipsoids. With decreasing v, these
shapes become discocyte and finally self-intersect for
v =vs —0.50.

For v =vz'-—0.51, the stomatocyte branch bifurcates
from the oblate branch. It reaches the maximal volume
at v=vM'-—0.66. The lower part of this stomatocyte
branch finally approaches a limit shape for small v, where
an inverted sphere is connected by an ideal neck with a
sphere of the same radius as required by (3.14) for Cp =0.
Thus the volume vanishes and the energy goes to 16~~.

The form of the energy Fb as shown in Fig. 8 for the
oblate-discocyte and the stomatocyte branches can again
be understood in terms of a Landau-type expansion for
the order parameter g which represents the amplitude of
the unstable mode. As before, this mode breaks the up-
down symmetry of the oblate-discocyte shapes. Howev-
er, in this case, one has to include a six-order term Q6,
which leads to

Fb =const+Q2(v, cp)'g +Q4(v cp)'g +Q6(v cp)ri

dna
dv

1

3
(4.8)

(5.2)

As proven in Appendix C, this relation holds even more
generally for any curve (v(t), ha(t)) of smooth shapes
which approach the sphere, i.e., which can be
parametrized as in (3.10) where a& (0)=0.

2.5

Fb
8zx si "

V. PHASE DIAGRAM
FOR THE SPONTANEOUS-CURVATURE MODEL

For the spontaneous-curvature model, the phase dia-
gram is determined by the solution of the shape equation
which has the lowest bending energy Fb for a given area
3 and volume V. Because the bending energy is scale in-
variant, this phase diagram again depends only on two di-
mensionless parameters, which are the reduced volume
v—:V/[(4~/3)R p ] as defined by (4.1) and the reduced
spontaneous curvature of cp as given by

co=Cowp

Since the branches have significantly more overlap in this
model, most transitions are discontinuous, i.e., the first

stomatocytes

15.

0.2 0.4
I

0.6 0.8 1
V

FIG. 8. Bending energy for co=0 as a function of the re-
duced volume U. Three branches are displayed: the prolate, the
oblate, and the stomatocyte branches. The latter bifurcates
from the oblate branch. Its upper part between C" and M'"
corresponds to locally unstable shapes. Its lower part between
L"' and M" corresponds to locally stable shapes. The oblate
branch beyond SI'" corresponds to self-intersected states.
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Fb
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FIG. 11. Bending energy for co =2.4 as a function of the re-
duced volume v. Two different symmetric branches, prolate-1
and prolate-2, are connected by an asymmetric pear-shaped
branch which bifurcates at C "' and CP" from the symmetric
branches. The upper part of this pear-shaped state corresponds
to locally unstable shapes. The prolate-1 branch attains
minimal volume at M"". The energy along its upper part then
presumably diverges. The prolate-2 branch ends up for
v =&2/2 in the limit shape where two spheres of equal radii are
connected by an ideal neck. This short continuation of the
prolate-2 branch beyond the bifurcation C "' is not visible on
this scale.

FIG. 13. Bending energy for co=3 as a function of the re-
duced volume v. The two different symmetric branches,
prolate-1 and prolate-2, are no longer connected by the asym-
metric pear-shaped branch. The latter branch bifurcates at
C("', attains a maximal volume at M "",and ends up in a limit
shape L""', where two spheres of different radii are connected
by an ideal neck. The prolate-2 branch starts in the (unstable)
limit shape L " " where two prolates are connected with an
ideal neck. Along this branch, at least two instabilities with
respect to the up-down symmetry occur which are not visible on
this scale. An additional "wing" emerges for v =0.58. The dot-
ted line denotes an approximation to the pear-shaped states, as
discussed in Appendix E.

C~ear 1/R +(R 2 R 2
)
—1/2 (5.3)

This equation determines the required spontaneous cur-
vature for budding of a small vesicle of radius R&. For
small R „wehave CP" = 1/R, . Equations (5.3) and
(4.5c) lead after a little bit of algebra to the location of the
line L ~'" as given by

13 and 14 where the functional dependence of Fb(v) for
c0=3 and stationary shapes, respectively, are displayed.
The pear-shaped vesicles approach a limit shape at I, '",
where two spheres of radii R, and R2 are connected by
an ideal neck. The relations (3.14), with C =—R, ' and
C —=R 2, and (4.5b) lead to

are connected by an ideal neck. For co ~ 2&2 and
v ~&2/2, further instabilities of the symmetric shapes
occur. Again, we have not attempted a classification of
the shape transitions in this region.

We now turn to the lower part of the phase diagram
shown in Fig. 10. The oblate-discocyte shapes have
lowest bending energy in the region bounded by the lines
D, SI', and D"'. Beyond the line SI', the discocyte
shapes self-intersect and must be excluded physically.
This is also the physical limit of the discontinuous
prolate-oblate transition D. The line D'" denotes a
discontinuous transition between the oblate-discocyte
shapes and the stomatocytes, while D*'" is an approxi-

vE' (co) 2co +(1 2co )+1+co (5.4)

The line I.P'" starts at the point B2, with coordinates
(co, v )=(2&2,v'2/2), where two spheres of equal radii

J dumb I Pe&r D pear

C pear D pear

0.56 0.584 0.65 0.707 0.748 0.786 0.823 0.824

0.6 0.705 0.706 0.73 0.748 0.749 0.85

FIG. 12. Shapes along the "reentrant" trajectory for co =2.4
and several values of v. DP"' and C '" denote a discontinuous
and a continuous transition, respectively.

FIG. 14. Stationary shapes for co =3 and several values of v.
DP'" denotes the discontinuous transition between the prolate-
dumbbell and the pear-shaped states. The latter terminate in
the limit shape L '". The prolate-2 branch starts at the (unsta-
ble) limit shape L " ". An asymmetric shape is shown for
v=0. 584. These asymmetric shapes become symmetric again
with decreasing volume as displayed for v =0.56.
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mation to this transition, as discussed in Appendix E.
It is interesting to note that the continuation of the

oblate-stomatocyte transition into the region of self-
intersected states leads to a tricritical point where both
coefficients Q2 and Q4 in the Landau-type expansion (5.2)
vanish. The locus of this point can be read off from Fjg.
18(a) given below.

The region where the stomatocytes have lowest bend-
ing energy is furthermore bounded by the line SI"' which
denotes self-intersection of the stomatocytes, and the line
L' . Along L', one has ljmjt shapes whjch consist of an
inverted sphere of radius R I &0 connected with an ideal
neck to a sphere with radius R2 & 0. The locus of the line
L "' is again given by the right-hand side of (5.4) but with
co &0.

The boundaries in the region of the phase diagram
determined so far are given by the lines L~"', SI'", SI"',
and L"', where two parts of the membrane come into
close contact. In order to continue the phase diagram
beyond these lines, additional interactions such as the van
der Waals interaction or the repulsion arising from hy-
dration forces must be taken into account.

VI. TRAJECTORIES IN THE PHASE DIAGRAM

In a typical experiment, the shape of a vesicle is stud-
ied by light microscopy. More precisely, one observes a
one-dimensional contour of the two-dimensional vesicle
surface. This contour allows a determination of the area
A and the volume V and thus of the reduced volume v of
the vesicle provided (i) the vesicle is indeed axisymmetric
with its axis parallel to the image plane and (ii) fiuctua-
tions of the vesicle contour are not too strong. For a
freely fioating vesicle, condition (i) will only be fulfilled
for a relatively small fraction of the observation time.
Condition (ii) depends crucially on the ratio T/~ which
sets the scale for fluctuations. For the typical values
x.=10 ' J, T=4X10 ' J and T/jr=0. 04, experiments
yield a well-defined contour. In order to determine Aa,
one needs the value of the integrated mean curvature
which may also be inferred from the contour via (2.5),
(4.2), and (4.3).

Therefore, the relevant parameters U and Aa for the
bilayer-coupling model are, at least in principle, deduci-
ble from the observed contour. In contrast, we are not
aware of any method by which one can directly control
or measure the spontaneous curvature Co.

Transformations of different vesicle shapes are experi-
mentally induced by a change in temperature or the
osmotic conditions. Therefore, we will now discuss the
corresponding trajectories in the phase diagrams of the
bilayer-coupling and the spontaneous-curvature models.

A. Temperature trajectories in the bilayer-coupling model

An increase in temperature results in thermal expan-
sion of the two monolayers and the enclosed water. We
admit different thermal expansivities a'" and e" of both
monolayers as given by [31]

and

I dA"a'"= =(1+y)a,
g ex (6.1b)

which defines y. The expansivity of the reference surface
can be written as

=(1+y)a,1 dA
(6.2)

where y is of the order of y and can be expressed by the
parameters of the two monolayers (see Appendix A).

We moreover allow the separation D of the two mono-
layers to become temperature dependent as given by

I dD
D dT

The expansivity of the enclosed water is written as

1 dV
t/" dT

(6.3)

(6.4)

With (4.1), (4.3), and (2.6), we obtain for the tempera-
ture dependence of the reduced volume U and area
difference ha the expressions

aIlcl

dU

dT
=u [a —(1+y )3a/2]

dna =a'"[a(1+y)—aD —a(1+y )/2]

(6.5)

with

—a '"[a—aD —a( 1+y ) /2], (6.6)

ex g ex

4D(~A )'
(6.7a)

in (6.7b)

The T dependence of a' and ain directly follows from
(6.1) to (6.3). If we assume that all coefficients of expan-
sivity are temperature independent, the differential equa-
tions for v and Aa can be integrated and yield

u (T)=u ( To)expI [a1 —(1+y)3a/2](T —To)] (6.8)

aIlcl

(a(1 —y)/2 —aD ]( T —To)ba T=e
X [a'"(T )e ' —a'"(T )] (6.9)

Eliminating T—To in both equations, one finds for a
temperature trajectory the expression

ba =(uo/u)"Ibao+b [(uo/u)~~ 1]], — (6.10)

where b,ao=b, a(TO) and uo ——u(To). The exponents r
and q are of the order unity and given by

1 dA'"
gin dT (6.1a) r = [a(1—y )/2 —aD ]/[(1+y)3a/2 —a1 ] (6.11)



1194 AND REINHARD LIPOWKARIN BERNDL,UDQ SEIFERT,

q =a/[(1+ y )3a/2 —a ~] .

boefficient b is given yThe dimensionless c

A(T )] ]A 1/2cx(T )
—gc=a — '"( T ) / [4D ( To ) [vr 2 0

(6.12)

(6.13)
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v(T)=0. 65 between a dumbbell and a discocyte state
which involves presumably nonaxisymmetric shapes. A
further discontinuous transition at v =0.59 then leads
from discocytes to stomatocytes. If the discocytes are
continued into the metastable region, the value
v =vc"-—0.51 gives a lower bound for this transition to
set in since the discocytes are locally unstable for v & v&'.
Note that starting from the sphere at v = 1, a temperature
difference T —To-—60 K is required in order to reach the
transition at vD'-—0.59 for the typical value a = 6 X 10 /
K [12].

For co(T)%0, several sequences of shape transforma-
tion can be obtained. For simplicity, we again assume
that co(T)=co is temperature independent. Then a tem-
perature trajectory is parallel to the v axis of the phase di-
agram shown in Fig. 10. Sequences related to those dis-
cussed above for the bilayer-coupling model are charac-
terized in the spontaneous-curvature model by the follow-
ing features:

(i) Reentrant trajectory. Such a trajectory occurs for
co ' ~co~2&2, with co '=2.08. The symmetric prolate
vesicle first undergoes a discontinuous transition to the
asymmetric pear-shaped state. A further increase in tem-
perature then leads to a continuous transition back to a
symmetric shape (compare Figs. 11 and 12 for the energy
and the shapes for co=2.4). The two main differences of
this type of trajectory compared to the bilayer-coupling
model are (i) the first discontinuous transition which
should lead to hysteresis and (ii) the narrow neck when
the vesicles become symmetric again.

(ii) Budding trajectory. Such a trajectory requires
co) 2&2. A discontinuous transition leads from sym-
metric prolate or dumbbell shapes to asymmetric pear-
shaped states (compare Figs. 13 and 14 for co=3). The
larger co is, the smaller the expelled vesicle as expressed
by the relation (5.3). The main difference compared to
the bilayer-coupling model is once again the character of
the transition. Moreover, pear shapes with a slight asym-
metry are locally unstable in the spontaneous-curvature
model and, thus, do not occur as equilibrium shapes as
they do in the bilayer-coupling model.

(iii) Prolate oblate transition-. This transition requires
1~co) —1.2. For the axisymrnetric shapes considered
here, the transition is discontinuous and the shape trans-
formation might involve nonaxisymmetric shapes. A de-
tailed analysis of this process and the corresponding ener-
gy barrier has not been attempted so far.

(iv) Oblate stomatocyte t-ransition This transitio. n is
also discontinuous and requires co &0.4. For co &0, the
vesicle attains a limit shape at I."' where a small cavity is
enclosed with increasing temperature. As ~co ~

is in-
creased, the size of the cavity becomes smaller and the
temperature difference which is required in order to
reach this limit shape also decreases.

C. Osmotically induced shape transformations

Shape transformations can also be induced by a change
in the osmotic conditions. Let us assume (i) that a vesicle
with volume V contains n moles of a solute like sugar
which cannot permeate through the membrane and (ii)

the concentration c in mols per volume of the solute in
the exterior solution can be controlled. Then an osmotic
pressure H is present, which is given by

II =R T(n /V —c ), (6.15)

where R is the gas constant, assuming that the solution is
ideal. The vesicle responds with permeation of solvent
through the membrane which leads to a change in
volume and thus in the interior concentration of solute
n /V. The equilibrium condition is given by

BGb =II( V) (6.16a)

or

BFb
=11(V) (6.16b)

VII. SUMMARY

In summary, we have systematically studied the shapes
of low energy and, in this way, determined the phase dia-
gram for two variants of the curvature model. En this
model, the shape of a quid vesicle is determined by the
Ininimum of the bending energy under additional con-
straints for the area, the enclosed vo1ume, and the in-
tegrated mean curvature of the spontaneous curvature.
In order to obtain a general overview over the shapes, it
was appropriate to relax the constraints and, thus, to
consider the problem of extremal energy for given
"fields, " i.e., for a given external tension, pressure
difference, and spontaneous curvature. The solutions to
the shape equations for axisymmetric vesicles can be
classified into branches. We discussed in detail the
prolate-dumbbell, the pear-shaped, the oblate-discocyte,

for the two models, respectively. The left-hand side of
these relations is of the order of 8'~/V=6X10 J/m,
for z = 10 ' J and V = 4 ~ (10 pm) . It then follows from
(6.15) with R T = 2. 5 X 10 J/mol, for T =300 K, that
only extremely small concentration differences of the or-
der 10 mol/m can be balanced by the curvature term.
Therefore, the vesicle must adjust its volume close to the
value V=n/c in order to achieve this balance. In this
way, a change in the solute concentration c leads to a
variation of the volume v [16].

If the solute does not couple to the membrane, i.e., if
AA or Co do not change with c, a variation of c will lead
to horizontal trajectories parallel to the v axis in the phase
diagrams shown in Figs. 3 and 10. Inspection of Fig. 3
shows, that thus in the bilayer-coupling model, neither
budding nor the inclusion of a cavity is accessible by in-
creasing the solute concentration. In contrast, in the
spontaneous-curvature model, trajectories parallel to the
v axis can exhibit both phenomena (compare Fig. 10).
Therefore, if budding were observed by increasing the
solute concentration, one would have to conclude (i) that
the spontaneous-curvature model is appropriate for this
system or (ii) that the membrane properties have changed
by adding the solute which may also lead to an anoma-
lous change in AA.
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and the stomatocyte branches.
Quite generally, branches emerge and vanish either (i)

at bifurcations or (ii) at limit points. Bifurcations result
from successive symmetry breaking. The shape of
highest symmetry is the sphere. Its rotational invariance
can be broken with Y' perturbations. The shapes
which result from an even / perturbation have up-down
symmetry like the prolate and oblate ellipsoids for l =2.
Breaking this symmetry leads to asymmetric vesicles like
the pear shapes and the stomatocytes. Limit points are
points beyond which the branches cannot be extended.
We may distinguish three types of limit shapes: (i)
Shapes where the volume becomes infinite like the capped
cylinders which are limit points for the prolate-dumbbell
shapes. (ii) Shapes which consist of two or several parts
connected by an infinitesimal neck. For the pear-shaped
vesicles, these limit shapes correspond to the budding
phenomenon. The occurrence of these limit shapes is
generally restricted to those which fulfill the relation
(3.14) between the curvatures of the adjacent shapes and
the spontaneous curvature. (iii) Shapes for which two
segments of the membrane start to self-intersect and the
model becomes unphysical.

We then imposed constraints to the surface area and
the enclosed volume, i.e., we searched for the shape of
lowest bending energy for a given area and volume. Two
variants can be considered which are related via a Legen-
dre transformation. These are the spontaneous-curvature
model and the bilayer-coupling model. Shapes which
correspond to a local minimum in one model may, how-
ever, correspond to a saddle point and are therefore un-
stable in the other model. This has been discussed in
terms of energy diagrams, as in Figs. 4 and 8. As a gen-
eral feature, we find that the transitions in the bilayer-
coupling model are continuous while those in the
spontaneous-curvature model are discontinuous (with one
exception) because in the latter model the branches typi-
cally develop "wings" with unstable and metastable
parts. This distinction should have important conse-
quences, since, e.g. , in the spontaneous-curvature model,
hysteresis effects at the discontinuous transitions are ex-
pected. We compared the energy of the different
branches and, thus, determined the phase diagrams for
both models. While half of the phase diagram of the
bilayer-coupling model shown in Fig. 3 was already
known, the phase diagram for the spontaneous-curvature
model displayed in Fig. 10 is new and constitutes one of
our main results.

For a comparison between theory and experiment, we
introduced trajectories into these phase diagrams (see
Fig. 15). A temperature trajectory determines the se-
quence of shapes and transformations which result from a
change in temperature. For the bilayer-coupling model,
we found that already a minute asymmetry in the mono-
layer expansivities has drastic consequences. If the ex-
pansivity of the outer monolayer is larger than the expan-
sivity of the inner one, typically budding will occur, while
in the reverse situation the inclusion of a small cavity is
predicted. Although for the spontaneous-curvature mod-
el a similar detailed analysis is dificult since the tempera-
ture dependence of the spontaneous curvature is not obvi-

ous, we could discuss the similarities and differences in
both models for typical trajectories, such as a reentrant
trajectory (Figs. 11 and 12), a budding trajectory (Figs. 13
and 14), and the oblate-stomatocyte transition (Figs. 8
and 9). As a main result, we find that both models typi-
cally lead to different predictions. This also holds for tra-
jectories which are induced by changing the osmotic con-
ditions.

In conclusion, we provided a detailed study of vesicle
shapes and their transformations which should enable an
experimental test between both variants of the model.
Since different physical assumptions lie behind these vari-
ants, any experiment which can distinguish between the
predictions of the two models will improve our under-
standing of these bilayer systems. A recent experiment
on the shape transformations of giant dimyristoyl phos-
phatidylcholine (DMPC) vesicles gave good agreement
with the theoretical predictions obtained from the
bilayer-coupling model [31]. More experiments on
different systems are certainly required to obtain a gen-
eral picture. We hope that our theoretical study will pro-
vide some guidance for these experiments.

During the preparation of this manuscript we obtained
copies of several papers prior to publication that were
concerned with some aspects of our work: Budding in
the spontaneous-curvature model has also been con-
sidered by Wiese and Helfrich [38] and for large spon-
taneous curvature by Miao et al. , [39]; pear-shaped
states in the bilayer-coupling model have been indepen-
dently found by Svetina, Kralj-lglic, and Zeks [40]; and
the oblate-stomatocyte transition in the spontaneous-
curvature model has also been studied by Peterson [41].
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APPENDIX A: REFERENCE SURFACE

In this appendix we discuss (i) a possible definition of
the reference surface for the bilayer-coupling model in
terms of the two monolayers [42], (ii) the irrelevance of
the spontaneous curvature in the bilayer-coupling model,
and (iii) the thermal expansivity of the reference surface if
the two monolayers expand asymmetrically.

We start from a continuum model for the two mono-
layers at constant separation D. Their bending energy is
given by

F~=(v'I2)/de'(2HJ C~o) +v~g f dAJK—~, (Al)

where j=in or ex refers to the two monolayers. Here 2 ~

is the area, H~: (C~i+C~z)/2 the m—ean, and K~—= C~iC~z

the Czaussian curvature, ~ and ~G are the bending rigidi-
ties and Co is the spontaneous curvature of the two
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d A '"=d A ( 1 2D—PH ),
d A'"=d A [1+2D (1 P)H—),
H'" =H +D/3(2H K)—,
H'"=H —(1 P)D—(2H K),—
K'"=K +2D/3HK,

(A2)

(A3)

(A4)

(A5)

(A6)

K'"=K 2D (1—P)HK—, (A7)

up to order D /A. Inserting these expressions into (Al),
one observes that the total bending energy Fb =F',"+F"
can be written in the form

F'"+F =(K/2) f dA(2H —Co)

monolayers, respectively.
We now introduce a reference surface with area

mean curvature II, and Gaussian curvature K which is in
a fixed but yet undetermined distance pD from the inner
monolayer. Using standard formulas of di6'erential
geometry, one has

min„ i M(F',"+F'") =mm„v~ —f d A (2H)

—2&C M+ —C A0 2 0

=ming y M f d A (2H)

min g P' ~Gb (A14)

dA
dT

with Gb as in (2.3). Therefore, the spontaneous curvature
can be ignored in the bilayer-coupling model from the
very beginning. Stated diff'erently, the phase diagram in
the bilayer-coupling model does not depend on a spon-
taneous curvature.

Let us finally discuss the consequences of an asym-
metric expansion of the monolayers in this approach. We
need in Sec. VI the thermal expansivity of the reference
surface in the bilayer-coupling model. This quantity is
given by

D2
+const A +0

d [(1—P)A'"+PA'"]
dT

=a(1+ py ),

[(1—P) A '"+PA '"]

(A15)

DZ
+KG f dA K+0

[ E.

prouided one chooses

p ex/( in+ ex
)

(A8) O(y, y(b, A/A), (b, A/A)~} .

Here, we used the expansivities (6.1) for the two mono-
layers. Therefore, y of (6.2) is given by

(A16)

For this derivation, we assumed that ~'" and ~" are tem-
perature independent.

which determines the position of the reference surface.
Moreover, one has to define APPENDIX 8: ALGORITHM

K=K +K (A10)

KG =KG+K~g+4D [pK "Com l2( 1 /3)K "Co"l2]— (Al 1)

C =—( '"C'"+ '"C'")/p= 0 0

+(D/K)[pK'"(Co") l2 —(1—p)K'"(Co') l2] .

(A12)

Ignoring the terms of order D /A, one arrives at (2.1) for
the bending energy in the spontaneous-curvature model.

In the bilayer-coupling model, the area diA'erence

hA = A'" —A'"=2DM: 2D fH dA- (A13)

is prescribed. In this case, however, the spontaneous cur-
vature Co occurring in (A8) is irrelevant, as can be seen
from the identities

In this appendix we describe the algorithm we use in
order to solve the shape equations (3.5).

In principle, a complete set of solutions can be ob-
tained as follows: First, choose P)0 which defines a
length scale P ' and fix X and Cp ~ Then, integrate the
diff'erential equations (3.5) with the initial values g(0) =0,
U(0), X(0)=0, and y(0) =0. Now, define Sii"' by
g(SI"')=~ with n ~ 1 and S'i" ")S'i"'. A plot of
X(S',"') versus U(0) is shown in Fig. 16. The values U(0)
and S',"' for which S(S',"'

) =0 yield solutions of the shape
equations (3.5) with the boundary conditions (3.6)—(3.8).
Note, that y(S, ) =0 is automatically fulfilled for
U(0) = U(0) because H is conserved.

Since X=O is a singular point of the equations (3.5),
X(S',"'

) =0 cannot really be reached numerically. There-
fore, it is in practice better to determine an approxima-
tive value U(0)* for U(0) by extrapolation from the
values obtained by a diagram like Fig. 16. Likewise, one
obtains from this approximate solution an estimate S',"'*
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FIG. 16. Systematic search for solutions to the shape equa-
tion for X= —1.1P ' and CO=0. Solutions are obtained for
those U(0) for which X(S',"')=0. The corresponding shapes
are displayed. The solutions can typically be attained from one
side of the U(0) axis. If a trial contour has reached one of the
following stopping criteria: X(S'&"')P '"(10 ', %(S)(—2~,
%(S)) 3m, or maximal 1.6X10 ' integration steps of maximal
step size 10, it was discarded without marking.

(8 la)

to S&"' and an estimate U& to the curvature at the south
pole U, =—U(S',"'). These estimates are then used as ini-
tial values in a shooting method, as follows:

Choose this value U(0) *, integrate a fixed length
S (S',"'* from the north pole at S=0 and obtain g(S ),
U(S), X(S), and y(S). Then start a second integration
at the south pole with U=U*, , integrate (backwards)
from Sii"i a length S =SI"'*—S, and obtain 1t'(S ), U'(S),
X'(S), and y'(S). Finally, one has to adjust the parame-
ters U(0)*, U,' and S',"'* in order to fulfill g(S) =P'(S),
U(S)=U'(S), and X(S)=X'(S). Since H is conserved,
y(S)=y'(S) is then automatically satisfied.

This procedure must be repeated for any value of X
and Co. The absolute value of the chosen P) 0 is ir-
relevant, since it sets only the basic length scale. There-
fore, it is sufficient to repeat the above-mentioned pro-
cedure with a fixed but arbitrary P &0 and finally with
P =0. In the latter case, the length scale is set by ~

X
or fC, /

If one solution has been found for certain values of P,
X, and Co, it is relatively simple to keep track of this
solution under a small change in X and Co. In this way,
we obtained the branches of stationary shapes shown in
Sec. III C and Fig. 2.

For the determination of the phase diagram it is more
convenient to work directly in a space where 2, V, and
Co or M are fixed. To this end, we augment the shape
equations (3.5) with two more equations for the area A

and volume V which read

2 =2'

and

A(S, )=A, ,

V(0)=0,
(82b)

(82c)

V(S, )= V, . (82d)
These equations have to be solved together with the
shape equations (3.5), by adjusting the free parameters
U(0), S„P,and X. For any shape found by the method
described above, these parameters can be determined for
any prescribed area by simple rescaling. It is then rela-
tively easy to vary, e.g. , V while keeping A

&
and Co fixed

and, thus, to investigate the behavior of a certain branch
as a function of V. Likewise, Co can be varied for fixed
V&. This holds in the spontaneous-curvature model.

In the bilayer-coupling model, the integrated mean
curvature M is also controlled which leads to one more
di6'erential equation,

M =~(XU+ sing),
with the boundary conditions

M(0) =0

(83)

(84a)
and

M(Si ) =Mi, (84b)

and free Co. In this way, we have determined the phase
diagrams given in Secs. IV and V.

APPENDIX C: PROOF OF (4.8)

V(ai ) —V(0)=&4vraooRO+Ro g ~ai . (C2)
I, m

The = throughout this appendix means up to order aI
Using the formulas for the second variation of the area
and mean curvature given in Ref. [33], it is straightfor-
ward to derive that the integrated mean curvature M is
given by

M(a& ) —M(0)=v'4maoo+(2RO) 'g ~a& ~
l(1+1) .

I, m

(C3)

Since we fix the area, A (a& ) = A (0), we have from (Cl)

i/4wao o (2RO) g ai ~
[1+I (I +1)/2] ~ (C4)

I, m

Inserting this relation in Eqs. (C2) and (C3), we have

M(ai )
—M(0)= —Ro [V(ai ) —V(0)] . (C5)

In this appendix we sketch the proof of (4.8). For a de-
formed sphere as parametrized in (3.10), the area 3 (a& )

and volume V(a& ) are given explicitly in (51) and (52) of
Ref. [33] as

(ai ) 2 (0) 2&4nao ORO

+g ~a& ~
[I+l(l+ I)/2] (Cl)

l, m

and

V =AX sing,
with the boundary values

A (0)=0,

(Bib)

(82a)

dna (R2/3) dM
V =4~a 0313

1

3
(C6)

With the definitions (4.1)—(4.3) for the reduced variables
Aa and U, we find finally
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This result shows that in the spherical limit v —+1, the
variations of M and V are not independent.

APPENDIX D: DERIVATION
OF THK PHASE DIAGRAM

FOR THK SPONTANEOUS-CURVATURE MODEL

In this appendix we sketch the derivation of the phase
diagram in the spontaneous-curvature model, as shown in
Fig. 10. First, we deal with the oblate-discocyte and
stomatocyte branches. In Fig. 17 we show the functional
dependence of the bending energy Fb(v) for co= —2.
The stomatocytes bifurcate at v=v&' from the oblate
branch and reach their maximal volume at v =v"' This
part of the stomatocyte branch is locally unstable, as has
been explained in Sec. VA for c0=0. The locally stable
stomatocytes end at the limit shape L"'. This holds for
c0 &0. For c0)0, the locally stable part of the stomato-
cyte branch terminates at v =v&z', where the shapes self-
intersect. In Fig. 18(a), we show the lines C"' M"' l."
and SI"' in the (co, v) plane. Locally stable stotnatocytes
exist in a region bounded by M"', L"', and SI" This
region is divided into two parts by the line D"' which
denotes the discontinuous transition between the oblate-
discocyte shapes and the stomatocytes. Below D"', in
the shaded region, the stomatocytes have lowest bending
energy. Above D"', the stomatocytes are metastable and
the oblate-discocyte shapes have lower bending energy.
At the line SI', the latter shapes self-intersect. We also
display an approximation to the oblate-stomatocyte tran-
sition denoted by D *"'and discussed in Appendix E.

The oblate-discocyte branch also develops a "wing, " as
displayed in Fig. 17. Although this wing has no conse-

Co

0

sto

0.2 0.4 0.6

Co

quences for the phase diagram, we discuss it for com-
pleteness. The oblate-discocyte branch reaches at v =v'

M
its minimal volume. The upper part of the wing, with

ob d1S
vM & v & v~, corresponds to locally unstable shapes. For
v & vl', we call the locally stable shapes of this branch
discocytes-2. With decreasing volume, this branch ter-
minates at a limit shape L "which consists of two invert-
ed spheres of radii R& &0 embedded in a larger sphere
with radius Rz&0 and connected by ideal necks. The
loci of these shapes are determined by the relations

2R
~
+R 2 =R0 2R

&
+R2 =vR 0

5.5

M "dis

0.4 0.6 0.8 1
V

4
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FIG. 17. Bending energy of the oblate, the stomatocyte, and
the discocyte-2 branches for co = —2. At C"', the unstable part
of the stomatocytes (dashed-dotted line) bifurcates from the ob-
late branch. Between L"' and M"', the stomatocytes are locally
stable. The oblate branch reaches its minimal volume at M'
and is locally unstable between M' and M ". The locally stable
part between M " and L " is called discocyte-2. Between the
points denoted with SI', the shapes are self-intersected. D"'
and D "denote discontinuous transitions. The dotted lines give

approximations to the discocytes-2 and the stomatocytes, as dis-
cussed in Appendix E.

FIG. 18. Lines in the (eo, U ) plane required for the derivation
of the phase diagram of the co model. (a) Lines related to the
stomatocytes which have lowest energy in the shaded region.
C'", M'", and L'" denote lines where the stomatocytes bifur-
cate from the oblate branch, reach their maximal volume, and
end up in the limit shape, respectively. D" denotes the transi-
tion between the oblates and the stomatocytes. D "' is an ap-
proxirnation to these transitions, as discussed in Appendix E.
On the left-hand side of the line SI', the oblates are self-
intersected. The point where the three lines C"', D"' and M"'
merge corresponds to a tricritical point. It is, however, in the
region of self-intersected shapes. (b) Lines related to the disco-
cytes which are locally stable in the shaded regions. M'" and
M "denote the lines of minimal and maximal volume of the un-

stable part. L " denotes the limit point for the discocytes-2
which exist between M " and L ". SI' denotes the points of
self-intersection. D "" gives the transition between the
discocytes-2 and the oblates. D* " denotes the approximation
to this transition, as discussed in Appendix E.
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and

R ] +R~ =Co

This holds for co (—&3/2. For co= —i/3/2, the radii
of the inverted spheres are given by R, =R~/2 and, thus,
the inverted spheres touch each other. For co ) —&3/2,
the discocyte-2 branch therefore already terminates at
the point SI"",where the shape self-intersects. As shown
in Appendix E, this discocyte-2 branch lies above the lo-
cally stable stomatocyte branch for all U) UL" and all
values of co. Therefore, no transition between these two
locally stable branches occurs and the discocytes-2 do not
show up in the phase diagram. In Fig. 18(b) we display
the lines M', M ", L ", and SI " in the (co, v) plane.
Moreover, we include the line D "where the discocyte-2
branch crosses the oblate-discocyte branch. The line
D* " is an approximation to this line discussed in Appen-
dix E.

We now turn to the prolate-dumbbell and to the pear-
shaped states (compare Fig. 10). For c~ (1.92, the ener-

gy of the prolate branch decreases monotonically with v,
while for co 1.92 two extrema develop. In Fig. 19 we
display a schematic energy diagram valid for
co" (co(co ', with co" ——2.063 and co '-—2.066. Apart
from the prolate-dumbbell branch which starts at the
sphere, an additional branch of symmetric solutions has
emerged, which we call prolate-b. The lower part of this
branch originates from the limiting shape 8z at
v =&2/2, where two spheres of equal radii are connected
by an ideal neck. This prolate-b branch has a minimal
volume v =vga'( i 2/2. The energy of the upper part in-
creases while the shape approaches presumably a new
type of limiting shape where two spheres are joined by a
neck that contains energy. We find numerically that the
pressure P of this solution diverges as P —(+2/2 —v)
Since

Fb
8@K

ped
es

prolates a

V

FIG. 19. Schematic energy diagram for co" &co &co, with
co ' =2.063 and co ' =2.066. The prolate-a branch corresponds
to the prolates which start at the sphere for U=1 and ap-
proaches a long thin capped cylinder for U —+0. The lower part
of the prolate-b branch starts at a limit shape where two spheres
of equal radii are connected by an ideal neck. The energy of the
upper part presumably diverges for V~&2/2. Both branches
show an instability with respect to the up-down symmetry. For
co & co", the asymmetric branch has not yet emerged.

In Fig. 20 we show the lines M~" and D"" in the
(co, v) plane. This figure also contains additional lines
which will be defined below and refer to the asymmetric
pear-shaped vesicles.

These pear-shaped states arise from an instability with

2.11
C

BF

BV A, Co

2.1

2.09

this would indicate a logarithmic divergence of the bend-
ing energy Fb. The numerical calculation of shapes be-
longing to this branch, however, is very cumbersome.
Therefore, it is also difFicult to determine for which value
of co=co these shapes occur for the first time. We can
only give the (presumably bad) upper bound co (1.7.
From an investigation of these shapes in the (X,P) en-
semble, we expect co ~0.

For co=co ', with co '-—2.066, the prolate-b branch
touches the prolate branch which starts at the sphere.
For co )co ', both branches rearrange, as shown in Fig.
11 for co=2.4. We call prolate-1 the branch that origi-
nates in the sphere, has a minimal volume vg'( v'2/2,
and approaches the limit shape with nonideal neck for
v~&2/2 from below. We call the other branch that
originates in the limit shape Bz, prolate-2. For v =vg'
the lower part of the prolate-1 branch crosses the
prolate-2 branch. This leads to a discontinuous transition
D "between two different symmetric shapes.

2.08

2.07 ~

206 M

0.696 0.698 0.7 0.702 0.704

FIG. 20. Lines in the (co, u) plane related to the transition
between different prolates and the occurrence of the pear-
shaped states. M " denotes the minimal volume for the
prolate-b and the prolate-1 branch. The cusp in this line corre-
sponds to the rearrangement of the prolate branches. The solid
line Dp' gives the transition between the two prolate branches.
C~"' and CP'" denote the lines where the pear-shaped vesicles
bifurcate from the prolates. M "' denotes the maximal volume
for the pear-shaped vesicles. The dashed line Dp"' gives the
discontinuous transition between the pear-shaped and the
prolate-1 branches.
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respect to the up-down symmetry of the prolate-b branch
for co =co" with co" ——2.063. In fact, both parts of this
branch develop an instability. The upper part develops
this instability for u =uP" while the lower part becomes

1

unstable for v =uP" (compare the schematic energy dia-
gram, Fig. 19.) The two asymmetric pear-shaped
branches which arise from these instabilities meet for
v=ug". Thus locally stable pear-shaped vesicles exist
for uP" & u & ug" (compare Fig. 20).

The line D "denotes the discontinuous transition be-
tween the two prolate branches in the narrow region with
co ' & co & co '. The value co ' =2.08 is defined by the in-
tersection of the lines C~"' and D"". For co) co ', the
line Dp'" denotes a discontinuous transition between the
prolate-1 branch and the pear-shaped branch (compare
Fig. 11). Therefore, metastable pear-shaped states exist
in a region bounded by the lines M '", C~'", and DI'"'
(compare Fig. 20). With increasing co, these lines shift to
larger U values. In fact, M~"' and D~"' approach U =1
for co~ ~ while Cp"' terminates at the point B2 with
(co, v)=(2V 2, &2/2). For co=21/2 the energy of the
limiting shape B2 vanishes. For even larger values of co,
the prolate-2 and the pear-shaped branches are no longer
connected because the pear-shaped states reach their lim-
iting shape L "' at u =uP" with uP") V 2/2 given by
(5.4). Likewise, the prolate-2 branch starts at the limit
shape L ",with ul" & &2/2 where two prolate ellip-
soids are connected by an ideal neck. Compare Figs. 13
and 14 for co=3.

APPENDIX E: APPROXIMATION
TO DISCONTINUOUS TRANSITIONS

Fb*(u) =2srlc[(2 —CoR t ) +(2 CoR2) ], — (E1)

with R 1+R 2
=R o and R 1+R 2

=UR 0. A short calcula-

For ~co ~
))1, the computation of the pear-shaped

states and the stomatocytes with a narrow neck becomes
increasingly time consuming. The bending energy of
these shapes is necessary in order to determine the phase
boundaries D"'" and D"'. It is therefore helpful to dis-
cuss a simple approximation to these boundaries which,
however, becomes asymptotically exact for ~co~ —+ ec. To
this end one has to approximate the bending energies of
the two branches whose intersection leads to the discon-
tinuous transition. We first discuss this approximation
for the D "' line. We approximate the energy of the
pear-shaped vesicles Fb(v) by the energy of two spheres
Fb*, with

tion shows that Fb(v)=F&" (u) up to order (v —uI"")
Therefore, Fb* is a good approximation to the energy for
the pear-shaped states for the whole range
vg"'& v & vg", as displayed in Fig. 13 for co =3. The en-
ergy of the prolate-dumbbell shapes is approximated by
F,"",with

Fb'"(u) =Fb(1)+
F
BU

(u —1) .

The derivative (BFb/r)v)~„ t can be expressed by the
critical pressure P, 2 (3.11),which leads to

BFb

BU v=1
= —(4'�/3 )R oP, 2

= —(4sr/3)2a(6 —co) . (E3)

Inserting (E3) in (E2) leads to

Fb'"(u) =8sra[(1 —co/2) —(6—co)(u —1)/3] . (E4)

This line has been displayed in Fig. 10. The same argu-
ments can be used for an approximation to the discon-
tinuous transition D"'. In fact, (El) holds also as an ap-
proximation to the energy of the stomatocytes with
R, &0 and Co&0, as already displayed in Fig. 17, and
Eq. (E4) is also valid for the energy of the oblates up to
order (v —1) . Comparing both approximate energies
leads to the approximation UD"', as displayed in Fig. 10.

The approximation D* " for the intersection between
the discocyte-2 and the oblate-discocyte branches
displayed in Fig. 18(b) has been obtained along similar
lines. We approximate the energy of the discocytes-2 by
the energy of three spheres Fb**, with

Fb**(u)—=2vra[2(2 —CoRt) +(2—CoRp) ], (E5)

with R1 &0 2R1+R2 =Ro and 2R1+R2 =URO. This
function has also been displayed in Fig. 17. The approxi-
mation UD

" for the oblate —discocyte-2 transition is now
defined by Fb'*(u~ ")=F&'"(vD "). With (El) and (E5)
one can, moreover, estimate the location of a transition
between discocytes-2 and stomatocytes. It turns out that
uD "(co ) & uL"(co ) for all co & 0. Therefore, no transi-
tions between stomatocytes and discocytes-2 occur.

Once again, we have Fb(u) =Fi","(v) up to order (1—v) .
The approximation UD~"' for the prolate pear-shaped
transition is now defined by

e pear
) Flin( e pear

)b D b D
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