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Isotropic, nematic, and columnar ordering in systems of persistent flexible hard rods
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We extend previous work on the Khokhlov-Semenov approach to long-range order in solutions of per-
sistent flexible main-chain polymers by including hexagonal columnar ordering. The description of
long-range positional order uses a recent model developed for rigid rodlike particles, which is based on
the tradeoff of translational entropy between liquidlike and crystal-like dimensions. For moderately flex-
ible polymers, we find an isotropic-nematic-columnar phase sequence with increasing polymer concen-
tration. As the polymers become more flexible, the isotropic-nematic transition recedes to higher con-
centrations, until finally, near the wormlike chain limit, a direct isotropic-to-columnar transition occurs.
We show that the corresponding triple point occurs at longer persistence lengths for polymers of increas-
ing contour length. In addition, we show that the longitudinal packing in the columnar phase becomes
much tighter with increasing molecular flexibility to accommodate greater lateral freedom. Finally, we
compare our theoretical equation of state with experimental measurements for poly-benzyl-L-glutamate
(PBLG).

INTRODUCTION

It is well known that molecular flexibility plays an im-
portant role in the statistical thermodynamics of large
liquid-crystal polymers. In many lyotropic systems, these
polymers seem to be well described by "persistent Aexibil-
ity, " in which the polymers are considered homogeneous-
ly bend elastic along their contour. The degree of Aexibil-
ity is usually described by a single quantity, the per-
sistence length, which is a measure of the distance over
which the orientations of two unit vectors tangential to
the free polymer contour are correlated. Only if the ratio
L/P, where L is the contour length and P is the per-
sistence length, approaches zero, are the polymers well
described as being rigid. The statistical mechanics for
the rigid limit has been studied thoroughly in the past,
starting with seminal work by Onsager [1]. At the other
extreme, when L /P approaches infinity, the polymer may
be considered a wormlike chain. In this limit, the statisti-
cal mechanics are also relatively straightforward because
the thermal undulations along the chain are only corre-
lated over distances that are short compared to the con-
tour length (cf. [2] and references therein). However,
realistic persistent Aexible polymers are characterized by
intermediate values of L /P, for which the statistical
mechanics is more dificult.

Extending earlier work by Lifshitz [3], Khokhlov and
Semenov [4] (KS) were able to calculate the mean-field
orientational (or confinement) entropy of a persistent fiex-
ible cylindrical fiber for arbitrary L/P. Their result does
not depend explicitly on the external potential con6ning
the polymer but is given in terms of the distribution func-
tion f(n(w)), where n(r) is a tangential unit vector at po-
sition ~ along the polymer contour. By expanding their
expression for the orientational entropy at the two limits
L/P «1 and L/P))1, and by employing a second-
order virial approximation of the hard-core interparticle
interactions, KS obtained the isotropic-to-nematic coex-
istence densities, as well as the order parameter at the

transition. In their expansion of the orientational entro-
py, KS showed that just the two leading terms in each
limit are sufFicient to obtain quite accurate results for ar-
bitrary L /P via interpolation. Subsequently, a number of
authors have applied and extended these investigations to
describe, for instance, the equation of state [5]—[7] and
the nematic order parameter [8,7] of persistent flexible
polymers at higher concentrations, the nematic behavior,
induced chain rigidity, splay modulus, and other proper-
ties of uncharged and charged flexib&e polymer liquid
crystals [2,9,10], and the efFect of fiexibility on the
isotropic-to-nematic transition for solutions of mono-
disperse linear aggregates [11]. In general, the agreement
of the theoretical results with the experimental data
(when available) is quite satisfactory [2,5 —8, 12—14] and
underscores the importance of molecular flexibility in this
context.

As formulated, the KS approach does not describe the
e6ects of persistent Aexibility on translationally ordered
lyotropic liquid-crystalline phases, such as smectic,
columnar, or crystalline phases, which may succeed
nematic phases as the concentration is increased. Exam-
ples of concentration-induced translational ordering are
found in solutions of DNA [15—17] and PBLG [16,18].
Translational order is also well known in self-assembling
systems, where amphiphilic molecules associate reversi-
bly into elongated, polydisperse aggregates. In fact, in
the experimental phase diagrams of such systems,
translationally ordered phases usually dominate over
purely orientationally ordered phases (e.g. , [19]and refer-
ences therein).

For these reasons, it is interesting to study, at least
qualitatively, the efFects of flexibility in the context of
translational order. Here we take a step in this direction
by combining a modification of the KS approach to per-
sistent flexibility with a recent model for positional order-
ing in systems of rigid particles interacting via hard-core
steric exclusion [20]. In many cases, hard-core repulsions
seem to provide an adequate approximation of realistic
interactions in lyotropic polymer solutions. Further-
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more, they are sufhcient to induce positional order in sys-
tems of rigid asymmetric particles (cf. [21,22] and refer-
ences therein). For the sake of simplicity, we concentrate
on monodisperse systems with the three types of order-
ing, i.e., isotropic, nematic, and columnar, that have been
observed in solutions of PBLG (e.g., [16])and DNA (e.g. ,
[17]).

In this work, we calculate a phase diagram for hard
Oexible rodlike polymers in terms of polymer volume
fraction v, polymer contour length L, and polymer per-
sistence length P. If for a given L the rods are sufficiently
stiff, i.e., P is sufficiently large, then we obtain an
isotropic-to-nematic-to-columnar phase sequence with in-
creasing volume fraction. As the rods become more Aexi-
ble, however, the isotropic-to-nematic phase transition
recedes progressively to higher concentrations. Finally,
for a small enough P, the nematic phase disappears, and
there is a direct transition from the isotropic to the
columnar phase. With increasing L, the corresponding
triple points shifts to larger values of P. However, as L
approaches infinity, the triple-point value of P asymptot-
ically approaches a finite value, so that for persistence
lengths beyond this value there is always a stable nematic
phase, even for an arbitrarily large contour length. This
is consistent with a recent related calculation for infinite
wormlike chains [23]. In addition, we find that in the
columnar phase flexibility increases the packing density
along the director to allow more freedom in the trans-
verse directions. Finally, we compare our theoretical
equation of state to experimental osmotic pressure data
obtained for PBLG.

ISOTROPIC AND NEMATIC ORDERING
OF PERSISTENT FI.EXIBLE RODS

There are a variety of different approaches to the
isotropic-nematic phase behavior of solutions of hard rig-
id rodlike particles. Many of these excluded volume
theories are based on a dimensionless free energy per par-
ticle of the form

f =po/(k&T)+inc —1+cr+f,„„,i,
f,„„„=A (u, L/D)+8 (v, L/D)p . (2)

Here po/(ksT) is a dimensionless function of tempera-
ture, c is the particle number density, and o. is the orien-
tational free energy. The steric particle interactions are
incorporated in the excluded volume term, which de-
pends on the volume fraction v, the particle axial ratio
L /D, where D is the particle diameter, and the
configurational integral

p=(4/m)f dn dn. '~sin(n —n')
~f (n)f (n'),

where f (n) is the distribution function of the particle ax-
ial unit vector n. The distinctions between different mod-
els (e.g. , Onsager's second virial approximation, Alben's
free-space model, or various scaled particle theories) are
contained entirely in the functions A and 8 [24].

Khokhlov and Semenov [4] show that to good approxi-
mation, Eq. (1) formally also describes long persistent
flexible main chain polymers interacting via purely steric

=f dn f (n)lnf (n)

+ fdn[Vf(n)] /f (n) for L/P «1, (3)

~(&)(o)
wormlike wormlikeP

jdn[V'f (n) ] /f (n)
L
8P
—2lnf dn[f(n)]'~ for L/P))1, (4)

where V is the gradient with respect to n. Here f(n)
denotes an average along the polymer contour with
respect to the orientational distribution of unit vectors n
tangential to the contour [note that fdn is defined and

f (n) is normalized so that jdn f (n) = fdn= 1]. Using
the second virial approximation in the limit of large L
(i.e., A =0 and 8 = uL /D), KS give a detailed account of
the coexistence densities and the nematic order parame-
ter at the isotropic-to-nematic transition as functions of
L/P [4].

However, in realistic systems much of the interesting
phase behavior occurs at concentrations where the
second virial approximation is inapplicable. In Ref. [5],
the KS approach was therefore extended to higher con-
centrations in approximate fashion utilizing Lee' s
description of excluded volume effects for rigid sphero-
cylinders [25]. Lee's approach is based on a generaliza-
tion of the Carnahan-Starling description of the hard-
sphere Quid via a functional scaling that decouples orien-
tational and translational degrees of freedom for elongat-
ed particles. This procedure yields

1 —3u /4
(1—v)

and

3 1 —3u /4 (L /D)
2 (1—v)2 1+ ',L/D— (6)

The relations (5) and (6) (cf. [5]) are approximately valid
for persistent flexible polymers as well, because the steric
repulsion governing the excluded volume manifests itself
on a scale O(D), on which the polymer is considered as a
rigid cylinder. Additionally, in order to obtain results
continuously for intermediate L/P, the limiting expres-
sions of KS [(3) and (4)] were interpolated in a simple po-
lynomial ratio of the form

where

+scr„',', „„,(L/P) ]/[1+s(L/P)],

exclusion, if o. includes the orientational free energy due
to polymer flexibility. Since their exact expression for o.
is too complicated for the purpose of specific calcula-
tions, they consider expansions of o. at the stiff-rod and
wormlike chain limits, i.e.,

(o) (&)L
rigid+ rigidP
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( ~wormlike rigid ' ~ ' rigid wormlike )

Using (5) and (6) in Eq. (2) and substituting (7) for tr in
Eq. (1) yields the free energy for persistent flexible poly-
mers. In the limit L/P~O, one, of course, recovers
Lee's expression for the free energy of hard sphero-
cylinders of length L +D.

For the isotropic phase, f(n)=1, and o is trivially
zero according to eqs. (3) and (4). For calculations of the
nematic behavior it is convenient to employ Onsager's
trial distribution function

f (n) = [a /sinh(a)]cosh[a cos(8)]

[1), where 8 is the angle of n with respect to the director,
and a is a parameter determined by minimizing the free
energy. By substitution of the trial function into Eq. (7)
we obtain the nematic confinement free energy as a func-
tion of o.:

o (a) =in(a) —1+z(3z +2r)/(z +r)
—

q [z /(z +r ) ] exp( —a/2 ) +0(exp( —a ) ), (g)

where z =(L/12P)(a —1), r =ln(4) —1=0.386294. . . ,
and q =2Ik (1/2) 4E (1/2) =——l.694 426. . . for the
complete elliptic integrals Ik and E. Note that o.(a) is
given as an expansion in large a because even though the
trial function is rather simple it yields somewhat cumber-
some integrations. The exponential corrections of o(a)
are usually small, since 1/a essentially measures the
width of the angular distribution, which decreases quick-
ly with increasing concentration. Nevertheless, some
care has to be taken for large L!Pbecause the exponen-
tial corrections in a will usually contain terms O(L /P).
Using the exact relation p(a) =2Iz(2a)/sinh (a) [1],
where Iz is a modified Bessel function, it is now easy to
calculate all thermodynamic quantities of interest within
the trial function approach [26].

COLUMNAR ORDERING
OF PERSISTENT FLEXIBLE POLYMERS

The above theory applies to lyotropic isotropic and
nematic phases of persistent Qexible polymers. As the
concentration increases, however, new translationally or-
dered phases, such as smectic columnar, or crystalline
phases may occur. In the following, we present a simple
argument that combines the above theory of flexibility
with a model for translational order in systems of rigid
rodlike particles interacting via steric exclusion. Because
the underlying assumptions are relatively crude, we focus
on Qexibility in the context of the columnar phase, for
which our line of reasoning is most applicable.

As we have shown in previous work [20,27], transla-
tionally ordered phases of orientationally ordered rigid
rodlike particles can be well described in terms of the tra-
deoff of translational entropy between translationally
disordered (i.e., liquidlike) dimensions and the transla-
tionally ordered (i.e., crystal-like) dimensions. Within the
model based on this idea, the contribution to the free en-
ergy due to hard-core repulsions in a columnar phase of

aligned rigid rods can to good approximation be written
as

fex vol =f tluid( ~ ) +fcrystal( ~) (9)

where fit„;d(b, ) denotes the contribution of a one dimen-
sional fluid of hard lines and f„,t,i(b, ) denotes the con-
tribution of a two-dimensional crystal of hard disks. The
underlying physical picture is that of spherocylindrical
rods of diameter D confined to impenetrable hexagonal
tubes of diameter 6 arranged in a close packed hexagonal
array. The system is Quid along the tubes and crystalline
in the transverse plane. The optimal tube width is deter-
mined by minimizing the total free energy with respect to
A. Using scaled particle theory, we obtain

f„'„,d(h) = —in[1 —v, (b, /D) ], (10)

where U& is the volume fraction in the one-dimensional
Quid

L/D +2/3U, (b, /D) =(2&3/m. )u (b, /D)

and, using a simple cell model, we obtain

f2D (g) ln[ Vfree(g D)/Vcell(g)]

= —21n( 1 D /b, ), — (12)

where Vz"'(b„D) is the two-dimensional free volume of a
disk of diameter D confined to a hexagonal cell of two-
dimensional volume Vz'"(b, ) [20,27].

If the rodlike particle is not rigid but persistent Qexible,
it is subject to thermal bending Quctuations along its con-
tour, and the corresponding confinement entropy has to
be taken into consideration. The thermal bending Quc-
tuations are constrained in the lateral direction by the
walls of the tube, where 6 is not much larger than D.
This means that for Qexible rods, the "nematic
confinement, " which is characterized by the width of the
distribution function as measured by 1/a, is replaced by
the hard walls of the tube at a distance h. Therefore,
there ought to be a relation a=a(h), which yields o.(a)
approximately as a function of 6 for the case of columnar
ordering. This relation can be obtained via a simple scal-
ing argument [8], which we summarize here for the sake
of completeness.

Because the columnar phase is already highly ordered
(i.e., 1/a is small), the distribution function f (8) is ap-
proximately Gaussian, and one can write (8(a) ) =2/a,
which is a measure of the angular deQection limited by
the columnar confinement. On the other hand, from the
definition of the persistence length, one has the correla-
tion function (n(0)n(r)) =(cog[8(r)])=exp( r/P) for-
an unconfined polymer, where ~ is the distance between
the two tangential unit vectors. Thus, (8(r) )/2=r/P
for small ~. The effect of confinement is seen for ~~A, ,
where A, is the mean deQection length imposed by interac-
tion of the polymer with its tube of neighbors (cf. Fig. 1).
Therefore, (8(A, ) ) = (8(a) ), which defines A, =P/a.
Finally, A. can be approximately related to 6 via

(6—D)/2= j [(8(r) )]'i dr=(A, /P)'
0
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D

FIG. 1. Schematic illustration of a persistent flexible polymer
of width D confined to a tube of diameter h. A, is the deflection
length, the mean distance over which the polymer contour in-
teracts with the walls of the tube.

where (b, —D)/2 is the average unconstrained lateral dis-
placement. Note that an analogous relation tying the
tube width to the deflection length has been used by
Odijk in the context of entangled polymers [28]. Writing
a in terms of P/D and 6/D we finally obtain

given contour length and sufficiently stiff polymers, we
find an isotropic-to-nematic transition at low-volume
fractions followed by a nematic-to-columnar transition at
high-volume fractions. With decreasing stiffness, i.e, de-
creasing P/D, the isotropic-nematic transition progres-
sively shifts to higher volume fractions, until finally it
disappears and a direct isotropic-to-columnar transition
occurs. As P/D is decreased further, the isotropic-to-
columnar transition shifts to higher packing fractions.

Whereas the overall topology of the phase diagram is
independent of L and ~ within the range of validity of our
model, the actual positions of the phase boundaries de-
pend significantly on these quantities. Increasing L/D
shifts all phase boundaries to lower volume fractions, as
one might expect in analogy to stiff polymers. Increasing
the parameter ~, on the other hand, as illustrated by the
different line types in Fig. 2, diminishes the stability of
the columnar phase in comparison to isotropic and

(X=K[(P/D)/(6/D —1)] (13)

where v=0 (1) is an as yet undetermined proportionality
constant. In order to avoid end effects, it is assumed that
L ))A, (i.e., aL/P )&1).

Using Eq. (13), we can now express o. in terms of b, .
Furthermore, if we assume that the excluded volume of
the persistent Aexible fibers within a narrow tube are
reasonably approximated by the excluded volume of simi-
larly confined stiff spherocylinders, we can utilize the
above expressions for fP;d(b, ) and f„„„,&(b, ). With
these assumptions, the free energy of a well-ordered
columnar phase is again given by Eq. (1), where f,„„„is
now given by Eqs. (9), (10), (11), and (12), and o(a) can
be expressed in terms of b, via (13). As mentioned above,
the optimal b, is obtained using the condition O=df /dh,
which can be written as

ckBT 1 ~ I a0= 1 ——b, o (a(h))+ —+ 1 —b, /D,
rr 2 D am D

(14)
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where

II/(kz T) =c/[1 —ui(h/D)]

is the pressure in the columnar phase (cf. Table I of [27]).
We can now compare the calculated columnar free ener-
gy with the free energy describing isotropic and nematic
ordering, to determine the stable phase corresponding to
the lowest free energy for a given set of variables u, P/D,
L/D, and v.

10
10

10

10

RESULTS

Using the above equations, we obtain the isotropic-
nematic-columnar phase diagram for persistent flexible
hard rods as a function of polymer volume fraction v and
polymer persistence length P divided by the polymer
hard-core diameter D. Figure 2 shows the phase diagram
for various values of the polymer axial ratio L /D and the
columnar deflection parameter ~. Note that the range of
validity of our model corresponds roughly to
1 & P/D «uL/D [cf. Eq. (13)]. Within this range, for a

10
0 0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 2. Phase diagram for persistent fIexible rods of axial ra-
tio L/D =25, 100, and 400 as a function of volume fraction v

and persistence length P divided by the polymer width D. I, N,
and C indicate isotropic, nematic, and columnar phases, respec-
tively. Solid lines and dashed lines outline the phase coexistence
regions for a.=3.5 and 2.5, respectively.
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nematic ordering. This is because, for a given tube width,
a larger value for K implies greater constraint on the poly-
mer, as manifest in increased a and therefore increased
columnar free energy. Note again that we cannot deter-
mine the value of ~ a priori, due to the scaling-type argu-
ments on which Eq. (13) is based. The two values for a
used throughout Fig. 2, however, roughly bracket the
range of ~ values, which are consistent with the experi-
mental equation of state for PBLG in dimethyl-
formamide (DMF), discussed below. It is also worth
mentioning that the stringent positional constraints im-
posed by the above cell model for positional ordering
force the transitions into the columnar phase to be
discontinuous (see also [20] and [27]). However, a recent
related continuum elastic treatment of infinite wormlike
polymers also finds analogous isotropic-nematic-
columnar phase behavior, where the transitions into the
columnar phase are first order [23].

The disappearance of the nematic phase for sufficiently
flexible polymers is illustrated in a different fashion in
Fig. 3. The value of P/D at the isotropic-nematic-
columnar triple point is shown to increase asymptotically
to a finite value as L /D approaches infinity. Qualitative-
ly this suggests that for a chain polymer with a suitably
small persistence length (P/D = 10—20), the two regimes
separated by the triple point may be experimentally ac-
cessible by simply using different molecular weight
preparations. This is useful because the molecular
weight, i.e., L/D, can usually be varied more easily over
a wide range that the persistence length.

The case of hard flexible rods confined to hard tubes
can also be used to illustrate another consequence of
molecular flexibility in the context of translationally or-
dered phases. Figure 4 shows the packing fraction in the
fluid dimension v& as function of the total volume frac-
tion for various L /D and P/D. In the limit of very long,
very fiexible polymers (curve f), the fiuid dimension is vir-
tually close packed (ui =1). This means that the parti-
cles are packed essentially end-to-end in the columnar
phase. As the polymers become less flexible (either by in-
creasing P/D or by decreasing L/D), v, is gradually re-

V

0.9

0.8

0.7

0.6 /
I ~ I ~ I I . I ~ I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V

FIG. 4. 1D-Quid volume fraction v& along the columnar tube
vs total volume fraction U. (a) L/D =25, P/D =1000; (b)
L/D = 100, P/D =1000; (c) L/D =400, P/D = 1000; (d)
L /D =25, P/D = 10; (e) L /D = 100, P/D = 10; (f) L /D =400,
P/D =10. Curves a —f are for sr=3. The dashed line illustrates
the corresponding result for rigid hard cylinders, for which
v, = [(2&3/Ir)v ]'~' [27]. The symbols indicate the lowest
volume fractions at which the columnar phase is globally stable.

duced. Note, however, that the condition aL/P))1,
which is necessary for the validity of Eq. (13), only allows
limited polymer stiffness within our model. Therefore, as
a reference, Fig. 4 also shows the considerably lower U&

obtained previously for the case of completely rigid rods
[27].

The flexibility-induced tightening of the longitudinal
packing may also be characterized by the quantity—t)ln(b, )/I)ln(v), which in the wormlike chain limit ap-
proaches —,

' for all v, whereas in the case of aligned rigid
rods we obtain the value —,'. Physically, this again means
that for very flexible particles the packing is essentially
end-to-end, and compression only occurs in the lateral
directions as v increases. In the case of rigid rods, on the
other hand, the volume around each particle decreases

10 I I I I I IIII I I I I I I Ill
I t

I I I I I IIII C 2.2

10

10
I-N-C behavior

t
C C

t
t C

x=3.5

K=3.0-
K=2.5

1.8

1.4

10 : I I I I I I III I I

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10 10 10 10

L/D

FKx. 3. Location of the isotropic-nematic-columnar triple
point as a function of persistence length P and contour length L
for ~=2.5, 3.0, and 3.5.

FICx. 5. Width 5 of the columnar tube divided by the poly-
mer width D vs volume fraction v. All parameters and symbols
are as in Fig. 4. The letter coding is aligned vertically with cor-
responding symbol for each curve. Note that lines b and d and
lines c and e are virtually superimposed.
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uniformly in all three directions. Note that the tight
end-to-end packing of the molecules has been taken as an
a priori assumption in various studies on hexagonal
phases of fiexible polymers (e.g., [23,29]). The present re-
sult provides a theoretical basis for this assumption and
indicates where it would fail.

For the same parameters as in Fig. 4, Fig. 5 illustrates
the rapidly decreasing tube width 5, or, equivalently, the
interaxial spacing between polymers, as a function of the
volume fraction. The value of b, /D, calculated using Eq.
(14), provides a consistency check, in that it should not
exceed 2, if the assumption of 1D-Quid behavior along the
tubes is to be a good one.

We have previously compared the isotropic-nematic
equation of state derived using Eqs. (1), (2), (5), (6), and
(8) [5] with experimental osmotic pressure measurements
obtained for PBLG-DMF system by Kubo and Ogino
[24,30]. For volume fractions U 50.4, there is excellent
agreement for various polymer weights. However, at
higher volume fractions the theory progressively overesti-
mates the experimental pressure. It is, therefore, interest-
ing to compare the experimental pressure data to the
theory when columnar ordering is included. Because
Kubo and Ogino do not discuss the possibility of posi-
tional order on the basis of their measurements, our corn-
parison is necessarily somewhat speculative in nature.
The result is shown in Figs. 6 and 7 for two PBI.G
preparations corresponding to L/D =26 and 63. The
best overall agreement is found for P =2000 A and ~—=3.
Note that the comparison is not extended beyond
v =0.75, because the hard-core approximation for the
particle interaction eventually loses its validity, and, in

fP

L/D =63IIv
k T

10

I I I J

10'—

10'
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 7. The same as Fig. 6, but for a different weight polymer
preparation corresponding to L/D =63. Here the theoretica1
values for 5/D at the B point of the nematic-to-columnar tran-
sition are 5!D= 1.74 (a), 1.55 (b), and 1.41 (c).

fact, side chain mixing dominates at these high volume
fractions [30).

DISCUSSION

In obtaining the above result, we have made a number
of assumptions. For the case of purely nematic behavior,
the trial function approach and the interpolated
confinement free energy [Eqs. (7) and (8)], as well as the
approximate expressions for the excluded volume contri-
bution to the free energy, are discussed in detail in Ref.
[5]. In approximating the excluded volume contribution
to the free energy in terms of expressions for rigid parti-
cles, we follow a reasoning similar to that of Khokhlov

10' 10
rIv

%3Dk T

10 10

10' I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
v

FIG. 6. Comparison of the theoretical reduced pressure

IIvo/(k&T), where vo is the volume of the polymer molecule,
with the osmotic pressure data (symbols) for PBLG in DMF of
Kubo and Ogino [24,30]. The solid line is the theoretical result
for the isotropic-nematic equation of state (P =2000 A, D = 16
A, and L/D=26) reported previously [5,8]; the dotted line is
the theoretical result for the metastable isotropic state; dashed
lines indicate the pressure in the globally stable columnar phase
for ~=2.5 (a), 3.0 (b), and 3.5 (c). The theoretical values for
6/D at the B point of the nematic-to-columnar transition are
6/D = 1.40 (a), 1.33 (b), and 1.27 (c).

10

10 I

1.2 1.4 1.6

FIG. 8. Theoretical reduced pressure 0v0 /( k& T) times
6/(&3D) vs the mean interaxial separation 6 divided by the
polymer diameter D. Curves (a) and (b) correspond to the
theory for the columnar phase of PBLG shown in Figs. 6 and 7
for ~=3 and L/D =26 (a), 63 (b). Curves (c) and (d) illustrate
the corresponding results for completely rigid rods again with
L/D =26 (c) and 63 (d) using the theoretical reduced pressure
given in Ref. [27].
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and Semenov [4], which is based on the locality of the
steric repulsions compared to the much larger scale on
which flexibility is manifest (cf. above). This approach
does not apply to freely flexible systems, where the parti-
cles interact as globular coils rather than as persistent
flexible rods.

Our approach to columnar ordering is discussed in
Refs. [20] and [27] for the case of rigid rods, and much of
this discussion also applies in the present case. In this
work, we do not address other types of positional order,
such as smectic-2 or crystalline phases. It is known from
both experimental work (e.g. , [31]) and theoretical work
(e.g. , [22]) that monodisperse stiff rodlike particles exhibit
a transition from nematic into a smectic-3 phase. How-
ever, to what extent a stable smectic phase can persist in
the presence of molecular flexibility is an open question.

Another point, which has not been addressed, is soft
interparticle interactions. Recently, osmotic pressure
data for biopolymers in the columnar phase have been
used to characterize intermolecular interactions [32-34].
The osmotic pressure multiplied by 1/&3 times the
center-to-center distance between polymers is taken as a
measure of the force between neighbors per unit length,
and the decay of this force with increasing center-to-
center distance is taken as a measure of the range of the
force. The corresponding plot [using our dimensionless
reduced osmotic pressure IIUo/(k~ T) and our dimension-
less reduced center-to-center distance b, /D] for our
columnar phase of hard particles is shown in Fig. 8.
Clearly, the osmotic "force" (ordinate) increases with in-
creasing polymer flexibility (i.e. , reduced persistence
length and/or increased contour length). On the other
hand, the decay distance of the osmotic "force" (the in-
verse slope of the curve) is not sensitive to polymer flexi-
bility. Furthermore, the decay distance is several tenths
of D, and approximately doubles with increasing center-
to-center distance in the columnar phase, even though
the interactions between the particles are strictly hard
core (i.e. , have a decay length of zero). These results sug-
gest that the decay distance of the osmotic "force" does
not strongly reAect details of the interparticle interac-
tions and that the magnitude of the osmotic "force"
should be more informative (see, e.g. , [29]).

The present theory does not apply when the polymer
interactions cannot be well described in terms of hard
core repulsions. This is because in deriving Eq. (13), we

assume free polymer statistics over distances that are
shorter than a certain deflection length. For relatively
long-range polymer interactions (e.g., Coulomb repul-
sions), this concept may not be applicable at the densities
where the columnar phase becomes stable. This is illus-
trated in recent osmotic pressure measurements for po-
lyelectrolytes by Podgornik, Rau, and Parsegian [33].
Reasonable agreement with their experiments was ob-
tained by considering infinite wormlike polymers, where
the undulations are constrained by a harmonic potential
[29] rather than by an infinite square well.

Interestingly, isotropic-nematic-columnar phase behav-
ior very similar to that obtained here is also found in
theoretical and experimental studies on a number of re-
versibly assembling systems, in which disklike amphiphil-
ic molecules stack to form labile rodlike aggregates (cf.
[19] and references therein). For a strong aggregation,
i.e., for suSciently large aggregation numbers, a nematic
phase intervenes between a low-density isotropic phase
and a high-density columnar phase. As aggregation be-
comes weaker, e.g. , as a function of temperature, the
nematic phase is gradually abbreviated and finally abol-
ished. Note in this context that the entropic effect of a
small aggregation number is similar to that of a small
persistence length in that it shifts the isotropic-to-
nematic transition to higher concentrations, where finally
the columnar phase becomes stable before the nematic
phase.

In conclusion, even though our model employs a num-
ber of crude approximations, it provides a series of in-
teresting results concerning the liquid-crystalline behav-
ior of hard persistent flexible polymers. We hope that the
ideas outlined above can be extended to self-assembling
systems, where the elongated aggregates formed by asso-
ciation of amphiphilic molecules often exhibit consider-
able flexibility.
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