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Numerical study of the dynamical aspects of pattern selection
in the stochastic Swift-Hohenberg equation in one dimension
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We solve numerically both the deterministic and stochastic Swift-Hohenberg equation [J. Swift
and P.C. Hohenberg, Phys. Rev. A 15, 319 (1977)] in one spatial dimension. In the deterministic
case we address the question of pattern selection by studying the temporal evolution away from a
uniform, unstable solution. The asymptotic stationary solutions found are periodic in space with
a range of wave numbers that is narrow, and consistent with earlier theoretical predictions on the
range of allowable periodicities in a finite system. In the stochastic case, the power spectrum of the
stationary solutions is very broad and typical configurations do not have a well-defined periodicity.
A correlation length is defined that measures the extent over which a stationary solution is periodic.
We find that the correlation length is finite, smaller than the size of the system studied and decreases
with the amplitude of the stochastic contribution. We confirm these findings by performing a Monte
Carlo heat-bath simulation that directly samples the stationary probability distribution function
associated with the I yapunov functional from which the Swift-Hohenberg equation is derived.

I. INTRODUCTION

We present, in this paper, a numerical study of both
the transient and stationary solutions of the stochastic
Swift-Hohenberg equation in one spatial dimension [1].
This equation describes the temporal evolution of a dy-
namical variable y(z, t), the function of a space variable
z, and time t,

»(z t) = v' —
l 1+, l y(z, t) —y(z, t)'+&(, t),t I, z'y

where 0 ( z ( I. The variable ((z, t) is a Gaussian
stochastic process defined by

(() = 0, (((z, t)((z', t')) = 2e'b(z —z')6(t —t') . (2)

The constant p plays the role of a control parameter such
that for pz ( 0 the solution y(z) = 0 is linearly stable,
and unstable otherwise. At y = 0 the solution y(z) = 0
becomes marginally unstable. For p~ ) 0, and in the
limit of vanishing e, stationary solutions yz(z) exist that
are periodic in z with wave number q. We will be ex-
clusively concerned in this paper with the case y ) 0.
The Swift-Hohenberg equation was originally introduced
to model the onset of a convective instability in simple
fluids (Rayleigh-Benard instability) . The stationary solu-
tion y(z) = 0 corresponds to the conducting state below
the convective instability. The onset occurs at p2 = 0,
leading to a stationary convective state consisting of rolls
of wavelength A = 2s/q. We restrict ourselves in the

present work to the one-dimensional equation that can
only model the appearance of straight and parallel con-
vective rolls. More complex patterns that appear un-
der a variety of conditions may be modeled by the same
equation in two spatial dimensions. The extension of our
results to higher dimensions will be discussed separately.

Most of the theoretical studies of the Swift-Hohenberg
equation have focused on the deterministic equation (e' =
0). If thermal fluctuations are the only source of ran-
dom fluctuations in the fluid, the value of e' is inversely
proportional to the characteristic wavelength of the con-
vective rolls (in thin convective cells) and is thought to
be very small for simple fluids ( 10 s) [2]. Hence its
contribution to Eq. (1) has been normally neglected. Im-
portant work in which nonzero e' has been considered
includes the original derivation of the equation to model
the effect, of hydrodynamic fluctuations on the onset of
the instability [1], a study of the dynamical amplific-
atio of the fluctuations after the instability [2], and the
analysis of the influence of the fluctuations on pattern
selection [3]. On the other hand, recent experimental
studies of an electrohydrodynamic convective instability
in nematic liquid crystals reports patterns of rolls of a
few micrometers wide [4]. As a consequence, the value
of e' in that system could be several orders of magnitude
larger than in simple fluids and the effects of random
fluctuations more readily accessible to experimental ob-

servationn.

Our study of the stochastic Swift-Hohenberg equation
is motivated, in part, by the issue of pattern selection in
the presence of random fluctuations. In the absence of
fluctuations and in a finite geometry, it is known that the
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nature af the stationary solutians and their periodicity
strongly depend on the choice of boundary conditions
[5]. We have, instead, studied the selection process in an
infinite geometry and allowed for random fluctuations in
Eq. (1). In particular, we have analyzed the competition
among the different stable stationary solutions allowed in
a system with periodic boundary conditions.

We study in this paper the onset of a convective insta-
bility and the evolution of the ensuing pattern af convec-
tive rolls, both for e' = 0 and e' ) 0, in a large aspect
ratio system (i.e. , a system comprising a large number of
convective rolls). In terms of the Swift-Hohenberg equa-
tion, we take the unstable solution y(z) = 0 as the initial
condition and numerically solve Eq. (1) to obtain y(z, t).
For t' = 0 an initial random perturbation is added at
t = 0. At times long enough, y(z, t) is seen to converge
to a periodic stationary solution y&(z) [6] that depends
on the initial random perturbation [7].

The wave number q falls within a well-defined range
that is centered around the wave number of the mode of
fastest growth during the linear regime after the insta-
bility. This range is approximately equal to the range
calculated in a one-dimensional finite system [5, 8], even
though, as we will make explicit below, our choice of
boundary conditions is diA'erent. For ~' g 0, the final
stationary solution no longer depends on the initial con-
dition. After the initial regime, well described by the lin-
ear approximation, the Fourier transform of y(z, t),y(q, t)
exhibits a number of peaks at different values af q that
alternatively dominate at different times. At suKciently
long times, the solutions appear to be stationary in a
statistical sense. We show that in that time regime char-
acteristic configurations do not have long-ranged peri-
odicity. The absence of periodicity manifests itself in
several different ways. First, we have calculated a local
pawer spectrum by defining spatial windows at different
locations zo and of varying width. The local spectrum
is dominated by different wave numbers for different z&,.
hence the characteristic stationary solutions comprise re-
gions af difFerent periodicities. Second, we have calcu-
lated a correlation length that describes the average size
of the region over which the solution can be well described
by a single periodic function. We have found this length
to be much smaller than I. We further characterize the
transient states by giving the time dependence of the av-
erage correlation length for different values of e'.

The outline of the paper is the following. In Sec. II the
Swift-Hohenberg model is briefly reviewed. We also dis-
cuss the deterministic stationary solutions, their stability
limits, and the dynamical evolution away from an unsta-
ble initial condition. Section III presents our results for
e' g 0, both the transient evolution away from the un-
stable state and the asymptotic stationary salutian. This
stationary solution is also compared in Sec. III with en-
semble averages obtained by Monte Carlo methods.

II. MADEL AND SOLUTIONS DF THE
DETERMINISTIC EQUATION

We first brieAy review some known results about the
deterministic Swift-Hahenberg equatian, i.e. , e = 0. For

small y (close but above the onset of instability), Eq. (1)
has periodic stationary solutions characterized by a wave
number q, and given by [9]

Ao (q) = s iU(q)

Ao(q)s
4w(3q)

'

where we have introduced

~(q) = V' —(q' —1)'.
These solutions only exist in the range of wave num-
bers determined by u(q) ) 0, i.e. , for q 6 [q I, , qr. ],
qual = gl + y. For large y the stationary solutions have
to be found numerically. %e have used the stationary
solutions, both for small and large p, to test, the accu-
racy af the numerical procedure which we will describe
below [10].

The stability of the various stationary solutions against
certain perturbations is also well known. The stationary
solution y(z) = 0 is linearly unstable against perturba-
tions of wave number q such that &u(q) ) 0 [u(q) = 0 is
the neutral stability curve]. The mode of fastest growth,
qo, is given by Ow/ctq~~ —&, ——0 and corresponds, in
the dimensionless form of Eq. (1), to qo ——l. On the
other hand, only a subset of the periodic solutions with

q ~ & q(q~ is tasble(q I, & q ~ & q~ & ql. ). So-
lutions with q outside this range are unstable against a
long-wavelength instability known as the Eckhaus insta-
bility [ll]. The value of q~ can be determined approxi-
mately for small y, or numerically for any p [9, 12]. In
the region of small p (p ( 0.5), we found both results to
agree very well. It is found that q+z (q+1. —I)/+3+ 1.

The issue of pattern selection concerns the determina-
tion of the stable stationary solution that corresponds to
a given initial condition. It is commonly argued in the
case of the Swift-Hohenberg equation that selection fol-
lows from a variational principle. In fact, Eq. (1) can be
rewritten as

(7)
Oy(z, t) bL((y) )

gt by(z, t,)
where the I yapunov functional L((y)) is given by

&((~)) = t'ay) '
+49

1 /'O~y~ '
+ —

I

2 iOz j
b/by(z, t) stands for the functional derivative with re-

yq(z) = ) A, (q) sin[(2i+ 1)qz] .
i=o

By direct substitution of Eq. (3) into Eq. (1) (with the
left-hand side equal to zero) and for wave numbers q

—1,
one can show that A;(q) is of order y2'+i. The first two
coefficients are given by
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spect to y(z, t) and L is large (qoL )) 1). The boundary
conditions on y(z, t) are

y(0, t) = y(L, t)

y(0, t) = y(L, t) = 0, (9)

Under these conditions, the solution that minimizes 8
is the most probable solution if e' g 0, and is also ar-
gued to be the selected solution for any initial condi-
tion when c' = 0 [6]. This solution, except for bound-
ary layer contributions near x = 0 and L, is periodic
with a wave number q;„= qo —p /1024qo 0.99994
[9], again for y = 0.5. It has also been shown that
this choice of boundary conditions further restricts the
range of allowed solutions to wave numbers q & q & q+
(q ~ & q & q+ & q~), with qy = qo+p /16qo [8,5]. Ac-
cording to this view, the periodicity of the solution can be
continuously adjusted by creating or removing rolls near
the boundaries (where y is small) until the periodicity
that minimizes L is reached.

Other selection mechanisms have been proposed that
are dynamical in nature. When the initial condition is
such that a localized region of a stable solution [yz(z) g
0] is surrounded by a large region of the unstable solu-
tion [y(z) = 0], selection takes place dynamically at the
moving front separating both regions, according to the
marginal stability hypothesis [13, 14]. If the initial con-
dition is not localized, a singular perturbation expansion
[15]yields a selected wave number equal to qo (for a local-
ized initial condition, the results from this expansion are
consistent with the marginal stability hypothesis at the
front, but not well inside the region occupied by the sta-
ble periodic solution). The effect of random Auctuations
during the transient evolution and its efFect on the selec-
tion process has not been considered, even though they
may be essential if the variational principle is to dictate
the selected stationary solution. We note, however, that
our numerical accuracy is not enough to distinguish be-
tween qm;„and qo.

VVe next describe the details of our numerical study.
We consider periodic boundary conditions on y(z, t)

for all times because we are primarily interested in the
case e' & 0. As we shall discuss in more detail in Sec.
III, the stationary solutions in that case can be locally
approximated by periodic functions, but this is true over
ranges of z much smaller than L for the values of e' that
we have considered. Consequently, we do not expect that
the choice of boundary conditions will afFect the results
and conclusions presented in that section. For complete-
ness, we analyze in the present section the transient and
stationary solutions of the deterministic equation with
periodic boundary conditions.

Space and time are discretized and y(z, t) represented
by a finite number of variables, (y;(t)) (i = 1, . . . , N)
equally spaced in z, with Ez = L/N. In some cases, we
will refer to the set (y;(t)) at a given time as a con-
figuration. All our calculations consider %=8192, al-
though occasionally we have studied the cases %=1024
or 512. After solving numerically the partial difFeren-
tial equation that gives the stationary solutions of the
Swift-Hohenberg equation, we have found that a value
for the spatial discretization Az & 2a/32 is needed in
order to obtain stationary solutions that are, to a good
approximation, independent of Az. Vfe have chosen
b, z = 2m/32 in all our calculations. Periodic bound-
ary conditions lead to a discretization of wave numbers
Aq = 27r/L = 27r/NAz = 0.0039 for %=8192 and
Aq = 0.031 for %=1024. With this choice of parame-
ters, the stationary periodic solutions corresponding to
%=8192 are comprised of the order of 256 periods or
512 nodes [a node is a point at which the solution y(z, t)
vanishes]. We use an explicit integration scheme in time.
Given the nature of the equation, the discretization in
time At has to satisfy ZU O(Az4) for stability con-
siderations. %'e have chosen Lt = 10 in all our cal-
culations. Spatial derivatives are approximated by finite
differences up to O(Az) . The finite-difference approxi-
mation to Eq. (1) is

y;(t+ Bt) —y;(t) = At (y —1)y;(t) —
~

b2y; ——b4y;
~

—Et b y;+ y;, + f;( ),

where b is the central difFerence operator by; = y;+1~2-
y; 1~~. Although in this section we are only concerned
with the case e' = 0, we have also included Eq. (11) for
later reference the random contribution f, (t) given by

(12)

where the variables iI; are Gaussian random variables,
such that (rt, ) = 0 and (g;gz) = b;z (b;z is the Kronecker
b).

In order to study the evolution away from the unsta-
ble solution y(z) = 0, we choose as the initial condi-
tion a linear superposition, with random complex coefB-

cients, of all the modes y(q, t) such that ~(q) & 0. The
random coeKcients are taken to be small so that, typi-
cally, the maximum amplitude of the initial condition is

~y(z, 0)~ 10 . We have studied an ensemble of such
initial conditions and in some cases averaged the results
obtained over the ensemble. In this latter case, we nor-
mally average our results over 15—20 independent initial
conditions.

We characterize the transient dynamics by the power
spectrum of y;(t) defined as
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where z, = (i —1)b,z. For a given initial condition the
power spectrum is seen to evolve from its initial value at
t = 0 to a 6 function centered around a particular value of
q at late times. The value of q falls within a very narrow
range and depends on the initial condition. In this evolu-
tion one can distinguish an initial linear regime from an
intermediate nonlinear regime. In this latter regime, the
amplitude of y(z, t) saturates and the width of P(q, t)
decreases with increasing t, thus indicating that the so-
lution is evolving towards a configuration characterized
by a unique wavelength. We have also investigated the
evolution of the power spectrum averaged over initial
conditions in order to gain insight on the distribution of
the wave vectors that are statistically dominant at late
times. Figure 1 shows the evolution of the power spec-
trum averaged over 15 independent initial conditions. As
expected, the fastest growing mode in the linear regime
(qe

——1) dominates at early or intermediate times. At late
times the power spectrum narrows but remains centered
around the same value of q. We show in Fig. 2 the po-

sition of qm „, the wave number for which the average of
P(q, t) is maximum, as a function of time. We find that
at the latest time studied, q „=1.006+0.005 (%=1024,
t=500) or q = 1.005 + 0.005 (%=8192, t=100). The
error estimate is obtained from the standard deviation cr

of the values of q ~ obtained for the n diAerent runs:
tr/~n. This figure also shows the number of nodes of
y;(t) as a function of time, averaged over the same num-

ber of independent runs. After an initial transient, the
average number of nodes remains approximately constant
in time. We find that the average number of nodes is
64.375 (%=1024, t=500), which for a periodic function
would correspond to a wave number q=1.006, and 513.2
(%=8192, t=100) which corresponds to q=l. 002. These
results are consistent within our numerical accuracy with
a selected wave number q = qo.

In summary, our results indicate that the long-time so-
lutions of Eq. (1), with our choice of boundary and initial
conditions, are periodic with wave number q. We find a
range of values of q for a distribution of initial condi-
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FIG. 1. Power spectrum P(q, t) averaged over 15 independent runs, for v=0 and %=1024 at different times after the
instability. (a) t=0, (b) t=100, (c) t=300, and (d) t=500.



NUMERICAL STUDY OF THE DYNAMICAL ASPECTS OF. . . 1127

tions, as indicated above. This range is very narrow and,
within our numerical accuracy, is centered around qo and
substantially smaller than [q ~, q@], presumably in part
because the exponential amplification during the linear
regime acts to suppress modes with periodicities different
than qo. We further note that for 7=0.5, q+ —q 0.03,

a vajue that is close to the standard deviations that we
have obtained (a=0.02). We note that the analysis de-
scribed in Refs. [8] and [5] considers the boundary con-
ditions given in Eq. (9) and therefore it does not strictly
apply to our case. However, at early or intermediate
times after the instability, we observe regions of rather
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FIG. 2. (a) Location of the maximum of the power spectrum q (t) for a=0. Q corresponds to %=8192, and & to N=1024.
(b) Number of nodes of y(x, t) as a function of time also for a=0. Q corresponds to X=8192, and & to X=1024. The dotted
line shows the number of nodes of a periodic function of wave number q = qo.
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well-defined periodicity, separated by regions in which

~y(z, t)
~

is small. It is conceivable that these regions could
act as effective boundary conditions and further restrict
the range of allowed periodicities.

III. NUMERICAL SOLUTION OF THE
STOCHASTIC SWIFT-HOHENBERC

EQUATION

A number of features of the transient and stationary
solutions of the deterministic equation discussed in Sec.
II do not hold for e & 0. For example, random Auc-
tuations are expected to be important during the early
stages after the instability for a range of time that de-
pends on the relative amplitude of the Buctuations and
on the solution itself. When monitoring the evolution of
a single run starting from a given initial condition, one
observes that any dependence of the final stationary so-
lution on the initial condition is therefore removed, in
contrast with the case a=0 [7]. The initial regime follow-

ing the instability is well described by the linearization
of Eq. (1). At intermediate times, however, the power
spectrum P(q, t) of a single run remains broad and its
maximum changes as a function of time, reAecting the
nonlinear competition among the various Fourier com-
ponents of the configuration (y, (t)). At late times, con-
figurations are expected to appear with a known station-
ary probability [given in Eq. (19)], as it will be discussed
in more detail below. The asymptotic stationary power
spectrum remains wide, indicating that the stationary
configurations cannot be characterized by a single wave
number.

The details of the numerical solution, boundary, and
initial conditions are identical to those given in Sec. II.
The random variable rl; has been obtained by using the
Box-Mueller transformation [16]. Most of our calcula-
tions have been performed with &=0.1, although we have
also studied the cases ~=0.05, 0.2, 0.3, and 0.4.

In order to better illustrate the character of the emerg-
ing solutions, we have calculated a local characteristic
wave number. We first perform the following transfor-
mation:

analyzed consists of different regions of a relatively well-
defined periodicity. The boundaries between these re-
gions are not sharp and their location is seen to be a
function of time.

We have also analyzed the power spectrum, averaged
over 20 initial conditions and realizations of the random
variable g;. The result shown in Fig. 4, indicates that
there is still a preferred wave number at suFiciently long
times but the distribution P(q, t) is substantially broader
than the case a=0. The power spectrum in the vicinity
of qo can be fitted by

where Ai and (i are adjustable parameters (solid line in
Fig. 4). The tail region, on the other hand, can be fitted
by

A2
( ) —(4(, ,),

where A2, $2, and B2 are also adjustable parameters.
Figure 5 shows the position of the maximum of P(q, t)

as a function of time for &=0.1 and N=8192. We find that
q „=1.007 + 0.005 at 4=100, the latest time studied.
The error is again estimated from the standard deviation
of the values of q obtained for the 20 independent
runs. This figure also shows that the average number of
nodes as a function of time does not change significantly,
and that at 1=100, is 513+2. The fact that the average
number of nodes changes less in time than qm „suggests
that the former quantity is a better characterization of
the periodicity of the solution. In fact, the number of
nodes for any individual run reaches a constant value for
the finite duration of our run.

We have finally calculated the width of the power spec-
trum W(t) for different values of e. We define W(t) by

y;(zp, t) = e-("-")'«'y;(t), (14)

where 0 & zp & I and z; = (i —1)Az, i = 1, . . . , N. The
width P is of the order of a few wavelengths. The Gaus-
sian prefactor acts as a filter and selects only a portion of
y, (t) around zp of width P (other filter functions such as
a square step have been used without altering the nature
of the results). We next calculate the power spectrum of
y (zp, t),

We show in Fig. 3 P, (q, t) for a typical configuration
at long times (i=240) in a system with N=1024, a=0.2
and for P=10. This figure shows that the maximum of
P, (q, t), which is related to the dominant periodicity
around zo, depends on zo. Therefore, the confiiguration

FIG. 3. Local spectrum P o(q, t) defined in Eq. (15). We
have considered N=1024, &=0.2, t=240, and P=10. This fig-
ure shows that the power spectrum has a weIl-defined peak
at a wave number that is a function of xo. Therefore, the
function y;(z) is locally periodic, but the local wave number
varies as a function of x.
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fo dq (q —qP)z P(q, t)

fo dq P(q, t)

(f, dq (q —qp) P(q, t) t

fo dq P(q t) )
If P(q, t) were well described by Eq. (16), W i(t) would
be proportional to gi. This is not the case since the
power spectrum is seen to decay much more slowly than
exponentially for values of q away from qp [Fig. 4 and Eq.
(17)]. We show in Fig. 6(a) W(t) as a function of time for
several values of e (the curves shown are averages over 20
independent runs for a=0.1 and 5 independent runs in the
other cases). For the largest values of e, W(t) reaches an
asymptotic constant value for times that are accessible
to our numerical calculations. For the smaller values of
e (a=0.05 and 0.1) W(f) still decreases slightly at t=100.
We show in Fig. 6(b) that W~(t = 100) is approximately
proportional to e for the larger values of e. The fact that
regions of different periodicity coexist (Fig. 3), and 1/W
remains finite and smaller than L (at least for the larger
values of e) indicates that the stationary solutions of the
stochastic equation do not have long-ranged periodicity.
As a corollary, the question of wave-number selection is,
in the presence of noise, ill defined when the aspect ratio
is sufficiently large such that 1/W « L

In order to better clarify the nature of the asymptotic
stationary solutions and to make sure that the Langevin

where Z is a normalization constant. In order to perform
the Monte Carlo simulation we have again replaced the
continuous function y(z, t) by a discrete set of variables
(y;(t)}. The functional Z((y;)) is given by

v' —~p ' &v i —
u)

2
1 ~~I~+i — Vi+ Vi —i

I+
2 i bz' ) (2o)

The Monte Carlo sampling procedure that we have
used in our calculations is known as heat bath Monte
Carlo [17]. A succession of configurations are generated
such that they appear with probability equal to 'P((y; j).
VVe select one site, say k, at random and change the
value of yt. while keeping the remaining yi, 1 g k fixed.
Standard rejection techniques are used to obtain the new

dynamics embodied in Eq. (1) has given the truly asymp-
totic behavior for the finite range of time analyzed, we
have implemented an alternative Monte Carlo calculation
to obtain the stationary power spectrum. It follows from
Eq. (7) that stationary configurations will appear with
probability,

102
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I 100
0

CL
+/

0 g 0 +~0~ooplo
10-1 ~q ~a

0

"0 0.6
' I0.8 1.0

I

1.2

FIG. 4. Power spectrum P(q, t) for c=0.1 and N=8192 at t=100, averaged over 20 independent runs. Q denotes the
solution to the Swift-Hohenberg equation, x corresponds to the power spectrum calculated by Monte Carlo methods, the solid
line is the fit given in Eq. (16) with 6 ~ 19, and the dashed line the fit to Eq. (17) with $q 6.
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value for the variable yt. One Monte Carlo step (MCS)
is defined to be N such attempts. We have studied the
case %=8192 with periodic boundary conditions, and
the same values of the parameters given above, namely
p=0.5, Ez = 2x/32, and, a=0.1. We have considered

seven independent runs, each comprising 70000 MCS's.
We discard the configurations up to 35000 MCS's and
then average the power spectrum every 500 MCS's. The
averaged P(q, t) thus obtained has been further averaged
over the seven independent runs. The power spectrum
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obtained is shown in Fig. 4, and it is in good agreement
with the power spectrum obtained by direct integration
of Eq. (1). Hence the distribution of solutions at long
times given by direct integration of Eq. (1) yields a power
spectrum that coincides, within the accuracy of our cal-
culations, with that given by direct sampling of Eq. (19).

IV. SUMMARY AND DISCUSSIQN

We conclude with several additional remarks. The na-
ture of the solutions in the case of a=0 depends on the
choice of boundary conditions. The boundary conditions
that are realistic in the description of a convective insta-
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bility in a finite experimental cell are given in Eq. (9),
and are difFerent than the boundary conditions used in
the present study. Therefore, the distribution of wave
numbers of the stationary solutions corresponding to a
distribution of initial conditions need not be the same
in both cases. We have studied an ensemble of initial
conditions and found that for most of them, the wave
number of the corresponding stationary solution is very
close to qo (Fig. 2), but that other wave numbers are
possible within a range o.=0.02. This range is much nar-
rower than the band of configurations that are stable
against the Eckhaus instability and is close to the range

q+ —q 0.03 (for p = 0.5) given by Refs. [5] and
[8] for dQferent boundary conditions. A key mechanism
in determining the selected wave number is the conser-
vation law for the number of nodes at sufriciently late
times. Our calculations support such a view and, in fact,
we have observed that the number of nodes immediately
after the initial linear regime completely determines the
wave number of the asymptotic stationary solution.

In the case of ~ ) 0, characteristic long-time configura-
tions do not exhibit a well-defined periodicity. We have
calculated a correlation length that measures the size of
the regions over which these solutions can be character-
ized by a single periodicity and found it to be smaller
than I Conse.quently, we expect that our results and
conclusions in this case are independent of the choice of
boundary conditions. We find that the stationary power
spectrum is well described by a Gaussian function in the
vicinity of qo [Eq. (16)]. The tails, however, decay as
a power law [Eq. (17)]. The width W(t) increases with
the amplitude of the fluctuations e. Even though P(q, t)
is broad and W ~ ~ I, we find that the average num-
ber of nodes does not change significantly in time (if e is
not too large) (Fig. 5). Conservation of the number of
nodes in each individual run still holds at long times for
sufIiciently small e.

An important question that remains to be addressed is
the possible difI'erent role played in the selection process
by the wave number of the fastest growing mode in the

linear regime qo and the wave number of the periodic con-
figuration that minimizes the Lyapunov functional q
For the value of p that we have used qo is almost identical
to qm;„and therefore their difIerence is well beyond the
precision of our study. A possible alternative approach
is to study the decay of an unstable periodic solution for
which the wave number of the fastest growing mode in
the linear regime is appreciably difI'erent than qm;„. Work
in this direction is already in progress.

Finally we note that our results may strongly depend
on the dimensionality. Fluctuations in convective states
in Auid systems are efFectively two dimensional since
fluctuations in the direction parallel to the convective
heat current are strongly suppressed. Therefore, a two-
dimensional model is more appropriate than the model
considered in this work. In particular, a two-dimensional
equation allows the existence of topological defects, obvi-
ously not present in the one-dimensional case, that might
affect both the selection mechanism of stationary solu-
tions and their long-range order for finite values of e.
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