
PHYSICAL REVIEW A VOLUME 44, NUMBER 2 15 JULY 1991

Molecular-dynamics simulation of the static pair-pair correlation function for classical fluids
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We have used a molecular-dynamics simulation to calculate the first seven nonzero Legendre
coefficients, Q'"(r, r'), of the static pair-pair correlation function Q(r, r'). The interaction potential was
taken to be Lennard-Jones. The simulations were done at two different values of density and tempera-
ture, one coinciding with that of liquid argon near its triple point and the other with liquid argon at
181.0 K. Q(r, r') can be expressed in terms of two, three-, and four-body distribution functions. We use
the Kirkwood superposition approximation to estimate the three-body contribution to Q(r, r ). We ar-
gue that at low densities the three-body correlations are substantially more important than the four-body
correlations. The three-body part of the l=4 and 6 coefficients emphasizes configurations composed of
nearest-neighbor triplets with internal angles of approximately 90' and 60, respectively. We find that
the l=6 coefficient shows a dramatic increase in structure at elevated density. Furthermore, this
coefficient exhibits nearly periodic oscillations in its off-diagonal structure. Directions for future work
are given.

I. INTRODUCTION A~= g a2(r~ ), B2= g b.2(r)),

It has long been realized that a proper description of
structural and thermodynamic properties of dense Auids
requires a knowledge of multiparticle correlations. Ex-
tensive analytic and numerical studies have been carried
out for the three-body distribution functions [1]. Howev-
er, an important class of correlations, those between mul-
tiple pairs of particles, have largely been ignored [2,3].
The static pair-pair correlation function Q(r, r ) is related
to the probability of finding a pair of particles separated
by r while simultaneously finding a second pair, not
necessarily distinct, separated by r'. It is the purpose of
this study to determine Q(r, r') using a molecular-
dynamics (MD) simulation. Formal definitions of Q(r, r')
are given in Sec. II.

The pair-pair correlation function contains useful in-
formation about Auid structure. The specification of vec-
tors r and r' requires a knowledge of both interatomic
separations and relative interatomic orientations. Much
of Sec. III is devoted to a discussion on the structural in-
formation obtained from Q(r, r'). The pair-pair correla-
tion function is also needed to calculate many thermo-
dynamic quantities. This is because the correlation be-
tween any two-body functions A 2 and B2, which are
formed from two-body additive functions, can be ex-
pressed [2] in terms of Q(r, r'):

and p is the number density. For a system with a fixed
number of particles which is characterized by a pairwise
additive potential u (r), the constant volume heat capaci-
ty C, is one such example [1,4]

c= xk+L
v 2 B

2

f drdr'u(r)u(r')Q(r, r') . (2)

A second term proportional to the isothermal compressi-
bility, yT, must be added to Eq. (2) for systems with par-
ticle number fluctuations. However, near the triple point
of a dense Iluid, where AT IP=0.02, this term is expect-
ed to be small [5,6].

The pair-pair correlation function is also important in
the high-temperature perturbation theory (the A, expan-
sion [6]) of Zwanzig [7]. In that theory one develops a
series expansion for the configuration free energy A:

p —3)V

(3)

where A is the thermal wavelength. V is two-body addi-
tive and consists of a reference (unperturbed) potential Vp
and a perturbation V, :

( A,B, ) —( A, ) (B,)
r

f dr dr'az(r)b2(r')Q(r, r'),

V:Vp+ Vi: g up(r&')+ g ui(r~j') (4)

where
Expanding the excess (perturbed) free energy A —A p in
powers of P, one obtains
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A=AD+ P Jdru, (r)go(r)Xp

2

drdr u, (r)u, (r )Qo(r, r )
f3 Xp

where the subscripts on the radial distribution function
go(r), and Qo(r, r') refer to the reference system. Equa-
tion (5) is strictly true for systems with fixed particle
number, but the comment following Eq. (2) is applicable
here as well.

Our system consisted of 500 particles interacting
through a Lennard-Jones potential. The interatomic in-
teraction of liquid argon is known to be well represented
by a Lennard-Jones 6-12 potential

V(r) =4s
12 6

with the parameters o. =3.41 A and c/kz =119.8 K and
we shall occasionally refer to it in our discussions. The
particles were confined to a cubical box with periodic
boundary conditions. The MD simulation was done in
the microcanonical ensemble, i.e., (N, V, E) held fixed.
Two thermodynamic points were studied. The first point,
hereafter referred to as (A), had an average reduced tem-
perature T* of 0.723 and a reduced density p* of 0.834.
For argon, this corresponds to a temperature of 86.6 K
and a density of 1.41 g/cm which is near its triple-point
values [8] of 83.3 K and 1.435 g/cm . The second simu-
lation, (B), was done at a slightly lower reduced density of
0.800 and an average T* of 1.511. This corresponds to
liquid argon at 181.0 K.

In our simulation the equation of motion was integrat-
ed 90000 times using the Verlet algorithm [9]. The
reason for the large number of configurations needed in
the averaging is discussed below. In terms of liquid ar-
gon at phase point (A), the equations of motion were
solved every 12.3 fs for a total time of approximately 1

ns. Since the dynamic properties are also interesting, and
shall be reported at a later time, correlation function
measurements were taken at every time step. The cutoff
distance for the Lennard-Jones potential and the correla-
tion function measurements were 2.5o. and
(o./2)(X/p*)', respectively. For (A) this corresponds
to a cutoff of approximately 4.2o. . The correlation func-
tions were calculated by dividing the space spanning the
4.2o into 120 radial bins.

g (r) was assumed to be exactly unity for r greater than
the correlation function cutoff. Although the pressures
in Table I agree reasonably well with those in the litera-
ture [8,10], it is important to note that the high-pressure
value has a rather large uncertainty associated with it.
This uncertainty is not due to the radial cutoff but rather
to the finite bin width used in the g (r) calculation. It was
observed that shifting the g (r) radial grid [relative to the
dV(r)/dr grid] by a fraction of a bin width could change
the pressure by as much as 35%. The origin of this un-
certainty is the increasing accessibility of the core region
of the potential at high temperatures. Even a small radial
shift in g (r) can have a large influence on the pressure.

The diffusion constants were calculated by integrating
our MD velocity autocorrelation function over time:

ka~
t ~ (v(0) v(t)) d (8)

where m is the particle mass and v(t) is the total velocity
at time t. These values for D are in good agreement with
other reported values [8,11].

In Sec. II, we give the formal definitions for Q(r, r')
and its Legendre coefficients. For the most part, we have
adhered to the definitions of Ref. [2]. In Sec. III, we
present and discuss the results of the MD simulation. We
apply the Kirkwood superposition approximation (KSA)
to determine an approximate representation of the three-
body correlations. Using this we provide plausibility ar-
guments to explain the structure observed in Q(r, r'). In
Sec. IV, we give conclusions and suggestions for future
work.

II. STATIC AND NONSINGULAR
PAIR-PAIR CORRELATION FUNCTIONS

We follow Pinski and Campbell [2,12] and define the
pair-pair correlation function as

The thermodynamic data, including the pressure, are
given for (A) and (B) in Table I. We also include our
values for the diffusion constants. In an MD simulation
the most accurate method for obtaining the pressure is
through the virial [6]. Rather than expending additional
memory and CPU time, the pressures quoted in Table I
were obtained directly from our MD determined g (r):

p 2' ~ BV(r) (r)r dr .

TABLE I. Reduced densities p*, temperatures T*, pressures p*, and diffusion constants D* for MD
runs (A) and (B). Also included are the corresponding variables for argon where p=p*(1/o. ),
T=T*(c/k~), p =p*(c/o ), D =D*(co. /m)' . See text for discussions ofp and D.

Run

(A)
(B)

0.834
0.800

p (g/cm )

argon

1.41
1.35

T )fc

0.723
1 ~ 511

T (K)
argon

86.6
181.0

0.13
3.8

p (atm)
argon

54
1500

0.034
0.101

D (10 cm /sec)
argon

1.8
5.4



MOLECULAR-DYNAMICS SIMULATION OF THE STATIC. . . 1141

Q(r, r')= g g [(5(r—r,")5(r'—r«)) —(5(r —r,"))(5(r'—r«})] .
1

p ij k I

iWj k&1

(9)

In this equation X is the number of particles and p is the number density. The brackets indicate the usual thermo-
dynamic average. The summations are over particles which are located by position vectors r;. We consider translation
invariant homogeneous fluids only.

Q(r, r') can be expressed in terms of n-body distribution functions [2]:
X!g„(r'„. . . , r'„)= ' (5(r, —r', ) 5(r„—r'„)) .

N n! p"—

The result is

NQ (r, r') =p Jd R[g4(R, R+r, r', 0)—g (r)g(r') ]+g3(r, r', 0)+g3( —r, r', 0)+g3(r, —r', 0)

+g3( —r, —r', 0)+ [5(r—r')+5(r+r')] .g(r)
p

(10)

+2T(r, r')+2T(r, —r')+Q~(r, r'), (12)

where the triplet and quartic correlation functions are
defined by

T(r, r') = g [(5(r—r,")5(r' —r& ) )
1

&p
iW jWk

—(5(r —r,, ) ) (5(r' —r„, ) ) ] (13)

and

Q, (r,r')=, g [(5(r—r;, )5(r' —r«))1

+P i j,k, l

iW j&k&l

—(5(r —r;, ))(5(r' —r„,))] .

(14)

The four-body term results when all particle labels are
different, i' AkXl; the three-body terms arise from the
different permutations, i' Ak but l =i orj or k; and the
two-body term results from the cases where i', kWl
but i =k, j =l, or i =I, j =k. When we analyze the re-
sults of the MD simulation in Sec. III we will argue that
much of the qualitative behavior of Q(r, r') is due to the
three-body correlations and that the primary eff'ect of the
four-body correlations is to enhance or diminish this be-
havior. Q(r, r') can be rigorously decomposed into three-
and four-body correlations:

NQ (r, r') = [5(r—r')+ 5(r+ r') ]
g(r)

p

such a high degree is not usually necessary.
From Eq. (12), we define a nonsingular pair-pair distri-

bution function H(r, r'):

H(r, r') =NQ(r, r') — [5(r—r')+5(r+r')] .g(r)
p

H(r, r') is of order unity and is well behaved when
r =+r'. Furthermore, H (r, r') depends only on the three-
and four-body distribution functions.

For an isotropic and homogeneous fiuid Q(r, r') and
H(r, r') are functions of radial separations r and r' and
the angle 8 subtending the vectors r and r' and conse-
quently can be expanded in a Legendre series. Pinski and
Campbell [2] have demonstrated that the expansion
coefficients of the Legendre series (their Legendre projec-
tions) provide a convenient means for displaying the in-
formation contained in Q(r, r'). Furthermore, the Legen-
dre projections themselves appear in a number of applica-
tions such as depolarized light scattering [14] and dielec-
tric constant studies [15]. In regards to the first point,
the alternative is to calculate Q(r, r') for fixed r and r'.
This is the most common means of displaying the three-
body correlation function. Typically one fixes one or two
out of the three variables and displays by contour or
linear plots the remaining two or one variables, respec-
tively. In the present work, we calculate the Legendre
projections because, although only a finite number of
them can be calculated, all the information for a given
projection can be displayed.

Formally, the Legendre projections H'"(r, r') are
defined through the completeness relation for the spheri-
cal harmonics:

Using a cluster representation for the three- and four-
body distribution functions it can be shown [13] that
Q(r, r') is of order 1/N. Consequently, the terms in Eq.
(9) which are of order unity must cancel to order 1'!N. In
turn this requires significantly more configurations to be
averaged in an MD or Monte Carlo simulation than the
distribution functions themselves, where convergence to

oo

H(r, r')= g g Hi i(r, r')Y& (Q„)Y&* (0„}, (16)

where (Q„)=(g„,p„) and (Q„)=(8„,, $„,) refer to a
space-fixed coordinate system. Equation (16) can easily
be inverted [16]and the result is
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H'"(r,r)=, y &(r r;. )~t ("J)1

N(p«')' X I(r r—')F,"(Q')
)k,p

lWJ kAp

4n—Ng (r)g(r')5I o
—2

g(r) 5(r r'—) (17)

where g (r) is the radial distribution function

g(r)=, (xI(r r„—)) .1

4m' pr
(18)

III. RESULTS FROM THE MD SIMULATION

In this section we present the results from the MD
simulation described in the Introduction. Although the
two-body correlation function h (r) =g(r) —1 is well un-
derstood for the case of simple Auids, we briefly review
those properties that are relevant to the present work. In
Fig. 1, h (r) is shown for (A) and (B). As is well known,
the negative correlation at small radial separations is due
to the short-range repulsive core in the Lennard-Jones

Rotation invariance of an isotropic Auid implies that
any m HI —l, . . . , l] can be chosen. We investigated the
possibility of a loss of rotation invariance in our MD
simulation. We compared H'"(r, r'; I =0) and the arith-
metic mean over the various m values for the first few l
values. We found that averaging over m does not pro-
duce a quantitatively significant change. Similar con-
clusions are drawn in MD studies on depolarized light
scattering which involve the l =2 projection [17,18]. Ob-
viously, the odd I projections are identically zero.

potential. This is an excluded volume e8'ect. Figure 1 in-
dicates that (B) has less excluded volume than (A) which
is consistent with the fact that as the temperature in-
creases, more of the core region is accessible to neighbor-
ing atoms. The first positive peak is due to the nearest-
neighbor atoms clustering around an atom due to the at-
tractive part of the potential. We let RNN denote the po-
sition of this peak. As indicated by the peak heights, (A)
shows substantially more configurational order than (B).

Since this is the first time that an MD calculated pair-
pair correlation function has been reported, a primary
goal of this paper is to display as much structural detail
as possible. Figures 2—15 are plots of H'"(r, r') for / =0,
2, 4, 6, 8, 10, and 12. The axes in these figures are the r
and r' radial separations scaled by the Lennard-Jones pa-
rameter g. The contours and three-dimensional graphs
have negligible structure for r and r' less than that shown
in these plots. For clarity, we have suppressed the uni-
form background of fiuctuations which we regard as sta-
tistical noise. The magnitude of these Auctuations never
exceeds a few percent of the heights of the major peaks.

Much of the structure shown in these plots can be un-
derstood from simple energy and relative-atomic-
orientation considerations. For a qualitative understand-
ing, it suffices to consider a small number of particles
while completely ignoring the full many-body effects and
entropy considerations. From the rotation symmetries of
a simple Quid, the spherical harmonic addition theorem
implies that an alternative form for Eq. (17) is

0
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Fi(jr. 1. h (r) for (A) (solid) and (B) (dashed).

FIa. Z. Contours of MD a(0'(r, r') for (A) (bottom half) and
(B) (top half). Contours near r =r ' =R NN continue with incre-
ments of —5 [ —3] for (A) [(B)].
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FIG. 3. Contours of MD H' '(r, r') for (A) (bottom half) and

(B) (top half). Contours near r =r'=RNN continue with incre-
ments of —3 [—2] for (A) [(B)].

FIG. 4. Contours of MD H' '(r, r') for (A) (bottom halfl and
(B) (top half).

H"'(r, r )= 1 g g (5(r —r; )5(r' —rk )Pi(cos8; k )) 4mNg(—r)g (r')6&o
4rrN (prr '

)

i' kWp

g (r) 5(r —r')

P r
(19)

TItsA(r ')=g (r)g (')I g'"( lr r'I ) 4rr|ii o] (20)

where 0,. - k is the angle subtended by vectors r,- and rk .
This observation is particularly useful since it allows one
to consider the relative-interatomic orientations rather
than angles measured from a space-fixed coordinate sys-
tem.

Recall that since the self-term in Eq. (19) removes the
two-body contribution, H'"(r, r') is composed of only
three- and four-body terms. To obtain an estimate of the
importance of the three-body contribution we have used
the Kirkwood superposition approximation to calculate
the triplet correlation function T'"(r, r'):

where

g'"(lr —r'l)=2m'I drog(r +r' 2rr'ro)'~ P—&(ro) .—1

(21)

It follows from Eq. (12) that H'"=4T'"+Q~". Using
g(r) obtained from (A) we have calculated T (~zK~(r, r').
Figure 16 is a plot of 4TK(&~(r, r'). This figure is to be
compared with Fig. 11. One finds qualitative agreement
between the two plots although 4T(&z~(r, r') accounts for
only half of the primary peak observed in Fig. 11. This
di6'erence has two origins; the absence of four-body
correlations and the KSA. It is well known that the KSA

O
cD

b
i

C4

0.88 I.25 l.58

0)
O

0.88

FIG. 5. Contours of MD H' '(r, r') for (A) (bottom half) and

(B) (top half). Contours near r =r'=RNN continue with incre-
ments of 14 [4] for (A) [(B)].

FIG. 6. Contours of MD H"'(r, r') for (A) (bottom half) and
(B) (top half).
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g.o &

b
0.0-
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gl
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O

0.88 l.23 l.93
&0.0

FIG. 7. Contours of MD H" '(r, r') for (A) (bottom half) and
(B) (top half). Contours near r =r'=RNN continue with incre-
ments of —2 for (A).

works best at low densities and can provide only a quali-
tative description near the triple-point density. This is
clear from 4T'K&&(r, r') calculated for (B). In that case
the KSA accounts for 85% of the MD peak. Similar re-
sults are found for the other l projections. We conclude
that three-body correlations are responsible for much of
the qualitative structure of H' '(r, r') at these densities al-
though four-body correlations probably become increas-
ingly important near the triple point. Given the impor-
tance of three-body correlations one may interpret Eq.
(19) as a measure of the population of energetically favor-
able triplets. Each triplet is weighted by Pt(cos8;Jk)
where 8;Ji, is an internal angle of the triplet (i,j,k) Simi-.
larly, the four-body contribution is a measure of the pop-
ulation of energetic and orientational favorable quartics
(i,j,k,p) These .points will become clear from the exam-
ples discussed below.

We now consider the individual projections. The im-
portance of the relative atomic orientations is clearest for

FIG. 9. Three-dimensional plot of MD H' '((r, r') for (A).

projections with l greater than 0. In Fig. 9 the MD pro-
jection H' '(r, r ) is displayed from (A). The origin of the
large negative peak can be attributed to an excluded
volume effect. The peak is located at r=r'=RNN. In
Fig. 17(a), we show an energetically favorable configura-
tion of four atoms, which in a crystal would correspond
to the beginnings of a close-packed structure. Let the an-
gle subtending vectors R and S be denoted by Ozz and let
R =S =R NN. P2 gives a large positive weight to O~z =0
and 180' and a small negative weight to the energetically
favored Oz&=60. Since triplets with O~~=O' are prohi-
bited by excluded volume considerations the net contri-

0.0

g.0

6,.0

0.0

CU .g0

6)
C)

0.88 l.23 l.58 l.93

FIG. 8. Contours of MD H" '(r, r') for (A) (bottom half) and

(B) (top half). Contours near r =r'=RNN continue with incre-

ments of 4 for (A). FIG. 10. Three-dimensional plot of MD H' '(r, r') for (A).
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FIG. 15. Same as Fig. 14 but for H' '(r, r').

favorable, there exists planar quartics which have orien-
tation weights of +1, independent of l. These quartics
correspond to shifting the fourth member of the tetrahed-
ron [Fig. 17(a)] in the RS plane such that close packing is
maintained. The vectors R and T are then parallel or an-
tiparallel. For this reason there is probably a substantial
cancellation of four-body terms in projections which give
negative weight to angles of approximately 90. These
are the l =2, 6, and 10 projections.

From Fig. 9 it is also apparent that H' '(r, r') has off-
diagonal (rWr') structure. Positive peaks are observed in

g0.0 I

go.0

0.0

4S

R,4g

FIG. 16. Three-dimensional plot of 4T'K&A(r, r') using the
MD g (r) from (A).

FIG. 17. (a) Energetically favorable arrangement of four
atoms interacting by a Lennard-Jones potential. (b) Energetical-
ly favorable arrangements of three atoms and the positions of
maximal positive and negative weights from P4 (right of the
vertical line) and P6 (left of the vertical line).

the neighborhood of r=RNN and r'=2RNN (and its
reflection about r =r'). This structure is best displayed
in Fig. 13. The origin of this structure can be at least
partially attributed to the triplet formed when I9&& = 180'.
In that case one side of the triangle is approximately
2RNN. Finally, we note that TKs~(r, r') also exhibits
off-diagonal structure, although substantially exceeding
the MD value.

Returning to H' '(r, r') one again finds a large negative
peak at r =r'=RNN (see Figs. 2 and 12). In this case the
negative correlation must come from the subtracted
g(r)g(r') term in Eq. (19). From Fig. 2 it can be seen
that the off-diagonal structure, that was observed in
H' '(r, r'), is much less significant in this case. This sup-
ports the explanation that the off-diagonal structure in
H' '(r, r') is due to P2.

The diversity of structure contained in H'"(r, r') is
exemplified by the l =4 and 6 projections. These cases
are shown in Figs. 4, 5, 10, 11, 14, and 15. In Fig. 17(b)
we show the energetically favored triplet configuration.
To the right (left) of the vertical line we show the angles
corresponding to the extreme values of P4 (P6). For ex-
ample, P4 acquires its most negative value at approxi-
mately 49'. It is immediately clear that one expects a
large positive three-body contribution to H' '(R NN, R NN )

from this configuration. Furthermore, a nearly frozen
liquid which favors close packing would have a very large
population of these triplets. In the I =4 case we see that
the energetically favored configuration has a negative



MOLECULAR-DYNAMICS SIMULATION OF THE STATIC. . . 1147

weight from P4. However, the triplet described by
0&&=90' should be expected to contribute significant
positive weight to the total three-body contribution. The
issue is further complicated by the addition of four-body
contributions. From our previous discussion, we expect a
positive contribution from Q~ '(RNN, RNN). Conse-
quently, one might expect a fair degree of "cancellation"
in H' '(r, r'). In fact, relative to the other low l projec-
tions, H' '(r, r') has small peaks and shallow valleys
which is evidence for large cancellation in correlations.

Continuing in this way, the structure observed in the
remaining figures can (at least partially) be explained.
The analysis becomes less clear with increasing I, howev-
er,

We close this section with a discussion of the density
and temperature dependence of the H'"(r, r'). The con-
tours in Figs. 2—8 correspond to state points (A) and (B).
All projections show an increase in structure with de-
creasing temperature and increasing density. Of particu-
lar interest is the rather dramatic increase in structure of
H' '(r, r') at r =r'=RE& as the thermodynamic state
changes from (B) to (A). Furthermore, from Fig. 15 it is
clear that the of-diagonal peaks of H' '(r =RNN, r') os-
cillate nearly periodically. These oscillations occur at
r'=RNN, 2RNN, . . . . These observations are very sug-
gestive that the prevailing crystalline structure is likely to
be close packed for this system. Parenthetically, liqui. d
argon is known to freeze into a (close-packed) fcc crystal.

IV. CONCLUSIONS

Using MD we have calculated the Legendre
coefficients of the static pair-pair correlation function.
Our simulation was done with N, V, and E held fixed.
For completeness we mention that Lebowitz, Percus, and
Verlet [19] and Wallace and Straub [20] have discussed
how one extends MD ensemble calculations to canonical
ensembles.

We have demonstrated how the static pair-pair correla-
tion function can yield new information about Quid struc-

ture. We used the KSA as an indicator of the importance
of the three-body correlations in H(r, r'). Clearly, this
must be considered as a first step and an MD determined
T(r, r') is necessary for the arguments proposed in this
work to be made rigorous.

It would be interesting to examine the role of the in-
teratomic potential in determining the behavior of the
pair-pair correlation function. The pair-pair correlation
function for a Lennard-Jones liquid provides a strong in-
dication that the sohd phase crystal structure will be
close packed. One could calculate the pair-pair correla-
tion function for a system, such as a liquid metal, that is
known to freeze into a bcc crystal structure. This would
deepen our understanding of the pair-pair correlation
function as well as reveal its usefulness for discriminating
di6'erent interatomic potentials.

We presently have work underway in the following
directions. First, we are using the MD determined pair-
pair correlation function to assess the quality of the in-
tegral equation of Pinski and Campbell [2]. The Pinski-
Campbell integral equation provides an analytic means
for calculating H(r, r') and is based on the hypernetted
chain (HNC/0) approximation. Although this approxi-
mation is expected to fail at high densities, it should pro-
duce quantitatively accurate results at lower densities.
From the standpoint that the Pinski-Campbell H(r, r') is
much more economical to generate than the MD H'(r, r'),
it is very important to have a quantitative m.easure of its
accuracy. Secondly, we have also calculated the dynamic
pair-pair correlation function H(r, r', t) and those results
are planned to be reported in a subsequent paper.
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