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Energies and wave functions for many-electron atoms
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Screening constants o. are given for one-electron basis-set radial wave functions for atomic systems
with 2 ~ Z (18. The parameters o. for an individual screened electron (i) are dependent on the states of
the screening electron (j), and the matrix of values o.

;~ is different from that suggested long ago by Slater
[Phys. Rev. 36, 57 (1930)]. The matrix is slightly more complicated than Slater s, but the results for indi-
vidual electron binding energies are much more accurate —even comparable in accuracy with Hartree-
Fock (HF) values. The procedure is applied to compute both inner- and outer-shell binding energies,
and a comparison is made with other similar calculations as well as with the HF and experimental
values. The E-shell binding energies E& calculated with the new screening constants are in particularly
close agreement with the results of HF calculations and with experimental values for elements for which
accurate measurements can be made for gaseous atomic species. The quantities E& computed for C, N,
and 0 atoms by the screening-constant method, while in agreement with HF calculations, differ from the
values now being employed to evaluate the x-ray opacity of the interstellar gas. These currently used K
threshold energies have not been measured for gaseous monatomic matter and are off by 2—6%; the
theoretical E~ are very likely more accurate and should be adopted. A simple prescription is suggested
for modifying the screening-constant wave functions for 2p states. Uncorrected, these functions, which
are hydrogenic, fall off too fast at large r. Adding a single additional exponential term gives a much
better fit to the HF functions, and a universal coefficient is suggested for this term. The prescription
yields good agreement with HF values for (r ) and (r') for the species B to Ne; the computed diamag-
netic susceptibility for Ne using the simple modified wave function agrees well with the experimental
value.

I. INTRODUCTION

The description of the states of many-electron atoms
requires simplifying approximations. One general ap-
proach that works well is the Hartree-Fock (HF) or self-
consistent-field method, which, however, requires numer-
ical procedures and generates wave functions in tabular
form. The numerical wave functions can be expressed in
terms of a sum of exponential terms with certain ex-
ponents and coefficients, but these are different for each
atomic system. The HF method has been used extensive-
ly to compute wave functions and energies for atomic sys-
tems and for the evaluation of dynamical processes such
as rates of transitions involving these systems. Even with
the amount of work involved, the method still has its lim-
itations in the accuracy of the results. For example, the
HF calculation of the ionization energy of atomic oxygen
is in error by about 13%%uo. This is because there are ap-
proximations involved in the HF method, such as the
independent-particle approximation (IPA) and the
central-field approximation (CFA). The error introduced
depends on the system involved, and the above example
(13%) is perhaps an extreme case since it involves an
atomic system with a half-filled outer shell. For most ap-
plications the HF method yields very accurate results,
especially for the calculation of energies and especially
for the description of inner-shell states for which the in-
herent approximations IPA and CFA are very good.

Sometimes highly accurate wave functions are not re-

quired for a description of an atomic state. For example,
it may be that a certain problem or application calls for
only an approximate representation of the wave function.
A very simple set of prescriptions for this purpose was
suggested long ago by Slater [I] to give approximate wave
functions and energies for many-electron atoms of low to
moderate atomic number. Slater gave simple rules for
determining an effective Coulomb field seen by an indivi-
dual electron in a particu1ar one-particle state. Because
of their basic simplicity and the reasonable accuracy of
the results, the Slater rules are still employed today. Oth-
er authors have given modified rules to improve the accu-
racy of the wave functions and energies and a comparison
of the various results will be summarized later in this pa-
per.

For the case of an atomic system stripped of some of
its electrons, a description by means of screened hydro-
genic states or screened hydrogenic basis functions is par-
ticularly accurate and convenient. In fact, even if only
one or two electrons are removed the IPA and CFA ap-
proximations are much better than in the neutral-atom
case. Also, the representation of the total Hamiltonian in
terms of a sum of independent effective Coulomb poten-
tials is a better approximation (see following section).
Thus the criteria for the applicability of the screening-
constant and HF approaches are essentially the same al-
though the latter makes less drastic approximations and
should a priori be expected to yield more accurate results.
In fact, the former method can be made to yield values
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for the energies of comparable accuracy, even for the
outer-shell states and even for neutral atoms; the accura-
cy of calculations for ionized species can be expected to
be even better. In many areas of astrophysics and plasma
physics the ionized atomic systems are of particular in-
terest. The establishment of effective screening constants,
energies, and wave functions is then very useful, since the
procedure is a general one and the treatment is analytical
rather than numerical as in the HF approach. The
screening-constant analytical functions can also be used
as starting input functions in the HF calculations. A sim-
ple and quantitative understanding of atomic shell struc-
ture is also attained, especially for low-Z species for
which there is less overlap in the wave functions for
states of different principal quantum number n. What is
most unexpected and encouraging, however, is the high
accuracy of the results in the screening-constant formula-
tion. The accuracy approaches that in the HF calcula-
tions and the procedure has the advantage of applicabili-
ty to any atomic system.

The screening-constant formulation and derivation of
their values is outlined in Sec. II. Comparison with pre-
vious work, HF calculations, and experimental results for
energies is also given there. Section III is concerned with
certain aspects of the associated wave functions, with a
special application to the calculation of the diamagnetic
susceptibility of neon as a test of their accuracy. For the
calculation of this quantity the 2p wave function must be
modified to give a more accurate representation in the
large-r tail.

II. SCREENING CONSTANTS AND ENERGIES

A. Formulation

Neglecting spin-orbit and relativistic effects, the Ham-
iltonian for a many-electron atomic system consists of
terms from the electron's kinetic energy, their attraction
to the central nucleus, and the Coulomb repulsion be-
tween the electrons; in atomic units (e =A'=m = 1),

Hu =Eu (2)

is a function of 3K variables: u =u(r&, r2, . . . , r&). This
is, of course, an impossible task because of the I!r;
terms in the Hamiltonian that introduce correlation
effects and prevent factorization in the wave function u.
If the Hamiltonian is approximated by

H= gH;, (3)

with, moreover,

Z —S;
H- = ——'T. —

E P E

where the S; are constants, the problem is greatly

H= —
—,'gV; —Zg —+ g

i ~ i&j Ej

For a system with N electrons i,j =1,2, . . . , N, and the
solution to the many-electron Schrodinger equation

simplified. In this extreme version of the IPA and CFA
each electron is taken to move in an effective Coulomb
field. The total and one-electron energies are then, in this
approximation.

E=gE;, (5)

E; = —(Z —S;) /2n; (6)

where n; is the principal quantum number for the one-
electron state. The individual wave functions are the hy-
drogenic functions

u„( (r) =R„((r)Y( (8,$), (7)

in which P is the permutation operator and E'p is +1 or—1 depending on whether the reordering is an even (+)
or odd (

—
) permutation of 1,2, . . . , X.

In the drastic approximation (3) with the individual
terms (4) and the resulting energies (5) and (6), there will
be no multiplet splitting, which occurs for many-electron
systems with incompleted shells. Multiplet splitting
arises from the I /r; terms in t.he accurate Hamiltonian
(1) and these terms are absorbed into S, /r; for the indivi-
dual H;. These terms in H; then represent the electron-
electron Coulomb energy per elect~on, such that the sum
over i is the same as the sum over pairs in the total Ham-
iltonian (1). However, because of the separable form for
the Hamiltonian the energies are given by (5) and (6) and
represent an average over the multiplet. Multiplet split-
ting would result if we evaluated the dijference between
the Hamiltonians (1) and (3). Even without the calcula-
tion of this difference, the present description is very use-
ful and can be employed to give, with appropriate choices
for the screening constants S;, approximate results for en-
ergies and wave functions.

B. Screening-constant matrix

Screening constants for low-Z atomic systems (& & Ig)
were first suggested by Slater [1]. For each screened elec-
tron (i) in a particular nlm state there would be a contri-
bution o';J to S; from each of the other screening (j) elec-
trons:

S.=
l

There is then a matrix of screening parameters with the
row i and column j designating, respectively, the screened
and screening electrons. Slater's values [2] for the o;~ are
reproduced in Table I. Obviously, there has been some
simplification and rounding off in coming up with this set
of parameters, and revised values can be obtained that
provided a better description of energy level structure.

in terms of the radial function and spherical harmonics.
The symmetrized many-electron wave function con-
structed from the one-electron states would be the Slater
determinant

1 N
u = — Ep upI l
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For example, variations on the two numbers 0.85 and
0.35 at points in the matrix can be introduced, and there
are good reasons for doing this aside from fitting experi-
mental data.

In the Slater rules the screening of the 2s and 2p elec-
trons by the 1s electron is the same, and this should not
be the case. The 2s wave function has a "1s part, " being
larger than the 2p function at small r where screening by
the inner electron takes place. Screening is then less

complete for the 2s state and we expect

Screened

1s
2$

2p
3s
3p

1$

0.30
0.85
0.85
1.00
1.00

2$

0
0.35
0.35
0.85
0.85

Screening
2p

0
0.35
0.35
0.85
0.85

3$

0
0
0
0.35
0.35

TABLE I. Slater screening matrix (o.;.).

3p

0
0
0
0.35
0.35

+2s ls + 2p ls (10)

Further, consider the 2 X 2 submatrices o,' in which i,j
are 2s and 2p and also 3s and 3p. In the Slater rules this
has the simple form

u v u u

u v v v v u
(12)

with u =0.3S. This, too, is an approximation, made in
the interest of simplicity, that can be modified. In princi-
ple, all four elements of this matrix should be different
and be different for the 2s, 2p and 3s, 3p cases. However,
in modifying the Slater rules we want to retain the ele-
ment of simplicity and also provide some physical basis
and insight for the new results. Modifications of o.

,
'" that

could be attempted are, for example, the two-parameter
forms

corresponds, moreover, to an effective Coulomb field
description. The two parameters of Eq. (10) are to be
determined by comparison with experimental data and
accurate HF calculations, and the best fit does yield the
inequality as suggested. In the submatrix o.," we take, at
first for i and j equal to 2s,2p, the first two-parameter
form on the right side of Eq. (12); that is,

2 2 2p2 ~2 2p ~2p2p (13)

Physically, this can be taken to imply, if electron i is de-
scribed by a wave function having a characteristic radial
extent r; that is roughly the same for 2s and 2p states [5],
that screening by the same electron is equal. This would
then be so for electrons in the same n shell, for screening
by electrons in inner shells the situation is different, since
o2„,%cr2 &, . In the usual notation for radial wave func-
tions, in terms of

P„I(r)=rR„I(r), (14)
In fact, we find that the first form on the right works best
and we shall try to provide some explanation for why this
should be so. Moreover, we find that u & v, and this too
can be understood.

There have been other attempts to obtain. screening
constants since the original work of Slater in 1930; the
work of Clementi and Raimondi [3] and Burns [4] can be
cited and the results in this paper will be compared with
theirs. Both Slater and Burns assume, as we do, that the
energy levels are related to the screening constants by
means of relations (5), (6), and (9); that is, the electrons
are regarded as moving in effective Coulomb fields. This
is not assumed by Clementi and Raimondi, in whose
work the corresponding screening parameters are meant
to go with exponents in nodeless basis-set functions in an-
alytic forms for one-electron functions in HF calcula-
tions. The approach in the present work is most closely
related to that of Slater. However, our parameters are
different and the resulting energy values are more accu-
rate.

For our modified matrix o.
,", in the interest of sirnplici-

ty, we retain the 0's and 1's of the Slater matrix in Table
I, and we include only two digits in all the other values.
The constant o.1,1, is set equal to the "theoretical" value
of 0.31; this is just —„obtained in a one-parameter varia-
tional calculation for bare two-electron systems. This is
found to be quite accurate for E-shell electrons and
would be approached as Z becomes increasingly larger
than 2. The corresponding variational wave function

a measure of the screening by electron j would be the
charge interior to r:

N&(r)= f PJ (r)dr . . (15)

The ratio N2, (r)/Nz~(r) can, be computed easily for hy-
drogenic wave functions; it goes asymptotically to unity
at r = ~, and for very small r it is much greater than uni-
ty. On the other hand, for a range of r, including the
"characteristic" r of about 4/Z (effective Z) the ratio is in
the neighborhood of 0.7, similar to the value of u/v that
is found for the screening constants.

To determine the elements of the 3 X 3 submatrix with i
and j equal to 1,2,3, we consider the neutral atomic
species with Z=3 —10. The problem is the evaluation of
four parameters in this submatrix, and there are experi-
mental data and results of HF calculations for 1s, 2s, and
2p binding energies for these eight elements. We have
used only the higher-Z end (F and Ne), since these species
have the maximum number of 2p electrons and since only
Ne has an accurate experimental measurement of the 1s
binding energy. As a confirmation of the accuracy of the
parameters —and of the effective Coulomb field
approach —the resulting approximate calculations of
binding energies at the lower Z are found to give good re-
sults. For the most weakly bound electrons we have re-
lied on the work of Clementi and Roetti [6], who calcu-
late HF ionization energies for the basic Hamiltonian (1);
they have given results for all multiplet levels (when there
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TABLE II. Modified screening matrix (o.;,- ).

Screened

1s
2s
2p
3s
3p

1s

0.31
0.90
0.95
1.00
1.00

2$

0
0.25
0.25
0.90
0.95

Screening
2p

0
0.34
0.34
0.90
0.95

3$

0
0
0
0.25
0.25

3p

0
0
0
0.34
0.34

is multiplet splitting) for neutral and singly ionized
species. For more general results for individual one-
electron binding energies for 1s, 2s, and 2p electrons, the
relaxed-orbital relativistic HF results of Huang et al. [7]
are used, these calculations include a number of small
corrections, such as fine-structure splitting (for p elec-
trons), and values quoted here are for both corresponding

j levels. Comparison is made with the less accurate HF
calculations of Mann [8], which are in the "frozen orbit-
al" (Koopmans's theorem) approximation.

The values found for the 3X3 subrnatrix are given in
the upper left of Table II; the inequality (10) occurs and
u/U =0.74. For individual one-electron states the pa-
rameters (10) for neutral oxygen are compared with pre-
vious results in Table III and it is seen that the values are
close to those of Slater; however, the differences are
significant. Burns's values are very different and hard to
understand. Note that we have carried the submatrix o.,

".

in Table II down into the lower right for the 3s and 3p
states; the column with 0.90 and 0.95 has been retained as
well for screening in these states by 2s and 2p electrons.
Although we have tried other values for the elements of
o.; in the lower right, the numbers adopted give equally
good results for binding energies for the K and M shells
for Na to Ar; the values for the 2p binding energies for
these species are not quite as good, but there is a reason
for this. The matrix in Table II could be modified fur-
ther, of course, and this is not the only combination of
numbers that can yield accurate binding energies. How-
ever, the simplicity of the original Slater approach has
been retained and the revision of the screening constants
has a physical basis.

Finally, concerning the screening constants and ener-
gies, it may be well to emphasize here that the one-
electron values E; in (6) are diff'erent from eigenvalues
that would be obtained in a HF calculation. In particu-
lar, the latter one-electron energies would be associated
with the Coulomb interaction of, say, electron i with all
of the other electrons. In the formulation given in this
work the E; represent the energy per electron such that
the sum over i yields the total energy of the system. In
the total energy the sum of 1/r; over pairs is, of course,
meant to be counted only once. These same remarks ap-

ply for the meaning of the screening parameters S, and

o;; that is, they are essentially defined in terms of the
form (6) and the total (5). This definition is the same as in
the original Slater treatment. Our o.

;~ are determined
phenomenologically, except for the 1s-1s value which is
that associated with the one-parameter variational treat-

TABLE III. Comparison of screening (Z —S;) for states of
neutral oxygen. The designations S, CR, and B refer to the
work of Slater (Ref. [1]),Clementi and Raimondi (Ref. [3]), and
Burns (Ref. [4]); JG designates the present work (Jung and
Gould).

State

1s
2s
2p

7.70
4.55
4.55

7.66
4.48
4.42

B

7.65
5.15
3.95

JG

7.69
4.59
4.58

ment of the two-electron problem. The result of that ele-
mentary calculation is consistent with our general ap-
proach, since it gives —(Z —

—,', ) for the energy. This en-

ergy is the same as if we were to take H, +H2 [as in (3)]
for the two-electron Hamiltonian with each electron be-
ing affected by a Coulomb field of charge Z

&g
That is,

the Coulomb repulsion energy is essentially divided be-
tween electrons 1 and 2.

The individual energies E; computed from (6) are,
moreover, different from the actual binding energies for
the associated states. The binding energies, discussed in
the following subsections, are obtained by taking the
difference between the total energy of the system with
and without the particular electron.

C. X-shell energies

Results for K-shell binding energies for the 16 neutral
atoms Li to Ar are given in Table IV. The first three
columns of numbers compare values for Ez computed
from the screening constants suggested by Slater, Burns,
and this work. We do not compute Ez from the screen-
ing constants given by Clementi and Raimondi [3], since
they do not imply the existence of Eqs. (5) and (6) to be
used with their parameters. Two sets of HF calculations
are given for comparison; here the results of Huang et al.
should be considered as much more accurate than those
of Mann, for the reasons already stated. In Sevier's com-
pilation [9] of experimental data, as stated in that work,
the numbers for Be, 8, Si, P, S, and Cl are suspect; we
feel, in particular, that the values for Be and B must be in
error. For these elements and many others, the HF re-
sults of Huang et al. [denoted by HF (H) in Table IV]
and our results (labeled in the table as JG for Jung and
Gould) should be considered as more accurate. That is,
the Ez can be calculated better than they can be mea-
sured for elements that do not exist normally in gaseous
atomic form. The value 64.39+0.03 eV for Li should be
considered as accurate, however, and this is important as
a test of the HF(H) and JG results. The experimental
number is based on the spectroscopic work of Ederer, Lu-
catorto, and Madden [10] on lithium vapor. The agree-
ment with experiment for the HF(H) and JG results for
Li and Ne (870.1+0.2 eV) suggests that the theoretical
calculations are preferable to the experimental values for
the elements in between. The CRC Handbook of Chemis
try and Physics [13]and Lotz [14] compilations of experi-
rnental data are listed in Table IV for comparison, partly
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TABLE IV. IC-shell binding energies (eV). The designations S, B, and JG refer to Sister (Ref. [1]),Burns (Ref. [4]), and the present
work. Two HF results are listed [Huang et al. (Ref. [7]) and Mann (Ref. [8])]. The compilation of experimental data on atomic
species by Sevier (Ref [.9]), is designated by "Expt."HCP is the CRC Handbook of Chemistry and Physics (Ref. [13])and L refers to
the compilation by Lotz (Ref. [14]). The column labeled DC gives results from the extrapolation formula of Daltabuit and Cox (Ref.
[1 11).

Atom

Li
Be
B
C
N
0
F
Ne
Na
Mg
A1
Si
P
S
C1
Ar

65.95
127.37
208.48
309.29
429.80
570.00
729.89
909.48

1124.45
1362.70
1624.24
1909.05
2217.15
2548.53
2903.18
3281.12

8
58.67

117.37
194.51
290.02
403.91
536.15
686.77
855.75

1064.38
1296.28
1549.20
1825.39
2124.87
2447.63
2793.67
3163.00

64.35
123.43
201.06
297.37
412.36
546.02
698.37
869.40

1080.28
1313.83
1571.81
1853.01
2157.43
2485.48
2835.94
3210.02

HF(H)

63.85
123.22
200.82
296.94
411.88
545.37
697.59
869.15

1078.19
1310.58
1567.87
1848.62
2152.32
2479.91
2830.93
3205.39

HF(M)

67.42
128.78
209.40
308.54
426.31
562.76
717.92
891.79

1101.48
1334.23
1591.90
1872.68
2176.62
2503.75
2854.06
3227.56

Expt.

64.39
119.3
194

870.1

1079.1
1311.2
1567.0
1846
2154
2477
2830
3202.9

HCP

54.7
111.5
188
284.2
409.9
543.1

696.7
870.2

1070.8
1303
1562.3
1839
2149
2472
2823
3205.9

58
115
192
288
403
538
694
870.1

1075
1308
1564
1844
2148
2476
2829
3206.3

DC

59
113
186
280
395
533
694
878

1088
1322
1581
1867
2179
2517
2884
3277

to show the differences that exist among the various
references. The last column gives the values suggested by
Daltabuit and Cox [11](DC). The DC values are perhaps
the most erroneous, not that it is their fault, however,
since they just adopted the "best" values at the time. Un-
fortunately, though, the DC E thresholds are currently
being used for the important application to interstellar
x-ray absorption [12]. Erroneous Ez (error=6% for C,
4% for N, 2% for 0, etc.) have been employed in count-
less papers in x-ray astronomy, even before the work of
DC.

For the elements Li to Ne the agreement between the
JG and HF(H) values for Ez is remarkable. Given the
inherent approximations in the HF method there is essen-
tially no difference in the collection of values. In fact,
sine there is actually better agreement in the JG results
when comparison is made with the reliable experimental
results for Li and Ne, the JG numbers might be slightly
preferable to HF(H) for the elements 8 to F. Certainly
the JG energies agree as well as could be hoped for. For
one thing, the o.; have all been rounded to two significant
figures; the E; are proportional to (Z —S;), so that the
expected relative uncertainty in the JG energies could be
of order 0.02/Z. The agreement is much better than
this —of the order 0.1%. On the other hand, the Slater
screening constants yield Ex off by 4—5 % for the ele-
ments C to Ne; the Burns values are also in error by
about this amount.

For the elements Na to Ar there is still good agreement
between our values and those of Huang et al. values for
Ex. , with a typical difference of about 0.1 —0.2 %. Again,
this is about as good as can be expected, especially since
no new adjusted parameters were introduced in the lower
right of the cr; matrix (Table II). T.he errors in the Slater
and Burns values are much greater, typically about

2 —4%. In general, for the elements Na to Ar the Huang
et al. energies should probably be taken as most accu-
rate, since the IPA and CFA are probably very good ap-
proximations. The HF values of Mann [denoted by
HF(M)] are less satisfactory but better than for lower Z
because of the reduced error from the frozen orbital ap-
proximation.

Finally, concerning K-shell binding energies, there is
another reason why a simple description must have limit-
ed accuracy: there are relativistic corrections to the ener-
gy. The correction factor can be written as 1+g„, and
for hydrogenic 1s states

g„(ls)=—,'Z a (16)

where a is the fine-structure constant. For Ne, Z=10
(effecive value), and r)„=0.0013; for Ar, Z = 18, and
g„=0.0043. Thus deviations of several tenths of a per-
cent can be expected on this basis alone.

D. Outer- and intermediate-shell energies

Accurate calculation of binding energies for the L, and
M shells is more difFicult than for the E shell, whether by
HF or screening-constant methods. In the HF approach
there are the IPA and CFA assumptions which, however,
are still not as drastic as the approximation in the
screening-constant approach which considers the
effective field affecting an individual electron as that of a
(screened) Coulomb field. Nevertheless, the latter
method does seem to work well in explaining the 2s, 2p,
3s, and 3p binding energies for the elements Li to Ar.
For example, we now obtain very different values for the
2s and 2p energies as well as for 3s and 3p, while with
Slater screening constants the energies would be the
same. A comparison of energies is given in Tables
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TABLE V. L-shell binding energies (eV) (Li to Ne). The column titles are the same as in Table IV.
An additional collection HF(CR) of calculated binding energies is listed, from the work of Clementi

and Roetti {Ref. [6]). Their binding energies are associated with the lowest multiplet level of the atom
and corresponding ion, that is, the energy listed is the normal ionization energy. The parentheses after
some of the 2p energies indicate the particular j value (—' or —) for the state when it is distinguished in

the calculation or measurement.

Atom 8 HF(H) HF(M) HF(CR) Expt.

Li
Be
B

F

2$
2$
2$

2p
2$

2p
2$

2p

2$

2p

5.75
7.87
9.78
9.78

11.46
11.46
12.93
12.93

14.17
14.17

15.19

15.19

15.99
15.99

5.75
7.87

11.11
5.85

14.27
7.23

17.36
8.38

20.39
9.32

23.35

10.03

26.24

4.90
9.41

13~ 89
10.13
19.08
12.30
25.00
14.38

31.64
16.37

18.27

47.06
20.08

5.33
7.99

12.63
7.97

18.11
9.48

24.32
».75(-,')
12.62( —')
31.61
14.07( —')
14.71(—)

39.73

16.59( —')
16.92( 2 )

49.21

19.50(-,' )

19.40( —')

5.34
8.42

13.46
8.43

19.38
11.07
26.22
13.84

34;02
16.77

42.79

19.86

52.53

23 ~ 14

5.34
8.05

7.93

10.79

13.96

15.72

19.85

5.39
9.32

14.05
8.30

19.39
11.26
25.41
14.55

32.31
13.62

40.19

17.42

48.47

21.66( —')
21.56(-,' )

V —VII, and we now discuss the results in the various en-

ergy classes and for the elements Li to Ar. Basically, as
for the K-shell energies, the comparison of our (JG)
va1ues should be made with the Slater energies, the vari-
ous HF calculations, and with the experimental (Expt. )

results.
First, considering the 2s binding energies, the JG

values are much better than the other screening-constant
results of Slater and Burns. Comparing with experiment
(Expt. ), they are, on the whole, better than the HF results
for Li to Ne but not quite as good as HF for Na to Ar.
The 3s JG energies are much better than the Slater values
and the Burns energies are completely erroneous, actually
being negative. Comparing with experiment, the JG 3s
values are even better than those from HF calculations,
this is surprising and encouraging, since the lower-right
submatrix in Table II was simply taken down from that
for the 2s-2p part of the matrix with no new adjusted pa-
rameters.

The story on the 2p and 3p binding energies is more
complex and, for several reasons, the simplified methods
of screening constants cannot hope to give results with
high accuracy for a large range of elements. For one
thing, in our efFective Coulomb field approximation (3), as
in the original Slater approach, there is no Inultiplet split-
ting that arises from electron-electron repulsion terms
1/r," in the Hamiltonian. These eAects could, of course,
be evaluated in the usual perturbation approach by com-
puting the diA'erence between the exact and approximate
Hamiltonians. Still, on the whole, the JG results for

binding energies are fairly good as can be seen from the
tables. For the 2p energies, the JG values are comparable
in accuracy to HF and better than Slater's results for the
elements N to Ne. For Na to Ar the JG 2p energies are
not as good as HF, but this is to be expected. %ith our
simplified matrix we have not accounted for screening of
2p states by M-shell electrons; that is, there really should
be some small components o.

34 Q3$ 6 in the matrix in
Table II. As a result, without these components the JG
2p binding energies are too large by about 10% for the
elements Na to Ar. These eA'ects are larger for 2p states
than 2s states because of the more significant large-r tail
in the former's radial wave function. The JG 3p energies
seem to be comparable in accuracy to HF values, except
at the upper end (Ar). As for the 3s energies, this should
be seen as a successful set of results, since no new adjust-
able parameters were introduced to the o.; matrix for the
M shell. Again except for Ar, the JG 3p energies are, on
the whole, considerably better than the older Slater
values. As in the 3s case, the Burns 3p energies are not at
all accurate.

For outer-shell 2p and 3p electrons, perhaps the best
HF energies are the Clementi-Roetti [6] (CR) results.
Their values given in Tables V and VII are for the lowest
level of the multiplet, when there is splitting, and would
then correspond to the experimental energies. Although
these HF energies are quite good in most cases, the agree-
ment with experiment is not always to high accuracy. As
noted earlier, for example, the computed oxygen value
(11.89 eV) diff'ers from the experimental number (13.62
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TABLE VI. L-shell binding energies (eV) (Na to Ar). The column headings are the same as in Table
IV.

Atom

Na

Si

Cl

Ar

2$

2p

2$

2p

2$

2p

2$

2p

2$

2p

2s

2p

2s

2p

2s

2p

35.77
35.77

59.02

59.02

8S.73

85.73

115.90
115.90

149.S3

149.53

186.63

186.63

227.18

227.18

271.20

271.20

46.00
23.18

69.23

38.20

93.27

60.22

120.19

85.64

149.98
114.14

182.64

146.63

218.17

182.21

258.58

221.18

JG

72.64
41.30

100.94
65.25

132.96
92.92

167.99
123.60

206.04
1S7.29

247.09
193.99

291.16

233.70

338.24

276.43

HF(H)

71.85
36.60( —')
36.43( —)

97.57

56.40( —' )

56.13(—)

127.85

81.12( 2 )

80.37( —)

161.24

109.00( -' )

107.58( —)

197.77

139.58( —')
138.01(—)

237.54

173.29( —')
171.55( 2 )

280.41

209.99( —')
208.06( —')
326.66
249.95( —,

'
)

247.80( —)

HF(M)

76.11
41.31

102.53

62.10

133.63

87.58

167.70
115.99

204.87

147.44

245. 17

181.99

288.64

219.66

335.30
260.45

Expt.

70.9
38.38( —')
38.02( ~ )

95

55.0( —')
54.8( —')

125.6
80.7( —')
80.3( —)

156

107(—')
106( ~ )

194

141(—')
140( —)

235

171(—')
170(—)

278

210(-,' )

208( —')
326.0
250.55( —')
248.50( —)

TABLE VII. M-shell binding energies (eV) (Na to Ar). The column headings are the same as in

Table V.

Atom nl B JG HF(H) HF(M) HF(CR) Expt.

Na
Mg
Al

Si

P

Cl

Ar

3$
3$
3$

3p
3$

3p
3$

3p

3$

3p

3$

3p

3s
3p

7.32
9.08

10.74
10.74
12.31
12.31
13.77
13.77

15.14
15.14

16.41

16.41

17.58
17.58

—20.33
—22.96
—24.71
—0.33

—26.76
—0.02

—28.84
0.18

—30.96
0.29

—33.10

0.30

—35.27
0.22

4.90
7.81

10.77
5.76

14.05
7.02

17.65
8.23

21.57
9.41

25.80

10.54

30.37
11.64

4.86
6.57

10.17
5.51

14.04
6.78

18.13
8.53( —')
9.04( —)

22.88
10.26( —')
10.60{—)

27.91
12.54( —' )

12.65( ~ )

33.20
14.76( —')
14.58(-,' )

4.96
6.89

10.71
5.71

14.79
7.59

19.22
9.54

24.02
11.60

29.20
13.78

34.76
16.08

4.95
6.61

5.50

7.66

10.04

9.03

11.79

14.77

5.14
7.65

11.33
5.99

15.17
8.18

20.17
10.53

21.30
10.34

25.31

12.97

29.24
15.81
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eV) by 13%. The difference is probably due to the in-
herent IPA and CFA approximations in the HF method.
In neutral oxygen the 2p electrons interact with a half-
filled shell, a condition where the approximations should
be least accurate. Compare, also, the CR result for sulfur
(Table VII) which is again off by 13% (and in the same
direction —too small).

Concerning the general experimental values for outer-
shell electrons, they have, with a few exceptions, been
taken from the compilation by Sevier [9]; in some case ex-
perimental errors are listed therein and these have been
omitted here. Also, in some rare cases, in the interest of
simplicity for our tables, an average over several experi-
mental numbers has been taken. Our aim is mainly to
provide a general comparison of theoretical descriptions
of outer-shell level structure. Very precise experimental
energy values are not of prime interest for these purposes;
actually, some experimental energies are not determined
to high accuracy (see Table VI).

er, it can be modified in a simple way so that it falls off
less rapidly at large r (like the HF function). The corre-
sponding prescription (see below) seems to work reason-
ably well and has a generality to make it useful in appli-
cations to an arbitrary atomic system.

Analytic forms for single-electron wave functions for
many electrons are generally constructed from single-
term basis functions of the form

(17)

Here P designates the three quantum numbers, n, l, andI which have the same meaning as in hydrogenic func-
tions, and g is a parameter which, in terms of the
screened or reduced Z, is given by

g=(z —S„1)/n .

The function (17) is normalized, that is,

III. %'AVE FUNCTIONS
dr=1, (19)

A. Construction from single-term basis functions

The formulation in Sec. II A approximates the many-
electron Hamiltonian (1) by a sum of hydrogenic forms
(3), yielding the associated energies (5) and (6). However,
the individual S, are different for each individual one-
electron state; with the modified screening constants,
even the 2s and 2p states have different S;. The values for
1s states are very different from those for the I and M
shells. As a result, the hydrogenic functions (7) are not
orthogonal, except for the cases where the angular quan-
tum numbers I and m differ from another pair (l ' and
m'). For example, the hydrogenic ls and 2s functions
would not be orthogonal because Z —SI )Z Sp ~ A
completely hydrogenic function using Z —Sz, as the
effective Z value is not a bad representation of radial
wave function, but a simple procedure leads to a much
improved analytic form for the state. An illustration of
this for atomic oxygen is provided by Fig. 1 of a previous
paper [15]. In this figure I2-S designates a completely hy-
drogenic function using an effective Z value Z —Sz, and

Sz, evaluated from Slater screening constants; with our
modified parameters the corresponding function would be
very similar. The function S in the figure refers to a
slightly different radial wave function, constructed from
single-term basis functions as outlined below. As em-
phasized in that work, this wave function is almost iden-
tical to a number of other wave functions, such as HF
forms, that are determined by more elaborate methods.
Moreover, the basic reason for the accuracy is the impo-
sition of the 2s-1s orthogonality condition which, because
of the high accuracy of the 1s function, imprints some of
this accuracy onto the 2s state. The resulting 2s radial
wave function is very close to a HF function except at
large r where it falls off a little too rapidly.

The Slater 2p function for atomic oxygen was com-
pared with a HF function in Fig. 2 of the Gould [15] pa-
per. This function has no orthogonality condition to
benefit from and is not as good as the HF result. Howev-

but the functions are orthogonal only for differing values
of I and m. Specifically,

+p+p'dr Ipp'~ll '~mm' (20)

with

(2g)n +1/2(2gr )n'+1/2
IPP' (g+ g

)n+nI'+1 [(2 )1(2 r )1]1/2
(21)

The form (17) is similar to a hydrogenic function in hav-
ing, in addition to the spherical harmonic, a power r"
and an exponential term. For a particular nlrn state the
single term gives the dominant contribution or major
peak to the wave function. Although single-term forms
are actually used to represent electron states, much better
wave functions are constructed from linear combinations
of these terms. For a particular state a, the (nonhydro-
genic) wave function can be written as

(22)

U~= Un(~ =r ' g C Pig(r) Y1 (0,$) .
p

This is all very standard procedure. In the various
functions AP(r) the parameters gP would be evaluated
from the appropriate screening constants by means of
Eqs. (18) and (9). The individual functions are built up in
this manner; for example,

in terms of constant coefficients C p. Each term in the
sum has the same angular part Y&, since an effective cen-
tral potential is assumed, so that in terms of the radial
part

(2g )n+1/2
Ap(r)=, r "e

[(2n)!]'

the function (22) can be written
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TABLE VIII. Diamagnetic susceptibility of atomic neon. HF(M) denotes the HF results of Mann
(Ref. [8]),HF(SN), the results of Saxena and Narasimhan (Ref. [17]). JG labels are our results using an-
alytic wave functions with p=0 and 0.045.

&r')„(a.u. )

& r'&„(a.u. )

&r'&„(a.u. )

y&r'&/, (a.u. )
k—N g„(10 cm /mol)

HF(M)

0.0335
0.9671
1.2285
9.3722

7.419

HF(SN)

0.0331
0.9380
1.1680
8.9502

7.085

0.0320
0.9000
0.8618
7.0348

5.569

p =0.045

0.0320
0.9000
1.1539
8.7874

6.960

Expt.

6.96+0.14

U„=r 'A. „(r)Yoo,

U2s 7 [CIA I (P)+C2~2s(r)] Y{1{1

U5, =r '[CIXI, (r)+C2A2, (r)+CP5, (r)]Yoo,

(25)

with, in this case, Yoo=(4lr) ' . In the functions U„,
U2„and U3, the various C's are fixed by normalizing the
functions and by making them orthogonal to one anoth-
er. In the integrals involved the radial functions satisfy

I Ai5(r)Air(, r)dr =, Ipr, (26)
0

given by formula (21).

compared the results with values given by Mann [8]. The
analytical expressions (29) and (30), for the corresponding
values of g with our modified screening constants, yield a
good description for the averages for 8 to Ne using the
simple number (31) for the parameter p. Specifically, the
ratio of the averages (29) to the Mann values ranges from
0.99 to 1.00 for these six elements while the ratio of the
( r )2~ to the Mann values ranges from 0.94 to 0.97.

An experimental test of the single-electron averages
( r ) is provided by a measurement of diamagnetic sus-
ceptibility. For a monoatomic gas the molar value of this
quantity is given by

B. Modification of the 2p function
itioXd =

6 No{2 ao X ( r ) k
k

(32)

As mentioned above, the single-term 2p wave function
is not as accurate as the 2s function. In terms of the
screening parameter g, the function has the simple form

where No is Avogadro's number, a is the fine-structure
constant, ao is the Bohr radius, and the sum is over the
atomic bound electrons. For Ne,

(r) (2/31/2)g5/2r2e —gr (27) y (r )k{N,)=2(r ) Is+2(r )2s+6(r )2p
k

(33)

and falls off too fast at large r. We have tried various
modifications for this function to follow the more accu-
rate HF forms. One modified form has a single added
term with an exponent half as large; normalized, in terms
of a parameter p, this function is

2g5/2 e
—fr+ e

—gr/2
(r)= r

31/2 ( 1 + 21 li2/35+ 25' )
I /2 (28)

The averages ( r ) and ( r ) with this 2p wave function
are given by (C =2"/3 )

( )
5 1+4Cp/3+ 64p

2g 1+Cp+ 32p

15 1+16Cp/9+ 128p

2g 1+Cp+ 32p

We have fixed p by comparing the function A,z with the
Hartree-Fock-Slater (HFS) function for neutral atomic
oxygen as given in the work of Herman and Skillman
[16]. With

(30)

p =0.045, (31)

passes through the HFS 2p at the latter's peak (as
well as further out on the tail). In fact, we suggest the
form (28) with the value (31) as a universal approximation
to HF 2p wave functions for the elements B to Ne. For
these atoms, we have evaluated ( r )2 and ( r )2~ and

so that a large contribution comes from the 2p electrons.
Moreover, since the effect gives weight to the large-r tails
of the electron states, the modification (28) of the single-
term basis function is necessary to give a calculted gd in
agreement with experiment. Table VIII gives results of
such a calculation, including the HF results of Mann [8]
and of Saxena and Narasimhan [17]; our results using
analytical wave functions with p=0 and 0.045 are also
given; "Expt." refers to the experimental result of Barter,
Meisenheimer, and Stevenson [18]. Listed in the table
are individual results for the 1s, 2s, and 2p states in atom-
ic units (ao), with the JG values computed using the
screening constants from Table II. The computed (r )2,
employed a U2, made orthogonal to U„as described in
Eq. (25). The exact agreement of our p=0.045 suscepti-
bility with experiment is fortuitous, since we did not pick
the p value (31) to accomplish this. What should be not-
ed, however, is the necessity of introducing such a correc-
tion to the analytic single-term 2p function. Without the
correction our calculated p =0 value for yd is not in good
agreement with experiment, being 20%%uo too small.
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