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We consider a nonlinear partial differential equation that arises in the study of Hopf bifurcation in ex-
tended systems, as in the Kapitza problem. The equation in one space variable and time has dispersion
and dissipation, and it is invariant under translation and Galilean boost. This equation contains the
Burgers, Korteweg—de Vries, and Kuramoto-Sivashinsky equations as special cases. Numerical studies
reveal that the complicated solutions of this equation may be seen as a mixture of elementary, pulselike
solutions that, in the course of time, lock in and form stable lattices for a wide range of system parame-
ters. By describing such states as bound states of single pulses, we can calculate the lattice spacings
accurately—a simple formula gives these spacings. We also use this multiparticle description to derive
equations of motion of unbound, interacting pulses. These equations go to the proper asymptotic states
and provide a qualitatively plausible description. However, some quantitative discrepancies with the nu-
merical simulations suggest that further aspects of such problems deserve further exploration.

I. INTRODUCTION

The study of pattern dynamics has been advanced by
the successful execution of experiments in one dimension
(see the papers by Busse and Kramer [1]). A number of
issues are raised by these experiments, including the for-
mation and interaction of defects. In this paper, we shall
be interested in the equations of motion of defects or oth-
er localized structures in systems with Galilean invari-
ance. Such structures appear, for example, as special
solutions of equations arising in the analysis of instability
of extended systems [2]. An interesting example of such
equations is

o,u+tud,u=%Pu, (1)

where 7 is a polynomial operator in 9, .

This equation descends from the complex, time-
dependent Ginzburg-Landau equation when an equation
for the phase ¢ of the order parameter can be filtered out
[3]. Equation (1) for u=9,¢ then follows. Indeed, a
number of special cases of such equations had already
been studied back into the past century, before the
current revival of interest occurred. The Burgers equa-
tion, with £=02, appeared in Forsythe’s book on
differential equations and the Korteweg—de Vries (KdV)
equation (L =33%) was derived in the context of shallow-
water theory [4]. Another special case of more recent
vintage is the Kuramoto-Sivashinsky (KS) equation (3],
L=—232—08%, which has replaced the Burgers equation
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as a test problem for theories of turbulence.
In the present work, we focus on the nonlinear partial-
differential equation (PDE)

du+ud u+vdiu+uddu+rdtu=0, )

derived by Benney [5] in the study of the instability of
long waves on a thin layer of viscous fluid flowing down
an inclined plane [6], the so-called Kapitza problem.
More generally, (2) is the so-called phase equation for the
study of Hopf bifurcation in a channel for an appropriate
range of the system parameters.

The Burgers and KdV equations are completely inte-
grable systems. They have scale invariances which enrich
their dynamics, so we prefer the seemingly more compli-
cated example, (2), though the KS equation would also
suit our purposes. Numerical studies of (2) exist [7,8],
showing that for certain initial conditions the system
evolves to a steady state consisting of a train of solitary
pulses at fixed spacings with saturated amplitudes. We
aim here to extend the literature of reliable numerical
studies of (2) and to increase our theoretical understand-
ing of such results. Our numerical results confirm that
the solutions of (2) do tend to form stable lattices of
pulses that are steady in some particular frame.

Our theoretical treatment of (2) is based on the idea
that it has features in common with many other problems
involving localized or solitary structures formed in ex-
tended systems under the combined effects of instability
and dissipation [9]. When the lifetime of such structures
is long enough, the effective-particle approach used for
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integrable systems [10] and in quantum field theory [11]
can be extended to such systems. This approach is ad-
vantageous when the original system has one or more
symmetry groups. For then, each solitary structure can
be assigned a set of values of the group parameters and
these become collective coordinates characterizing the
state of the system [12,13]. In this way, many of the non-
linear PDE’s encountered in macroscopic physics can be
reduced to systems of ordinary differential equations
(ODE’s).

Methods of this general kind have been developed for
dissipative, unstable systems possessing translational in-
variance in diverse problems [14,15]. However, such
methods have not yet been systematically applied to sys-
tems with Galilean invariance. Of course, this extension
poses no difficulty for integrable systems [16,17] where
the inverse-scattering transform may be used, but it is not
evident how to extend that procedure [18] into a method
for the N-structure problems of pattern formation. Ac-
cordingly, we aim here to describe the dynamics of in-
teracting localized structures with Galilean invariance
using the effective-particle approach, along the lines dis-
cussed by Kawahara and collaborators [8,19], among oth-
ers. Our approach is more systematic and our equations
of motion differ from theirs. As we shall see, the fact that
the pulses do not have fore-aft symmetry makes for com-
plications in the dynamics that do not seem to have been
previously appreciated. In contrast with some earlier
descriptive analyses of numerical n-particle solutions, we
concentrate here upon a narrower study of the complete
family of two-particle solutions, testing for precise agree-
ment with our predictions. In the characterization of the
bound-state problem, we are successful in this, while in
the dynamical description, we are considerably less so.
Of course, common to any particle description of a sys-
tem such as this is the occurrence of a constellation of
fixed points of saddle and nodelike character which, in
and of itself, cannot be regarded as a satisfactory theory
without close agreement with calculated eigenvalues from
the partial-differential equation.

We should mention at the outset an issue that remains
open in all the discussions of such problems and that we
do not discuss here—namely the difficulty caused by the
fact that we must leave open the number of individual
pulses that occur. We have as yet no means of describing
the creation and destruction of pulses in these dissipative
problems. Our aim here is the more limited one of
describing the ultimate behavior of a fixed number of
pulses.

II. USEFUL PRELIMINARIES

A. Localized structures

We substitute u(x,t)=H(§), where £=x —ct, into (2),
we get an ODE for H that we may integrate once to ob-
tain

AH”’—.-,LLH”_‘_VH,_*—%'HZ_CH:O . (3)

The choice of zero integration constant is equivalent to
choosing boundary conditions for which H vanishes
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when £— + o0, which amounts to putting the system into
a selected inertial frame. (In the numerical solutions,
where we work with periodic boundary conditions, it is
convenient to fix the phase of the solution instead of the
integration constant. In addition, the velocity, u, we use
here is not necessarily the value seen in the laboratory.
In the Kapitza problem, for example, velocities in (2) are
referred to a particular moving frame with velocity
V =FV gh cos@, where F is the Froude number, 6 the in-
clination angle, /4 the unperturbed height, and g the ac-
celeration due to gravity. Thus in comparison with labo-
ratory (fixed-frame) coordinates, the variable x is really
x —Vt) We shall refer to (3) as the associated ODE. It
has both periodic and chaotic solutions [20] and this rich-
ness foreshadows the complexity we find in (2).

The solutions connecting the fixed points in the phase
space of (3) to each other (heteroclinic) or to themselves
(homoclinic orbits) describe localized structures in (2).
Figures 1 and 2 show examples of the two main types of
localized structure, the front [4] and the pulse [20]. In
each, there is a core of characteristic width, o, where the
properties change rapidly. When the ODE is auto-
nomous, the pulse or front typically approaches its
asymptotic values exponentially as £&— . Because of
the invariance properties of (2), if H(&) is a solution, then
so are H(§—Y) and H({§—X)+V, where Y and V are
constants and X =V.

The ODE (3) has two fixed points; one is at the origin
and the other has the coordinates (H,H',H' )=(2¢,0,0).
The pulse shown in Fig. 2 is associated with an orbit leav-
ing the origin exponentially in &, looping once around the
other fixed point, and spiraling back to the origin. There
also exist homoclinic orbits (localized structures) with
multiple pulses, corresponding to two or more loops
around the second fixed point.
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FIG. 1. Localized structure arising in (3) as a heteroclinic or-
bit (front) for A=0, =0, and v=—0.02.
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FIG. 2. Localized structure arising in (3) as a homoclinic or-
bit (pulse) for A=1, u=1, and v=2.

B. A constraint

The numerical study of (2) serves as the experiment for
which the theory of this paper is constructed. If we use
periodic boundary conditions in the numerics, we get va-
lidity of the numerical results for the longest possible
times. So we have mainly used periodic boundary condi-
tions in our simulations. (We have also done a few com-
putations using an algebraic map of the infinite interval
into a finite domain. Rabinovich [21] reports successful
use of absorbing boundary conditions with pulses propa-
gating into the boundary and reflecting less than 1% of
the energy incident. Apart from the periodic case, ele-
mentary homogeneous boundary conditions on a finite
domain generally result in wave generation at the bound-
ary for this nonlinear fourth-order problem.) The single-
and multiple-pulse solutions which result with these
boundary conditions cannot be precisely identified with
the homoclinic and heteroclinic orbits of the associated
ODE, except in the limit of infinite period. Thus,
differences between scattering experiments on (2) and pre-
dicted solutions from ODE’s derived in Secs. IV and V
for the group parameters are expected. They are attri-
butable both to the finite computational domain of the
former and the finite order of truncation of the latter.
We estimate the numerical errors to be much smaller
than either of these effects.

In the numerics, we shall work on a domain of size L.
Whether we have either (a) periodic boundary conditions
or (b) infinite L with u and its spatial derivatives vanish-
ing at infinity, we deduce from (2) that

9= [ udx @
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is a conserved quantity. By means of a Galilean boost we
can always arrange for JJ to be zero, but the figures show-
ing our numerical results do not all conform to this
choice.

We shall seek solutions which remain bounded and so
will expect that the derivatives of u vanish at spatial
infinity. Then, because of (4), we find from (2) that

2= lim u?=0. (5)

X— — 0

lim u
xX—+ o

C. Pulse stability

In the theoretical developments to follow, we shall not
make use of the exact multipulse solutions of the associat-
ed ODE. Instead, we shall construct all such solutions
from the single pulse shown in Fig. 2. As this is the
building block of our entire ‘“edifice,” it is desirable that
it should have a reasonably long lifetime. Just as it would
be of little value to try to make a nucleus from protons
that lived only a very short time, so too is it futile to
make patterns from pulses that are too short lived. This
leads us to consider the stability of the localized struc-
tures. We test the stability of a solution of (2) of the form
u;(x,t)=U(x —ct) for varying L with periodic bound-
ary conditions. This fits in with our studies of time-
dependent solutions to (2), which are also made with
periodic boundary conditions.

We first show the loss of stability of the vacuum state
(no pulses) using the energy method [22]. Multiplication

of (2) by u and integration over the domain
[—L/2,L /2] gives

1d ay_4v, 2y 160, 5

> dr u?) e u?) I (ul), (6)
where

(fr=1f' f2)dz, z=2x/L )

and the subscript z denotes partial differentiation.

Let u =U +v where U is a constant. We can readily
derive an equation for the perturbation energy v? from
(2). In the time-independent version of that equation we
can show that L must conform to the condition

4r (v2)
L?>=min—
v v (yzz>

By solving this problem, we can bound from below the L
needed for a nontrivial v, even though the v which results
from this is not constrained to satisfy the full equation,
but only its second moment. This is a standard variation-
al problem leading to an elementary Euler-Lagrange
equation.

The ratio in (8) is minimized by taking v =cos(nmz
+4) (with arbitrary phase #). This gives a sequence of
values L,=2n7V'A/v. (For L <L, only the constant
solution can exist.) Above L, the constant solution may
become unstable to a finite disturbance which evolves to a
single-pulse form of solution. For L > L, solutions rang-
ing from one to N pulses are all possible, the multipulse
solutions being simply the periodic extension of the

(8)
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single-pulse case. [Other multipulse solutions of (3) in a
periodic domain exist which are not directly accessible by
the energy method. The family of such solutions
representing a two-pulse state is presented later in the pa-
per.]

As a complement to this calculation, we may perform a
linear-stability analysis on (2) to discover the domain size
above which an infinitesimal perturbation will grow. The
critical L is the same since the bifurcation is supercritical.
This is what happens in other familiar bifurcation prob-
lems such as the the Boussinesq convection problem. We
can thus be certain that L, is the exact stability boundary
for the vacuum solution, which is a constant. Elementary
manipulation of the linear problem yields the added re-
sult that the velocity of the disturbances unstable on the
vacuum is given by ¢ = —vu/A.

A similar analysis permits us to find the stability of the
finite-amplitude single- and multiple-pulse states them-
selves with the help of numerical methods. For the
linear-stability problem, with v «< exp(st), we have the fol-
lowing eigenvalue problem:

sv=—{L ' [(U—¢)d,+U,]
+vL 7292 +uL 7333 +AL ~43¢}v , )

where z=x —ct. For U we may take single- or multiple-
pulse solutions. For given v, u, and A, we solve this prob-
lem, looking for the range of L over which the real part
of s is negative. Outside of this range, the given basic
state is always unstable. The energy method can be ap-
plied to the single- and multiple-pulse solutions, but is
uninformative. As the domain size increases we find, as
have Toh and Kawahara [7] that, in general, several
stable equilibrium solutions can exist. In this cir-
cumstance no state can be stable with respect to distur-
bances of arbitrary amplitude.

As we shall also see the 2N-dimensional phase space
based upon positions and velocities of N pulses is con-
strained in its linear-stability properties to a discrete
spectrum of excitations. Hence a full description of the
dynamics contained in the partial-differential equation
may not be possible in such terms. This is a question of
current interest in problems of macroscopic physics and
we are especially interested in seeing how far we can go in
representing the numerical experiments by a description
in a discrete set of collective coordinates.

III. NUMERICAL STUDIES

Steady traveling-wave solutions of (2) in a periodic
domain are found by straightforward application of
Newton’s method to the associated ODE, (3). The solu-
tion is represented in a Chebyshev expansion. (For
periodic boundary conditions a Fourier representation
would work as well. Chebyshev polynomials were chosen
to facilitate accurate treatment of several possible bound-
ary conditions at an early stage in the work. In prelimi-
nary work, we also used a finite-difference shooting
method, which performed satisfactorily. For time step-
ping, it is convenient to use a representation requiring a
minimal number of variables.) An advantage of
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Newton’s method is that, in the process of solution, it
naturally produces the derivative matrix which, on incor-
poration of boundary conditions, determines the eigen-
spectrum of the linear-stability problem.

To present the results, we use the separation of the suc-
cessive pulses in a wave train. If there are N pulses in the
domain of size L, there are N —1 independent pair sepa-
rations. Steady (in some frame), bound arrays of pulses
can therefore be described in an N-dimensional space, if
we include L in this description. Thus, for the case of a
pair of pulses, the bound states are characterized by a
pair of values: g, the pulse separation, and L, the domain
size. The operational definition of ¢ from a numerical
simulation is the distance between successive maxima.
This is not precisely the quantity we shall solve for in
seeking solutions in the form of superposed pulses be-
cause, in the simulations, the pulses are slightly distorted
from their isolated shapes through mutual interaction.
But even for a highly distorted pair state, the difference is
less than 1%.

Figure 3 illustrates all of the traveling-wave two-
particle solutions to (3) that we have been able to find
over the range of domain sizes shown. Solutions are
shown with solid or dotted lines as they are linearly stable
or unstable, respectively. There is a choice of which of
the pair is the follower and which the leader, and we in-
clude both cases. So there is generally a pair of values of
q at each L, which add up to L. These represent the same
state and form a single curved locus in the figure. The

2.6

1.6 241 2.6 3.1 3.6 4.1 4.6 5.1

FIG. 3. The family of two-particle solutions found from (3)
with parameters (v,u,A)=(2,1,1). Linear stability is indicated
with a solid line, instability with a dashed line. Both g and L
are plotted in units of L, =V27. The two-particle solutions
disappear at L =2 in these units. The first two bifurcating
branches should join smoothly at the ends of the first straight
dashed-line segment; however, it is difficult numerically to find
solutions any closer to the join. The heavy tic mark on the L
axis, at L =3.07, denotes the edge of the region of stability of
the single-particle periodic solution. For larger L, the single-
particle solution is always unstable. A family of triplet solu-
tions exists for L = 3. The first stable triplet solution occurs for
L=3.6and hasq,=q,=L /3.
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upper portion of such a curved branch is redundant,
reflecting a complementary pair separation of
g =L +x, —x, rather than ¢ =x, —x, where the coordi-
nate x, is associated with the right-hand particle of the
pair and x, the left. Similarly, along the main diagonal
branch of solutions we have g=L /2, where the two
values of g are degenerate. This degenerate pair is the
formal continuation of a single-particle solution for a
domain of size L /2 into a.periodic pair solution. This
solution terminates at L =272 (normalized to L =2 in
the figure), where its amplitude tends smoothly to zero.
A preliminary description of these two-particle bound
states appears in Kawahara and Toh [8], where it is ob-
served that the spectrum of solutions is quantized by vir-
tue of the fact that particles prefer to “sit”” in the minima
of each other’s potential wells. _

The single-particle state exists for all L down to V2.
At a value of about 13.66, it becomes linearly unstable
and is thus not realized for greater L. Similarly, we can-
not show the triplet family of solutions without compli-
cating our discussion unnecessarily. Much of the struc-
ture of the triplet family, which commences at L =3V 21,
may be inferred from a knowledge of the one- and two-
particle solutions. For dynamical purposes, one must
eventually incorporate all such states into the theory.

To refer to the two-particle solutions, we introduce a
taxonomy as follows: Branches bifurcating from the di-
agonal are numbered sequentially, 1,2,3,. .. . The stabil-
ity of the branch is indicated by the subscript u or s, so
branches are referred to as 0, 1,, 1;, 2,, and 2, in or-
der of increasing g at the point of bifurcation. Segments
of the main diagonal solutions are designated by a super-
script as in '0,, '0,, 20,, 20,, and 30, moving upward
from the lower left-hand corner. With reference to this
choice of parameters, the letters s and u denote stability
and instability of the respective branches. As we move
through parameter space, the topology of the diagram is
preserved, but the stability of the various branches is not.

Our main aim here is to develop a quantitative theory
of Fig. 3. In this, we have been successful. However, we
can also go further and show some numerical results
from (2) where we have not yet obtained a full dynamical
understanding. Consider an evolution experiment from
branch 1, at L =12. For an initial condition we have a
perturbed localized solution with a maximum relative
amplitude perturbation of =103 induced by adding a bit
of the eigensolution of fastest growth rate 1.01. Depend-
ing upon the sign of the perturbation, the g of the base
state is either decreased or increased. If g is increased,
the system rapidly evolves to solution '0,, approaching it
in oscillatory fashion (eigenvalue —0.429+1.063i). On
the other hand, if g is decreased, the solution evolves to a
single-particle state. Since the integral of u is conserved,
this may not at first glance appear possible, but what we
observe is that the solution generates its own boost, mov-
ing to a different reference frame. The value of u far
from any particles is thus displaced by an appropriate
constant offset to preserve the constancy of the integral.
In terms of outcome, a more elementary experiment fol-
lows evolution from branch 2, at L=18. In this in-
stance, for decreased g, the trajectory tends to state 1, in
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oscillatory fashion (—0.3358+2.618i), while evolution
with increased g tends to 20, monotonically (—0.018).

Many more two-particle experiments could be de-
scribed, but these two suffice to indicate the range of be-
havior to be explained. We have done several other ex-
periments with solutions containing as many as five parti-
cles. In every instance we have observed, for the parame-
ters v=2, u=1, and A=1, regardless of initial condi-
tions, the system rapidly locks into a steady-state
traveling-wave solution. Such a state is characterized by
the existence of an inertial frame in which the solution is
steady for large times.

Experiments we have performed for the choice
v=1, ©=0.1, and A=1 furnish some interesting points
of comparison. The family of two-particle states is little
altered from Fig. 3 in structure. However, for a domain
somewhat larger than L,, we find that all of the steady-
state solutions are linearly unstable for this choice of pa-
rameters, foreshadowing the occurrence of chaotic solu-
tions found in the Kuramoto-Sivashinsky equation
(u=0).

With the latter parameter values, evolution of the solu-
tion from the state corresponding to 1, in Fig. 3 (al-
though the s is no longer appropriate) leads to an in-
terestingly disordered state in time and space. We show
in Fig. 4 an (x,¢) portion from a longer run. There is still
a statistically steady state, apart from some zitter-
bewegung, in the sense that the average phase velocity
differs by —0.06 from that of the initial state 1;. The
smallness of this difference provides at least one indica-
tion that the evolved disorder produces a state which
does not stray too far from the (unstable) steady-state
profile. It seems reasonable to label this more complex
evolution also as a two-particle state (as opposed to one
or three). Nonetheless, if we search for a dynamics predi-
cated on relative coordinates p and ¢, a reduced two-
dimensional phase space cannot capture the evident dis-
order, as noted by Kawahara and Takaoka [19], who at-
tempted to describe the disordered solutions of (2) for the

‘)
A 0‘\\‘“
A\ \\\\\" ‘Q\\
R
NN \\CA \
\\}}\“\v\\\\‘ ) N

(-]
2 97 x

FIG. 4. Disordered solution for (2)
(v,,A)=(1,0.1,1).

with parameters
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same parameter choice of (v,u,A)=(1,0.1,1) with a
three-particle ODE model and produced chaotic solu-
tions. Clearly there is more here to be understood than is
contained within any discrete description that has been
tried so far.

IV. THEORY OF BOUND STATES

Our simulations have all shown that asymptotic states
are approached where several pulses are locked into con-
stant relative positions in frames of constant velocity. In
this section we give an approximate theory of these
bound states. One way to proceed would be to go to a
moving frame and look for solutions of the resulting
ODE. However, we shall work straight from the PDE in
a procedure that will admit immediate generalization to
the derivation of equations of motion for localized struc-
tures, to which we turn in the next section.

The asymptotic numerical solutions closely resemble
superpositions of N of the single pulses H(&), with
&=x —ct. We proceed by describing the multipulse solu-
tions as combinations of interacting single pulses
H(£—E;) centered at the positions §;. When the pulses
are far enough apart to make their overlaps weak, we
may then express such interacting solutions in the form
25-"le(§—§)+7€(§) where 7 is a remainder resulting
from the fact that, even in this dilute regime, a linear su-
perposition can only be approximate. This form makes
no explicit allowance for the main effect of the interac-
tions among pulses, and leaves room for improvement.

The effect of distant pulses locally on a pulse is to alter
the local velocity simply by adding a bit to u. Hence, as
we find numerically, the velocity of a bound state differs
from that of a single pulse, at least when we select the
frame in which 7 tends to zero as |£|— . Therefore,
we are well advised in seeking multipulse solutions to
change the ¢ in £=x —ct to the new speed c + Ac say, of
the frame in which the lattice of pulses is steady. Of
course, we do not know Ac in advance, so we express the
change in an open-ended way by seeking a solution of the
form

N
ulx,0)= 3 H(E—§—Y)+R(E-Y), (10)

i=1

where ¥ =Ac is the correction caused by the interactions.

We expect that both 2 and Ac are small when the in-
teractions are weak. A measure of smallness is expressed
in terms of the typical separation between nearest neigh-
bors, d. If the pulse width is o, then the smallness is
characterized by e=exp(—d /o). Both R and Ac are of
this order, as can be confirmed by inspection of the equa-
tions. This ordering guides us in rewriting (2) with the
help of (3) as

LR=13,

> g H(z—é'j)H(z—gk)—%zJ

Jj(Fk)k=1

N -
> H(E-E-Y)+R'|Y, (11

j=1

+

where
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z=£—Y (12)
and
L =A%+ ud> +vd2—ca,
N N
+ 3 H(z—§;)3,+ 3 H'(z—§;) . (13)

j=1 j=1

The formal procedure suggested by this restatement is
the development of /R in € with the requirement that the
perturbation equation be solvable in each order. One
cannot, however, exclude the possibility that an alterna-
tive expansion procedure, such as that from the theory of
normal forms, is required for a correct dynamical
descripton of systems with Galilean invariance. Even
among the authors there is still a divergence of views on
this point, but we proceed here with the simpler assump-
tion of a regular ordering since the formal structure
which emerges exhibits all the qualitative features of in-
terest and, in the prediction of bound-state particle spac-
ings, gives results only negligibly affected by inclusion of
suggested correction terms involving Y.

To perform the calculations it is helpful to know the
adjoint linear operator and its null vectors. This operator
is defined by

JocLradz=[RLQdz , (14)

where the boundary conditions associated with LT are
chosen so that there are no boundary terms in (14).

Let R, =lim ,R. Then (5) implies that &=+ _
and we find that @, ==*@_ is the boundary condition
associated with £ . With these conditions, we see that

N
L1=03¢—pdd+vd2+cd,— 3 H(z—E,)3, . (15
j=1
Thus, since L7 =0, 1is evidently a null vector of the ad-
joint linear operator. We conclude that the integral of
the left-hand side of (11) must vanish. Hence so must the
integral of the right-hand side. Indeed it does, but this
does not add new information and we must inquire
whether there are other null vectors such that

LIN=0. (16)

Generally, this equation can be solved numerically, if
we know in advance where the pulses are. For example,
numerical solutions of (16) subject to periodic boundary
conditions for a sequence of two-particle bound states
(known from the numerical solutions) exhibit precisely
one null vector, N, apart from the constant solution.
What is needed, however, is a way to find this null vector
without having to specify in advance the solution sought.
Fortunately, as for the solutions themselves, solutions for
the null vectors N resemble quite closely superpositions
of sharply localized features, each identifiable with the
single-particle state. This is not surprising, for the form
of L7 is reminiscent of the Hamiltonian for a particle
moving in a lattice; it consists of a linear differential
operator plus a multipeaked potential, 2§V=,H (z—§;).
As in solid-state physics, we can suppose that the eigen-
functions are well approximated in the neighborhood of
one peak by the eigenfunction for a “potential” with just
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one peak. This corresponds to the tight-binding approxi-
mation of solid-state physics.
Let L:-' denote the single-particle operator,

LT=20—pud} +vd*+cd, +H(z—E,)d, (17)
Then (16) can be written as
LIN=3 H(z—§)3,N . (18)

j(#i)
The right-hand side of this equation is O(e). Hence we
may expect that, in the neighborhood of the pulse cen-

tered on &;, N near £; is well approximated by the single-
particle equation:

LIN,=0. (19)

We have studied (19) numerically and have found that,
apart from the constant solution, which satisfies
N, . =N, _, there is only one other solution and it satisfies
the complementary condition N, =—N,_. This other
single-particle null vector is plotted in Fig. 5. For &
within a few pulse widths o of &;, this local result is in ex-
cellent agreement with the exact null vector. The use of
this local solution in the construction of global null vec-
tors is straightforward. To recover the two-particle

periodic solution of (16) mentioned above from N;, we
take the alternating sum

N=N;(z—&)—N;(z—£&)+O0(e) . (20)

This produces good agreement with the numerical re-
sults. In the case of interacting particles in an unbound-
ed domain, solutions of (16) can be composed as superpo-

0.5

-0.2

T
-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

FIG. 5. The normalized adjoint null vector associated with
the single-particle operator .£]. Parameters are (v,u,A)
=(2,1,1), but the qualitative appearance of the result is
preserved for a wide range of parameters.
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sitions of the single-particle solution, N;, with either sign
and thus, in addition to (20), a symmetric combination
would seem admissible. When the size of the domain for
the periodic solution is large relative to the scale of the
particles, we might expect to recover this indifference to
sign, which would have the important consequence of
permitting us to predict not only the particle spacing [as
we see later in (26)] from the antisymmetric combination,
but also the correction to the single-particle reference
frame, Y, from the solvability condition applied to the
symmetric form.

The structure of the problem is clarified upon noting
that we have the evident identity £;1=H'(z—§&;), and
that we readily verify that £, H'(z —§;)=0, where .L; is
defined in analogy to L,T [see (29a)]. These relations are
summarized in

HI

00
L,—l

10

HI
1

) (21)

which is characteristic of systems with Galilean invari-
ance. There is here only one null vector. By contrast,
the adjoint single-particle operator has two null vectors, 1
and N;. The integral of u introduced in (4) is called a dis-
tinguished functional in the sense that, for systems pos-
sessing a Hamiltonian structure, its conservation is not
related to any Noether symmetry. In our problem there
seems to be a relation between this functional and the ad-
joint null vector 1 which arises from the Galilean invari-
ance. Though our problem is not Hamiltonian, this func-
tional and Y are reminiscent of action-angle variables.

Now, we return to (11). The idea of the perturbation
theory underlying the present procedure is that 7 is
small and so, in first approximation, we neglect the last
two terms on the right. Moreover, the exponential decay
of the pulse shape means that we can restrict our atten-
tion in this approximation to values of j =i*1 so that the
solvability condition in leading order becomes

S [N{Hz—E)HGEz—§ ) +HH(E—E4,)])dz=0.

(22)

Note that the terms involving NH'(z —§;) cancel identi-
cally.

Only terms with |i —j|=1 enter to this order so that
the nearest-neighbor approximation is a consequence of
the development. The higher-order interactions, being
smaller by at least a factor €, are introduced in calculat-
ing the higher-order approximations for 2 via the solva-
bility condition. We shall not carry the calculation that
far here, but we should stress that the need to go to the
next order to complete the analysis of a formal expansion
in € is a complication not easily surmounted in a general
way.

We define
Fa)= [ [Hz—E)H(z—) N (z~E)dz ,  (23)

where



S

Ay=E&—§; . (24)

A numerical computation of F is seen in Fig. 6 for our
canonical choices of parameters (v,u,A)=(2,1,1), but
the same qualitative structure is obtained over a wide
range. Since the pulse is exponentially small far from its
core, the function H is easily approximated by linear
theory. The roots of the indicial equation resulting from
linearization of the associated ODE determine the ex-
ponentials in question. We find that F is well approxi-
mated by the simple asymptotic form

F(Z)ZfLe‘BLZcos(a)LZ-i—qSL) , (25a)

F(—Z)=fre "®%costoxZ+dg) ,

for Z— + . (The subscripts L and R stand for left and
right outer limits of the single-pulse solution.) For our
example, the constants turn out to be fp=—141.78,
frL=-—"304.49, Br=1.1869, pB;=1.0934, wz=0,
oy =1.8439, ¢ =0, and ¢, = —1.1531.

Application of (20) and (23) reduces (22) after some ma-
nipulation to the condition

F(q)—F(—q)+F(qg—L)—F(L—¢q)=0, (26)

(25b)

where the two particles are assumed to have separation g
in a domain of size L. The alternating signs in (26) arise
from the antisymmetric combination used in composing
N.

Note that g =L /2 satisfies (26) identically; thus we al-
ways obtain a pair solution with spacing of half the
domain size although, as we have already seen, the PDE
has a sequence of critical domain sizes, L,, at which N-
particle solutions are first admitted. The family of two-
particle periodic solutions predicted by (26) with parame-
ters (v,u,A)=(2,1,1) is shown in Fig. 7, where both g
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FIG. 6. The function F(q)
(v, A)=(2,1,1).

from (19) for parameters
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FIG. 7. The family of two-particle periodic solutions predict-
ed by (26) with parameters (v,u,A)=(2,1,1). Linear stability is
indicated with a solid line, instability with a dashed line. Both g
and L are plotted in units of L, =V27.

and L are plotted in units of L; =V27. The comparison
of this with the actual bound states shown in Fig. 3 gives
remarkable agreement for g(L ), except for the first bifur-
cating branch, for which the pulse separation is not very
great. We return to a discussion of the predicted stability
of these states in the next section on the dynamics of
pulses.

Figure 8 displays two-particle periodic solutions pre-
dicted by (26) with parameters (v,u,A)=(1,0.1,1).
Again, g and L are plotted in units of L (=27). Note

FIG. 8. The family of two-particle periodic solutions predict-
ed by (26) with parameters (v,u,A)=(1,0.1,1). Linear stability
is indicated with a solid line, instability with a dashed line.
Both g and L are plotted in units of L, =27w. Note that the
fixed-point structure is only slightly changed when compared to
Fig. 7. For the PDE, the stability picture is more complicated,
but these predictions for g(L) are in excellent agreement, ex-
cept, again, for the first branch.
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-8.0 -6.0 -4.0 -2.0 2.0 4.0 6.0 8.0

.Qg—T

FIG. 9. The function G(gq) from (34) for parameters
(v,p, A)=(2,1,1).

that the locations of the branches are only slightly
changed compared to Fig. 7. The predictions for g(L)
give excellent agreement, except, again, for the first
branch. (In contrast with the results found here, for the
PDE, there are ranges of domain size in which all of the
branches appear to be unstable.)

We were also surprised to observe that, with regard to
the g(L) diagram for the family of two-particle states,
there is nothing singular about passing to £ =0. The en-
tire apparatus described in this section carries through
with a result not very different from Fig. 8. In short, the
impression from the numerical simulations—that the
solutions turn into lattices of single pulses when ex-
pressed in formulas, as here— is well verified over a wide
range of parameters both qualitatively and quantitatively.

V. PULSE DYNAMICS

A. Equations of motion

Apart from some possible transient behavior, our nu-
merical simulations look as if there were simply a number
of pulses, or particles, moving under their mutual interac-
tions until they finally form a stable lattice. These collec-
tive asymptotic states are steady, but in a different frame
from that preferred by a single pulse. In the preceding
section, we showed how these lattices can be understood
as bound states of single pulses. Now, we try to general-
ize that effective-particle approach to the derivation of
equations of motion of the individual pulses as they move
under their mutual interactions to form the bound states.
As before, each particle shall be the pulse found as the
homoclinic solution of Eq. (2), shown in Fig. 2 for
A=p=1 and v=2 and found to have ¢ =5.4545.

We need to allow for two new features of the problem
in generalizing (10). Prior to achieving the steady bound
state, the system is not moving globally at constant speed,
so we shall not fix the time dependence of Y in (10) in an
a priori way, as we did in the preceding section. More
importantly, the pulses are moving and accelerating at
different rates prior to forming a bound state, and we
must allow for this richer behavior. We could proceed
from the point of view of fields by letting Y depend weak-
ly on position, and finding a PDE for this new field. But
we prefer the particle viewpoint in which we concentrate
on the vicinity of one pulse at a time. So we make a
Galilean transformation of (10) to the local frame around
the ith pulse. In fixing our attention on the neighborhood
of the ith pulse, we continue to suppose that the pulses
are widely separated with a typical interpulse distance
much greater than the pulse width (small €).

When we boost the ansatz (10) to a frame suitable
for a particular pulse with the transformation
u(z,t)—u(z—x;)+V;, it becomes

N
ulx,0)=3 HE=X;,—Y)+V,+RE-Y—X,,1); 27
j=1

where X are the positions of the pulses in the new frame.

As before, we shall try to make the error term 7 small
where the measure of this smallness is e=exp(—d /o),
with d as a typical separation between pulses whose
width is . We suppose that R covers errors of this size
such as the neglect of pulse distortions that arise in the
interactions.

If we were to proceed as in regular perturbation
theory, we would find that 2 is not small. Our aim, as
usual in singular perturbation theory, is to let the group
parameters depend on time so as to make the perturba-
tion theory work. In the spirit of singular perturbation
theory we determine these time dependences through sol-
vability conditions that render the asymptotic calculation
of 7 possible. These solvability conditions are equations
of motion for the pulses. The parameters we introduce
into (27) which break the Galilean and translational in-
variances of the problem are, in other language, simply
the unfolding parameters of a singularity of codimension
2.

We insert (27) into (2) and discover that & and Y are of
O(€). So to leading order, for the neighborhood of the
ith pulse, we have

LR==V,—(V;=V, . DH'(E~ Y—X,+y)
—(V;—V,_H'(E—Y—X,_,)—YH'(E—Y—X,)
—1 3 S[HE-Y—X)H(E-Y—X,)],

j(Fk) k
(28)
where
°£i = *caz + Vazz +:u'azzz + A'azzzz
+H'(z—X;)+H(z—X,)d, , (29a)
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z=E-Y (29b)
and we have used, as a property of the local boost,
X;=v,;. (30)

As in the preceding section, only the nearest-neighbor in-
teractions enter in this order. In (28) we have not includ-
ed additional terms of the form YH'(§—Y —X,.,) which
are formally of the same order as those involving the ve-
locity differences, V; —V, ;. For simplicity we keep the
only leading order Y term, but, in principle, if we keep
the terms involving velocity differences, there is no
reason to exclude the other Y terms.

The operator .L and its adjoint, LT, have already been
discussed. In particular, 1 is a null vector of the adjoint
linear operator and must be orthogonal to the right-hand
side of (28). Since we have allowed ourselves the liberty
of examining this only in the neighborhood of the ith
pulse, we have to apply this condition with judgement.
The integral implied in the inner product is over the
whole domain, and so the contributions from each pulse
neighborhood must be included. Our first solvability
condition is then

N .
> V,=0. (31)
i=1
The second solvability condition gives the equations of
motion of the pulses. The procedure is exactly the same
as we used in deriving the equilibrium condition above,
except that now it yields

V,=FAX;,AX; . ,AV;,AV; |, V), (32)

where AX;=X;—X;_, and AV;=V,;—V,;_,. The inter-
particle force is
F=F(AX;)+F(—AX,;, ) +AV;G(AX;)
—AV, . ,G(—AX, )+ YG(0) (33)
with F as in the steady case and
Glg)=— [~ N@)H'(z+q)dz . (34)

The function G has a more complicated asymptotic be-
havior than F, although a form such as (25) can be fitted
for a moderate range in z. Accurate computation of G
for large argument (e.g., greater than 15 with the present
parameters) is a delicate matter. Results from numerical
integration of (34) are displayed in Fig. 9. With these ex-
plicit results, we have completed a specification for the
dynamical equations of N pulses.

B. Two-body problem

The case of two pulses illustrates nicely the formation
of bound states. For N =2, we introduce the new coordi-
nates and velocities

0=3X,+X,), ¢=X,—X,,
(35)
P=LV +V,), p=V,—V,.

Then the relative motion is governed by
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q=P s (36a)
p=F(q)—F(—q)+p[G(g)+G(—q)], (36b)

while the motion of the center of mass and of the global
variable Y is given by

Q=P, (37a)
P=0, (37b)
2G(0)Y=[F(q)+F(—q)]+p[G(g)—G(—¢q)]. (37¢)

The system coordinate Y remains in the problem, un-
like what we are used to in ordinary dynamical problems.
The reason is that the “particles” of our system do not
possess fore-aft symmetry. Hence, there is no immediate
analog of Newton’s Third Law here. The two particles
thus chase each other until frictional effects on the sys-
tem bring them to a terminal velocity characteristic of
their final state. The term Y is the velocity correction
from the one-particle state to this new bound state, and it
plays the key role in the adjustment of frames.

Equations (36) may be solved independently of (37). In
Fig. 10, we show the positive g portion of the phase por-
trait for Egs. (36). We see a few of the countably infinite
fixed points that arise in (36). These are alternately stable
foci (or spiral points) and saddle points. The “ground”
state of the implied bound pair has a separation of about
3.3482. (Note that a bound state of (36) corresponds to a
double-pulsed homoclinic solution of the associated
ODE, which is also the associated ODE for other PDE’s,
including some without Galilean invariance [15,23].)
This solution can be identified with the previous periodic
solution branch from the PDE labeled 0, in the limit of
large L. The separation there approaches a limiting value
of 4.065. The disparity in these values is attributable to
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FIG. 10. A portion of the phase portrait for Eqs. (36) show-
ing the fixed points and a few sample orbits.
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the effects of distortion when the particles are so close
compared to their natural width, o. This marked overlap
presumably also accounts for the opposite conclusions re-
garding the stability.

When, in a two-body interaction, a bound state is
formed, the pair is able to go to the correct frame because
of the Y term in (32). Once it is there, (37c) is satisfied
identically, with constant Y. The frame velocity for a
bound pair is ¢+Y. From (37c), we get Y=[F(q)
+F(—q)]/[2G(0)]. This result is consistent with the
velocity correction being O(€), as we have assumed. This
is in agreement with the numerical experiments.

We cannot resist also showing what the theory predicts
about hard collisions, when the pulses approach to within
a distance o from each other. Of course, the approxima-
tions used do not apply in that case. Moreover, since the
pulses now may overlap, our original ansatz has to be ad-
justed by subtracting the overlap term. When we do this,
we get the phase portrait shown in Fig. 11, on a scale
larger than in Fig. 10. An additional saddle point ap-
pears at (¢ =0, p=0), and the topology of the solution
curves implies the existence of a critical relative velocity
p. (about 11.75 for the parameters of this example).
Below p, (in magnitude), particles approaching each oth-
er from large initial separation are reflected, while above
it they penetrate to the other side.

A more telling comparison of results of the effective-
particle theory with numerical experiments based on (2)
other than just the nature of the bound states is desirable.
We need to know whether the evolution to the bound
states by the capture process just described is realizable.
For a two-pulse state with large separation, the instability

-30.0
]

p
200 4100 00 100 200
1 I | |

-40.0

FIG. 11. The phase portrait for the two-body problem sug-
gested by Eqgs. (36) for larger values of incident velocity. The
shaded regions are illustrated in the more detailed view of Fig.
10.
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to the formation of other pulses might be rapid enough to
make the two-body discussion of the scattering process
unrealistic. As we have already mentioned, such compar-
isons are made delicate by the question of boundary con-
ditions. The simulations of (2) with the longest time of
validity are those with periodic boundary conditions. To
facilitate comparisons, we recast the scattering theory in
terms of periodic boundary conditions.

To study the two-body problem with periodic bound-
ary conditions, we return to the many-body equations
(17)-(21) and simply add the constraints

AX,+AX,, =L, AV,+AV,.,=0. (38)

Then, upon indexing the two particles with i=1 and
i =2, we find the equations

X,=v,, (39a)
V,=F(—€;9)+F(&;(L—q))—€;pG(—¢;q)

—€,pG(e,(L—q))+YG(0), (39b)

where ¢€; is +1 for i=1 and —1 for i=2, and

V,+V,=0.

Referring back to Fig. 7, we see that there is qualitative
agreement in the sequence of alternating stable and un-
stable branches, except for the first. In detail, however,
the comparison presents difficulties. The ODE branch
1,, for example, is a saddle point with a pair of real ei-
genvalues of opposite sign ([1.46, —2.18] at L=12). In
decreasing order of the real part of the eigenvalues of the
PDE, by contrast, for the same value of L, we find eigen-
values of 1.01 and —1.37%0.149i. The latter set cannot,
of course, be captured by a two-dimensional relative
coordinate phase space. A second example is the 2
branch of the ODE which is a stable spiral, whereas the
PDE exhibits a pair of negative, but real eigenvalues.
(Note that the PDE always has a zero-eigenvalue transla-
tional mode and in the ODE set, this is simply the Y de-
gree of freedom.)

C. N-body complexity

A discussion of the dynamics with only a few, but more
than two, bodies is hopelessly complex, as in all dynamics
problems. But for large N, we are immediately conduct-
ed to interesting results on setting V;=V,=const and
— YG(0)= A =const. This corresponds to a constant ve-
locity of the whole pattern of N pulses in an asymptotic
steady state. Then Egs. (30) and (32) reduce to the pat-
tern map:

F(—A,,)=A—F(,), A, =AX,=X,—X,_,. (40)

For an infinite train of pulses, there is always a fixed
point of the map corresponding to uniformly spaced
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pulses, and (40) is a relation between the spacing and 4.
The map (40) has the same form as the Poincaré map
for flows arising from ODE’s of the general form (3),
when the parameaters A, u, and v are close to the ones
used by us. Such maps can be derived using the argu-
ments of Shil’'nikov [20] or of Melnikov [24]. In the
present work, this map tells us how successive pulses are
spaced. It is known that such spacings may be uniform,
periodic, or spatially chaotic (when B; /3 <1, as in our

case).
For the map given by (40), we may solve
A, ,=06(A,). Instability of the fixed point A, =A,

=const depends on the parameter a=©'(A,). The
necessary and sufficient condition for instability of the
map is |a|>1 [25]. For pulse trains without Galilean in-
variance, the condition for instability is 1+a <0 [15].
For the present case, with Galilean invariance, we again
have the condition 1+a <0 for instability with, in addi-
tion, the condition that G(A,)+G(—A,)>0. The latter
may be interpreted as a condition of negative effective
friction. The instability of the uniformly spaced pattern
leads to a pairing of pulses, which doubles the spatial
period of the pattern.

VI. CONCLUSIONS

When a fluid flows down an inclined plane, waves grow
to large amplitude through an instability. The nonlinear
development of such instabilities given by Benney [5]
leads to the dynamics of the envelope of a packet of
growing waves. For scales much greater than the layer
thickness, the essence of the dynamics is contained in the
phase of the envelope function. Thus Benney’s Eq. (3)
foreshadows the modern development of phase dynamics
and forms a link between theories of solitons and dissipa-
tive structures [2].

We have seen that numerical experiments on this equa-
tion reveal the formation of localized persistent struc-
tures and evoke the vision that the complicated dynamics
emerging from (3), and indeed from the nonlinear devel-
opment of instabilities of extended systems generally, give
rise to a kind of particle dynamics made up of solitary
waves. Though the systems we are discussing are not en-
dowed with integrability, these solitary waves, as we have
seen, are stable—perhaps sufficiently so to be called soli-
tons in some lexicons. In any case, the description in

terms of solitary waves leads naturally to a discretization;
that is, to a description of the dynamics in terms of
several independent structures. Thus we encounter here,
as in many branches of physics, an interesting dichotomy
between the particulate and the continuum descriptions.

We shall not attempt to summarize the developments
that we have already detailed here. We should simply
like to conclude by recalling that the formation and sta-
bility properties of the bound states as outlined above
should help in understanding the qualitative appearances
of regular arrays of pulses and other striking patterns
that come up in unstable extended systems in a variety of
contexts, particularly in fluid dynamics. Indeed, we
could have come full circle and taken the many-body case
over to the continuum limit, but we leave that step to the
reader’s imagination. However, it should be clear that by
taking such a limit of our particulate descriptions, (32)
and (33), as if they were difference equations, we can
make another contact with the theory of phase dynam-
ics [26].

For these various reasons, it has seemed to us
worthwhile to have in hand a suitable description of the
Galilean dynamics of interacting localized structures.
Though there remain some particular points to be ex-
plored in these problems, we think we have taken the cal-
culations far enough to reveal that there are some general
features of interest in such problems. Beyond that, we
may hope that, just as many ODE’s have in common
Poincaré maps of the same form, so too will classes of
PDE’s share a common set of dynamical equations for
their localized structures. Thus the kind of particle dy-
namics that we have described here may underlie a possi-
ble classification of classical nonlinear field theories.
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