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Semiclassical propagators and Wigner-Kirkwood expansions for hard-core potentials
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We illustrate the perturbative nature of Wigner-Kirkwood expansions showing that for strongly
repulsive potentials quantum corrections are not properly taken into account. We then present an
alternative calculation of quantum corrections for such cases based on well-known semiclassical
methods. We begin with a simple example and then go on to consider a semiclassical expansion for
the propagator of a particle in the vicinity of the boundary of a sphere and show that by treating the
classical physics nonperturbatively an extra term, corresponding to reAection, appears in addition to
the Wigner-Kirkwood term. We calculate quantum corrections to all orders and sum the semiclas-
sical series, recovering the results of previous authors for both the propagator and the direct second
virial coe%cient. We conclude with a discussion of the implications of our analysis for more general
potentials.

I. INTRODUCTION

The study of quantum-mechanical corrections to clas-
sical statistical mechanics has been of interest since soon
after the beginnings of quantum mechanics. ' Since the
original contributions there have been a number of

I

rederivations and applications of Wigner-Kirkwood ex-
pansions. ' In recent years there has been some renewed
interest in this area with the contributions of Fujiwara,
Osborn, and Wilk and, independently, Makri and Mill-
er. These authors derive expansions of the form

exp
—H

(r~e t'H~ —r) . (1.2)

The generalized Wigner-Kirkwood expansions (1.1) for
these matrix elements require the average of the potential
from —r to r. This requires an integration through the
origin. For strongly repulsive potentials the answer is
divergent. In this circumstance the generalized Wigner-
Kirk wood expansions are clearly inadequate. Other

where A. =(2M Im )P, P= 1lkT, and the W„are poly-
nomials in the potential and its derivatives. We shall
refer to these expansions and their variants as generalized
Wigner-Kirkwood expansions. Expansions of this form
have also, to various extents, been examined by a number
of other authors. Expanding out the second exponen-
tial and taking r, —+r recovers the usual Wigner-
Kirkwood expansion. These series can be seen to be
manifestly inadequate with regard to two applications.
For strongly repulsive potentials, generically represented
by the Lennard-Jones form, the Wigner-Kirkwood ex-
pansions have been extensively used to calculate quantum
corrections to direct second virial coefficients. ' We
shall have more to say about these later. These series,
however, do not yield the corrections for the correspond-
ing exchange coefficients. This can be readily seen with
reference to the exchange second virial coefficient b2"'".
Here one requires the antipodal matrix element,

methods allow b2"'" to be calculated for the Lennard-
Jones potential. ' " The result is exponentially
suppressed compared to the direct contribution in the
high-temperature limit.

In the case of hard-core potentials,

O, /rf )a
( )=' (1.3)

(where r ER ), the Wigner-Kirkwood expansions are
inadequate for both the direct and exchange second virial
coefficients. This is well known and has been commented
upon in the literature. This inadequacy is commonly at-
tributed to the nonanalyticity of this potential. Despite
this, through other methods, we know the variation of
the second virial coefficients through a wide temperature
range from extensive numerical calculations. ' These nu-
merical calculations produce various predictions con-
cerning the high-temperature behavior, all of which were
subsequently confirmed analytically using various
methods. "'

In this paper we wish to present arguments that at-
tempt to clarify the circumstances under which general-
ized Wigner-Kirkwood expansions can be used. In cases
such as the hard-core potential, where the generalized
Wigner-Kirkwood expansions cannot be used, we shall
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present an alternative formulation. Within this formula-
tion we shall calculate the matrix elements (r~e P ~r; )
for r-=r,. for a single particle in the external hard-core
potential (1.3). We shall not consider the antipodal ma-
trix elements for reasons which we will outline in Sec. VI.
Unlike the generalized Wigner-Kirkwood expansion we

shall not be able to explicitly consider the X-particle case.
The generalization of our formulation to this case will be
conceptually clear but calculationally forbidding.

The techniques we shall be using are in fact an elabora-
tion of the following well-known' ' result in the semi-
classical limit of time-dependent quantum mechanics,

(rie
—iHt/R~r )

3/2

det
8 S, (ir, t~r;)

BX;Bgj

1/2

exp S,~(—r, t~r, ) (1+ . . ), (1.4)

where 5„ is the classical action of a particle which is at
r;=(yi,y2, y3) at time 0 and r=(x„xz,x3) at time t and
the sum is over all classical paths that satisfy these condi-
tions. Caustics have been neglected. We shall use a semi-
classical ansatz presented in the appendixes of a paper by
McLaughlin. This Ansatz represents an application of
Keller's geometric theory of difFraction to the
Schrodinger equation and is an extension of (1.4). We
shall work with Schrodinger propagators, using the sub-
stitution t= i' —to recover Boltzmann factors. Our
reasons for not working directly with Boltzmann factors
are outlined in Sec. VI.

There are two other main techniques of treating quan-
tum mechanics in the semiclassical approximation. These
are the WKB approximation' and the path-integral
method. ' ' ' The WKB approximation normally refers to
time-independent quantum mechanics. It can be applied
to the problem at hand if one uses the Watson represen-
tation,

e ~ = dze ~'G(z) .
—H

27Tl c

This, however, requires the time-independent Green's
function at complex energies. We shall use this formula-
tion in a simple context in Sec. IV. In general, however,
we find this technique to be less transparent and more
difficult to calculate with than those based on (1.4). This
comment also applies to the direct use of path integrals.
It is convenient at times, however, to use the path in-
tegral for purposes of visualization of the calculation.

In Sec. II we shall use the above-mentioned Ansatz and
a variation of it to recover the generalized Wigner-
Kirkwood expansion. In particular, we illustrate that
this expansion arises from treating the classical problem
underlying the quantum problem in a perturbative
manner. In Sec. III we consider the use of the general-
ized Wigner-Kirkwood expansions with strongly repul-
sive potentials. We also consider the possibility of recov-
ering results for the hard-core potential by using a limit-
ing procedure. We illustrate the inadequacy of the gen-
eralized Wigner-Kirkwood expansions in these cases. We
then go on to present an alternative treatment for calcu-
lating semiclassical propagators when the generalized
Wigner-Kirkwood expansions fail. As a preliminary ex-
ercise we consider in Sec. IV quantum propagation on the
half line. In Sec. V we consider semiclassical propagation
in the potential (1.3) for ~r~, ~r;~ —=a. We expand the

semiclassical propagator in powers of a ', calculating to
order a quantum corrections to all orders in fi. We
then formally sum these (asymptotic) series to obtain the
full quantum propagator to order a . We use our ex-
pression for the propagator to evaluate the high-
temperature series for the direct second virial coefticient,
finding that we obtain a series in agreement with previous
results. We also find that our expression for the propaga-
tor agrees with the (integral) expression of previous au-
thors. '"' In Sec. VI we discuss the possible generaliza-
tion of our method and also consider its limitations.

II. THE PERTURBATIVE NATURE
OF THE WIGNER-KIRKWOOD EXPANSION

In examining the classical limit of one-body Boltzmann
factors we shall work with the following Ansatze

(r e ' ' "~r; ) = exp —S(r, t~r; )
1 l

(21Tifi)

X g (i A )~b (r, t
~ r,. ),

j=0
(2.1)

(rie 'H"")r, ) = exp S(r, t)r, )—1

(27rih')

X exp —g A'R, ( r, t
~ r, )

j=1
(2.2)

where d is the dimensionality of the configuration space
being considered. One can consider these to be generali-
zations of Morette's expression (1.4). Substituting these
into the Schrodinger equation and equating powers of A

one obtains a hierarchy of equations for each set of un-
known coefficients. From (2.1) one obtains the hierarchy

(VS) + V(x)+ =0,
2m Bt

1 2
VS VIJ-1 V2S aIJ 1

2m f71 2m J ' at

(2.3)

(2.4)

(VS) + V(x)+ =0,
2m 9t

(2.5)

where b i =0. [Note the sign error in McLaughlin's
(A4).j From (2.2) one obtains
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1
V R,+ VS VR, + g VRj, VRJ

2m m 2m k 1

BR-J 0
at

(2.6)

BS' 1 0 1+ VS'.VS'+ g VS" VS' "=0,
Bt m 2m&

(2.11)

The first equation in both hierarchies, (2.3) and (2.5), is
just the Hamilton- Jacobi equation. Solving this is
equivalent to solving the classical equations of motion.
The connection between the Hamilton-Jacobi equation
and the Schrodinger equation is of course well known.

As we want the solution of the Schrodinger equation
corresponding to the propagator, we need to solve for the
unknown functions in (2.3)—(2.6) subject to the initial
condition:

Bb VS Vb 0 V2So+ + bo=o
Bt m 2m (2.12)

Bbo + VS .Vb0 + bo+g
m

i V2sk+ g bo "=0, i ) 1 (2.13)
k=1

lim(r~e ' '~" r;) =5(r—r, ) .
0

(2.7) ab,' VS Vb' V2SO . & VS .Vb''+ b'+ ~
m

S= g e'S', b, = g e'bj' .
1=0i=0

(2.8)

As a mathematical problem the most difficult aspect of
this procedure is to solve the Hamilton-Jacobi equation
since it is nonlinear. Once this is done the remaining
equations of each hierarchy are linear and can be solved
via the method of characteristics. The characteristics are
simply the classical paths. Thus, in principle, determin-
ing the classical paths is the most difficult aspect of the
solution of each hierarchy. This, of course, is in general a
nontrivial task. In order to make progress one must ei-
ther consider cases where the classical mechanics is sim-
ple, use perturbation theory, or do numerical calcula-
tions. We shall limit ourselves to the first two options.
(McLaughlin gives an explicit formula for the b in terms
of bj, . As bo is readily written in terms of S [see (1.4)]
this allows one to obtain all the b. recursively from S.
We shall not follow this procedure for two reasons. First,
we shall be able to readily solve the partial difFerential
equations that shall appear. Second, McLaughlin's use of
a "canonical problem" to determine initial conditions on
the unknown functions is not appropriate here. We shall
derive the required initial conditions by other means. )

Let us first treat the potential V(x) as a perturbation
on the free system. We shall do this by writing the poten-
tial as eV(x) and treating e as an expansion parameter.
We shall solve the equations in each hierarchy as a per-
turbation series in e. This procedure will recover the
generalized Wigner-Kirkwood expansion.

We first consider the hierarchy given by (2.3) and (2.4).
We assume that S and b. can be expanded as power series
in e, i.e.,

i V2Sk
bj —k V2b j

m m

(2.14)

(r~e ' ' "~r, ) = exp —pe'S'(r, t~r, )
1

(2~iI)

X g g (i A)'e'b, '(r, t
~ r, ) .

j=Oi =0
(2.15)

The initial condition, (2.7), is independent of e. This im-
plies that

S'(r, O~r,. )=b~'(r, O~r,. )=0 for i ) 1 and all j . (2.16)

The initial conditions thus determine S' and b' for allJ
i ) 1 on a hyperplane in space-time. [We are solving
first-order partial differential equations in four variables
(r, t ) on the domain E E+. We shall designate this
domain as space-time for obvious reasons. It is amusing
that the space time concept finds a natural setting in a
nonrelativistic situation. ] These conditions, together
with the partial differential equations are sufficient to
determine all the S' and b' over all space-time for i ~ 1.
Now as e~O the potential term vanishes and (2.15) must
reduce to the free propagator. This identification deter-
mines the i =0 terms. They are

We now have a double power series for the full propaga-
tor representing a perturbation series in both A and the
strength parameter e'.

Substituting these into (2.3) and (2.4) we obtain

as'
(VS )+

2m at

+ + V(x) =0,
at m

(2.9)

(2.10)

S (r, t~r, )= m(r —r;)
bo= d, b =0 . (2.17)t""

One can readily verify that these functions satisfy the
relevant equations in the hierarchy. Furthermore, it is
clear that the initial condition (2.7) is satisfied. Now we
are left with the task of solving for S' and b' for i ) 1 sub-
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ject to the initial conditions (2.16).
The S', i + 1 all satisfy a partial differential equation of

the following form:

BF(r, t ~r;) r —r;+ VF(r, t r,. )=G(r, t r;), (2.18)
Bt

where G(r, t ~r, ) is a known function and the explicit form
for S has been substituted. This equation can readily be
solved via standard techniques (see the Appendix) to ob-
tain

r —r;
F(r, t~r, )=f G r, +

0
' t

~, ~ r; d~+C

(2.19)

where C is an arbitrary function that is determined via
the initial conditions. Equation (2.19) is readily verified
by direct substitution into (2.18). Using this formula one
can establish the explicit form of the S'. The first few of
these are

S'(r, t~r, )= t f—V(r;+g(r —r, ))dg,
t3

S (r, t~r, )= ——J (1 g—)dg f g,dg&VV(r;+g(r —r;)) VV(r;+g, (r —r;)) .

(2.20)

(2.21)

The b', i ~ 1, all satisfy a partial differential equation of
the form

r —r; dVF(r, t ~r; )+ F(r, t ~—r, )
2t

because of the initial condition and

R,'(r, t~r;)= — f g(1 —g)V V(r;+g(r r;))—dg,2m 0

(2.28)
=G(r, t~r;) .

The general solution to this equation is
d/2 r —r;

F(r, t~r, )= f — G r, + ~, r r; dr
0 t

(2.22)
2 2 4R2(r, t~r;)= f g (1—g) V V(r;+g(r —r,. ))dg .

8m

(2.29)

1+,d/2 C (2.23)

(see the Appendix). Using this general solution one readi-
ly verifies that the first few b' are

t2
bo(r, t~r;)= d f g'(I —g)V V(r, +g(r —r, ))dg,

(2.24)

The calculation of higher-order terms can be done, but
this becomes tedious. As we only wish to illustrate the
perturbative nature of Wigner-Kirkwood expansions we
shall content ourselves with the first few terms (see Ref. 4
for higher-order terms).

We can follow a similar procedure to the above in solv-
ing the second hierarchy, (2.5) and (2.6). If

S= pe'S',
i=0

R, = pe'R',
i=0

(2.26)

then S,S', and S are the same as for the first hierarchy

id t=—ln, R =0 for j~1
2 m' (2.27)

t3
bI(r, t~r,. )= d f g (1—g) V V(r;+g(r —r;))dg .td/2 8m 2 0

(2.25)

If we substitute these expressions into (2.2) and expand
the second exponential (after separating out the R, term)
we obtain agreement, as we must, with (2.1), using the bj'
(2.24) and (2.25). Furthermore, we also agree with the re-
sults of previous authors. ' Using the language of Ref. 4
we can consider (2.2) to be, in a sense, the result of using
a linked-graph method to exponentiate the first Ansatz.
Using the terminology of diagrammatic perturbation
theory we can consider the b' coefficients in (2.1) to cor-
respond, when we perturb in the potential, to reducible
diagrams, whereas the R ' of (2.2) correspond to irreduc-
ible diagrams.

We have thus recovered the generalized Wigner-
Kirkwood expansions from (2.1) and (2.2). Our approach
differs from those of previous authors ' in that they per-
turb about the free propagator. Because of this they au-
tomatically have a perturbation expansion in the poten-
tial. Our approach is more general, as it allows the po-
tential to be treated nonperturbatively within the semi-
classical approximation. In later sections we will find sit-
uations where the classical problem must, of necessity, be
treated nonperturbatively.

There are a number of approaches in the literature
which are similar-to what we have done above. ' '

Fujiwara and Choquard both use Morette's expression
and treat the classical path perturbatively to obtain a
Wigner-Kirkwood expansion of the propagator. Our
work differs from theirs in that they expand in powers of
the time, obtaining a short-time expansion. Our expan-
sions coincide with these short-time expansions for di-
mensional reasons. The work of Osborn and Molzahn
is much closer in spirit to our analysis. They begin with
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an Ansatz which difFers from (2.2) by a factor of t
They consider a large-mass expansion of the classical
paths rather that a small-potential expansion. In terms of
classical paths, however, the two approaches are
equivalent, because a large mass increases the inertia of
the particle and thus decreases the effectiveness of the po-
tential in deviating the particle from straight-line motion.
Their procedure also recovers the Wigner-Kirkwood ex-
pansion. Even closer to the spirit of our work is that of
Makri and Miller. Here the action is expanded in
powers of the potential but only in one dimension. The
analogous multidimensional form is written down.
Furthermore, (1.4) is the basis of the calculation and thus
higher-order terms cannot be obtained. Much of this
previous work is concerned with the evaluation of short-
time propagators for use in the Feynman path integral.

Our treatment of the generalized Wigner-Kirkwood ex-
pansion not only reproduces previous results, it is also
able to go beyond them. It is clear from our discussion
that the Wigner-Kirkwood expansion assumes that the
action scale in the problem is large compared to fi and
the potential energy is small compared to the kinetic en-

ergy. We now address the relaxation of the latter as-
sumption.

III. WIGNKR-KIRKWOOD EXPANSIONS
AND STRONGLY REPULSIVE POTENTIALS

We now examine a case where the Wigner-Kirkwood
expansion is not satisfactory. Let us calculate quantum
corrections to the direct second virial coefficient for the
hard-core potential (1.3). We do this by considering the
case of a power-law potential

'n

V(r) = Vo (3.1)

It is plausible that we should be able to obtain results for
the hard-core potential by calculating with this potential
and taking n ~ ~ at an appropriate point in the calcula-
tion. This approach to the hard-core case is due to
DeWitt.

Substituting (3.1) into the generalized Wigner-
Kirkwood expansion gives the following semiclassical ex-
pansion for the Boltzrnann factor:

n '2 ' n+2
a &Vo X a

(r~e ~ ~r& = exp —PVo — — — n(n —1)
r 12m a r

&Vo (PVo )
(n +2)(n +1)n(n —1) — +

240~2 r 24m

2 2l1 +2
a

n ~ ~ ~

r
(3.2)

If one factorizes this into four exponentials and expands
all of them except for the first, then one obtains
the Wigner-Kirkwood expansion for (3.1). This form of
the semiclassical Boltzmann factor was considered by
DeWitt. By substituting this Boltzmann factor into the
expression for the direct second virial coefficient,

23/2
bz= —, f dr&r~e ~H —e ~ '~r&, (3.3)

and integrating, DeWitt obtains in the limit n —+ 00,
4

2~a n A, n A.
b 1+ + 0 ~ ~

3&6 16m a 960~ a

(3.4)

The Wigner-Kirkwood series that DeWitt uses is slightly
different from ours, but this is a result of the use of in-
tegration by parts. Equation (3.4) does not have a limit
as n ~~ and this is indicative of a failure of the
Wigner-Kirkwood expansion tDeWitt does suggest that
(3.4) is part of a series, which when summed, does have a
limit as n —+ ~. The analysis in Sec. V shows that this
view can be taken but is not the full story. ] As a result of
this difhculty, quantum corrections to the hard-core
direct virial coeKcient have been calculated using other
methods. " ' Through naive manipulations, however,
one can obtain alternative answers for the hard-core lim-

it. For instance, if, in DeWitt s calculation the hard-core
limit is taken before the integration over r is carried out,
then only the first term in (3.4), i.e., the classical answer,
is obtained. One can uncover further ambiguity by work-
ing directly with the generalized Wigner-Kirkwood ex-
pansion (3.2). If one takes the hard-core limit in this
form of the propagator, then one obtains, for r & a, a
divergent answer, even before integrating. This is be-
cause the fourth term appears with a positive sign. The
ambiguity of the hard-core limit is further evidence of the
failure of the Wigner-Kirkwood expansion. However,
this is not the only evidence. Even in the power-law case
there are problems. As r ~A, in (3.2) the first and second
quantum "corrections" become of the same order of mag-
nitude as the classical term. Worse still, the positive sign
in the fourth term causes the propagator to diverge as
r~0. These problems indicate that as r becomes small,
quantum corrections become large. One can see then
that while the Wigner-Kirkwood expansions are integr-
able for strongly repulsive potentials, the generalized
Wigner-Kirkwood expansions are not.

In light of the derivation of the generalized Wigner-
Kirkwood expansions in Sec. II, these problems are not
surprising. They are simply a reAection of the fact that
the effects of a strongly repulsive potential cannot be ob-
tained by perturbing about the free solution. However,
problems arise only when the potential is strong. For

~
r ~, ~r; ~

))a, typical potentials are weak. As such, one ex-
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pects that the generalized Wigner-Kirkwood expansion
gives, in some sense, a correct expression for the propaga-
tor in this limit. The problem with using generalized
Wigner-Kirkwood expansions to calculate virial
coeKcients is that one needs an expression for the propa-
gator that is uniformly valid for all r. These expansions
clearly do not provide such an expression for strongly
repulsive potentials.

IV. NONPERTURBATIVE CLASSICAL INPUT
INTO SEMICLASSICAL EXPANSIONS-

A SIMPLE EXAMPLE

In Sec. II we demonstrated that the Wigner-Kirkwood
expansion is more than a semiclassical expansion of the
propagator. It also assumes that the interactions in the
underlying classical problem are small enough to be treat-
ed perturbatively. For strongly repulsive potentials this
latter assumption is not valid and needs to be removed in
some sense. We shall spend the rest of this paper consid-
ering some simple contexts in which this can be done.
The procedure for calculating the semiclassical propaga-
tor was outlined in the first part of Sec. II. In applying
this procedure to the case of strongly repulsive potentials
let us first consider the problem qualitatively. The first
step is to obtain the classical action. This is most readily
obtained by first calculating the classical path r, (t). Sub-
stituting this into the Lagrangian yields an explicit func-
tion of time. Integrating this function over time from
some initial time to some final time yields the classical ac-
tion. As is well known' ' the classical path r, (t) re-
quired for this evaluation is a solution of Newton's equa-
tions of motion subject to the boundary conditions
r, (0)=r, , r, (t) =r. Unlike the initial-value problem this
boundary-value problem can have more than one solution
(in fact, it may not have a solution at all). This is the case
for strongly repulsive potentials. Let us consider, as a
specific example, the case where r,- =—r. We shall be con-
sidering this case quantitatively for a hard-core potential
in Sec. V. For a single particle propagating from r; to
r-=r; in time t in the field of a strorigly repulsive poten-
tial, there are in fact two classical paths satisfying the
boundary-value problem. One, the direct path, goes
directly from r; to r. For this path, if ~r~, ~r; ~

))a one can
write the classical path as a perturbation series in powers
of the potential strength. The second classical path, the
rejected path, begins at r; moving toward the origin,
reflects off the potential barrier, and returns to r in time t.
This path cannot be obtained via a perturbation expan-
sion in the potential strength. This is because at the turn-
ing point the potential energy dominates the kinetic ener-
gy.

The presence of reAections has been noted in the path-
integral formulation of the semiclassical limit, and some
calculations have been done. ' These rejections are, of
course, related to turning points in the WKB theory.
There is, of course, an enormous literature on this. '

However, as we noted in the Introduction, the applica-
tion of the time-independent theory to the problem at
hand is less transparent than the time-dependent ap-
proach we are taking.

A2 020 . 8%=i% for x &0,
2m

(4.1)

%(x,O) =5(x —x; ),
B%

(O, t)=a P(O, t), t) 0 .

(4.2)

(4.3)

We begin with this example, as the solution is well known
via other techniques. ' The boundary condition at
x =0 can be thought of as a treatment of a typical poten-
tial, which has a strongly repulsive core to prevent the
particle from entering the x & 0 region, via the zero-range
approximation. For a &0 a bound state appears.

For this problem there is both a direct and a rejected
path. The classical actions for these paths are

m(x+x; )

2t (4 4)

where the plus sign is for the rejected path and the minus
sign for the direct path. Using these two solutions to the
Hamilton-Jacobi equation, we can generate two semiclas-
sical solutions. As stated earlier, the most general solu-
tion is a linear superposition. We shall, in fact, assume
the following form for the semiclassical solution:

1/2 im(x —x;)
exp

2At

+exp
im(x +x, )

2At

X g (iiit')~b (x, t)
j=o

(4.5)

[We shall only use the semiclassical Ansatz (2.1) in this
section and in Sec V. Problems arise in the use of the
other Ansatz. We shall outline these in Sec. VI.] In (4.5)
we assume that the semiclassical solution for the direct
part is the free propagator. Qne can justify this assump-
tion by appealing to the path-integral formalism. In the
path-integral formalism the semiclassical limit will in-
volve two families of paths, one family concentrated
about the reflected path and one concentrated about the
direct path. The evaluation of the path integral over the
paths concentrated about the direct path will yield the
free propagator because these paths are not afT'ected by

How does the semiclassical calculation proceed when
there are multiple solutions to the classical problem? For
each of these solutions one can construct a classical ac-
tion and the subsequent quantum corrections. One then
has a number of semiclassical solutions to the
Schrodinger equation. Because of the linearity of the
Schrodinger equation the most general semiclassical solu-
tion is a linear superposition of these. In general, there
will be a number of underdetermined parameters in this
superposition, which will be determined via initial and
boundary conditions.

Let us now consider quantitatively a simple case in
which multiple classical paths appear. We consider the
quantum propagator of a particle on a half line, i.e.,
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bo(0, t) = (4.6)

the presence of the potential. The same, of course, can-
not be said of the rejected path and thus we retain the
full Ansatz for this case. One can also justify (4.5) by
viewing it as the standard trick for finding the Green's
function satisfying the boundary-value problem
(4.1)—(4.3). Here one adds a solution of the homogeneous
problem to the free-space Green's function and then
chooses the solution to the homogeneous problem to
satisfy the boundary conditions. The ultimate
justification is that this Ansatz is general enough to yield
the solution of (4.1)—(4.3).

We obtain the b (x, t) in (4.5) by solving the hierarchy
of equations (2.4), subject to the boundary conditions

1/2

bo(x t)=
i

C
1

t'" (4.10)

b, (x, t)=— 2a t
m x+x; (4.11)

The partial differential equation for b2 has a nonzero in-
homogeneous term. Using (2.22) the general solution be-
comes

Imposing the boundary condition (4.6) determines the ar-
bitrary function C to be m' . Because the Laplacian of
bo is zero b, also satisfies Eq. (4.9). The arbitrary func-
tion in this case is easily determined using the boundary
condition (4.7). One obtains

1/2

b, (O, t) =
plx;

Bbp
(0, t) —ab, (0, t ) —a

Bx

1/2

(4.7)

b2(x, t)=
1/2 2

1

1/2

2'
(x+x;)

(4.12)

b +,(O, t)=
Bb

(O, t) ab (—O, t)., j ~1 . (4.8)

These are readily derived by substituting (4.5) into the
boundary condition (4.3) and equating powers R. Let us
now solve the hierarchy.

bo(x, t) satisfies

Imposing (4.8) for j = 1 yields
1/2 2

b2(x, t)= 2' 2Q

(x+x;) (x+x;)

(4.13)

Bbp X +X; B&p ]+ bp=0
ax 2~ ' (4.9)

subject to (4.6). This partial differential equation is a spe-
cial case of Eq. (2.22) with d =1 and r, = —x;. The gen-
eral solution is

The nice thing about this calculation is that the existence
of an exact solution ' suggests that one can solve the
hierarchy to infinite order. After the calculation of a few
more terms (we went to b~) a pattern emerges. The gen-
eral term is

b (x, t)=( —1)~
t

1/2 J ' 2a k(k+1)X X(2j —k —1)
2~ "(1)(2)X X(j —k)

l 2eJ

(x+x;) ' " (x+x;)~
(4.14)

This can be established by induction. Recovering the full
propagator from this series is clearly not a straightfor-
ward task. It can of course be done, but the clearest way
to do this is by first examining the exact propagator. For
convenience we do the comparison via the Boltzmann
factor (Euclidean propagator).

Rather than simply quoting the exact propagator we
shall instead outline its derivation. We do this as there is
a subtlety in the problem, which is best treated explicitly.
The boundary-value problem for the Boltzrnann factor is

0%
(O, P) =a+(O, P), P) 0 . (4.17)

G(x, z)= I e~'qI(x, P)dP .
0

(4.18)

One readily deduces that this Laplace transform satisfies

We solve (4.15)—(4.17) via Laplace transform techniques
using the Watson form, (1.5) of the inverse Laplace trans-
form. In this representation the Laplace transform is

8%
for x &0,

8 2m Qxz
(4.15) 8 G(x, z) + Zmz 2m

&
Bx A' A'

Gx, z = — 5x —x; (4.19)

%(x,O) =5(x —x; ), (4.16) Solving this in the standard way ' one obtains
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m
G(x, z) =i

2A' z

1/2
2Viz

exp i
g2

2fpzz
~x —x

~
+exp i

1/2

t 1/2

/x+x, /

(i/a)
fi

1/2
2mz

exp i /x+x,
/

(4.20)

where one chooses the branch of the square root such
that Im(&z ) )0. At this point one could obtain the in-

verse Laplace transform of (4.20) by consulting a table of
Laplace transform pairs. In doing this, however, the
above-mentioned subtlety may be overlooked. In order
to avoid this, and because it is much more instructive, we
shall evaluate the inverse Laplace transform explicitly.

In order to compare our semiclassical series to the ex-
act answer, we need an asymptotic (large-temperature)
evaluation of the inverse Laplace transform. This can be
done by the method of steepest descent. A steepest-
descent evaluation of contour integrals similar to that
which appears in the inverse Laplace transform is in fact,
done in the book of Carrier, Krook, and Pearson and
we shall follow this. It turns out, in fact, that this

I

method allows the integral to be done exactly. One
divides the inverse Laplace transform into three separate
integrals corresponding to the three terms of (4.20). Then
one rescales the complex variable z,

A,
2

s=pz
4'(x+x, )

(4.21)

lS= P+
2

—oo &y(oo (4.22)

The contour integral then becomes

The minus sign is used in the first integral and the plus
sign in other two. The steepest-descent contour is then
given by

2(x —x;) (x —x;) 2(x+x;) (x+x;)%(x,P)= f dy exp —4~ (y + —,') + f dy exp —4m (y +—')
oo A,

2
A,

2
A,

2

2—0.—exp
~(x+x; ) f "dy —exp$2 p y2+ 1

2
7T + + Rex

2

2~(x +x; ) A, cx—8 e( —a)2a exp +a(x +x; )
4m

(4.23)

where

0, x&0
e(x)=,'

is the Heaviside step function. The final term is a pole contribution, which is only present for a & 0 and
A, )2m(x+x, . )/~a~. Under these conditions the deformation of the original contour to the steepest-descent contour
picks up a pole corresponding to a bound state. Note that, for fixed x,x;, this pole contribution does not appear when
one takes the high-temperature limit. The first two integrals are trivial. The third one is easily integrated by writing it
as

I(p) =e~f dy exp[ —p(y2+1)]+1 (4.24)

—m(x+x;)
A,

2+exp

k cx v'7r X'a—a exp +a(x+x, ) erfc X+X;+
4m. 2~

differentiating under the integral sign with respect to p, to obtain a differential equation for I(p), and then integrating
this to yield an error function. Alternatively one can simply change variables to x =+y to obtain one of the integral
representations of the confluent hypergeometric function (which is a more convenient form for analytic continuation in
the temperature variable to obtain the Schrodinger propagator). The net result is

—m(x —x;)
(xie ~ ~x, )=—exp

A,
2

2'(x+x; ) A, cx—8 e( —a)2a exp +a(x+x;)
4m.

(4.25)
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(Note that the Wigner-Kirkwood expansion, as outlined in Sec. II, would only yield the first term, i.e., the free propaga-
tor. ) Note that the use of a table of Laplace-transform pairs would not have yielded the bound-state term. The reason
for this, we suspect, is that the inverse Laplace transform of the third term of (4.20) was originally used in heat-
conduction problems, where the boundary condition at the origin in (4.17) corresponds to convection at x =0 into the
air at x & 0. Here negative a is unphysical. Hence the negative-o. case was not examined.

We can now compare the result with our series. To do this we want a small A, expansion of (4.25). We therefore need
the large argument expansion of the error function

exp( —x ) „(1)(3)(5)X X(2n —1)
exp —u du =

x 2x (2x )" (4.26)

where x = ( m /A, )(x +x; +A, a/2~) . Using the binomial
theorem to write 1/x "as a power series in A, , rearrang-
ing the resulting double series, and grouping with the rest
of (4.25), we find agreement with our semiclassical calcu-
lation, except for the bound-state term. This means that if
we were to carry out the reverse procedure, formally
summing the asymptotic series in (4.5), we would recover
all of the exact propagator, except for the bound-state
term. This cautions us in attempting a formal summation
of an asymptotic series. The fact that the bound-state
term is not obtained in the semiclassical calculation is un-
derstandable, as this is a high-temperature asymptotic
series and the bound-state contribution is exponentially
small (i.e., it is subdominant with respect to all the terms
of the asymptotic series and will hence never appear,
even at infinite order in such a series). Alternatively, in
the high-temperature limit, for fixed x and x;, the
bound-state pole moves inside the steepest-descent con-
tour and thus does not contribute Ias indicated by the e
functions in (4.25)]. Having considered a simple example
of our procedure we now move onto a somewhat more
difficult example.

path is not readily expressed as an explicit function of r,
r;, and t. We thus consider the simpler case

(5.1)

i.e., both the source and the field points are near the
hard-core surface and each other. 8(r, r;) denotes the an-
gle betwee~ r and r, . Under these conditions the
geometry is "close" to that of a half space, for which the
propagator is easily written via the method of images.
The classical mechanics is also much simpler. In consid-
ering this case we are following previous authors. ' '
These authors also consider the hard-core propagator.
They do not, however, consider the semiclassical limit,
nor do they obtain an explicit expression for the propaga-
tor. Their aim is to evaluate the high-temperature series
for the direct second virial coefficient. Their procedure
involves expanding the (Euclidean) propagator in inverse
powers of a, i.e.,

(rIe ~ Ir; ) =Go(r)+ —G, (r)+ 2
G2(r)+ (5.2)

1 1

a

V. PROPAGATION IN THE VICINITY
QF A 3D HARD-CORE POTENTIAI.

We now turn to the case of the semiclassical propaga-
tor for the hard-core potential (1.3). As we outlined in
the Introduction and as we elaborated in Secs. III the
Wigner-Kirkwood expansion is inadequate for this case.
It should by now be clear that this inadequacy is due to
the fact that classical mechanics in a hard-core potential
is nonperturbative. The classical mechanics in this case,
however, is more complicated than the simple one-
dimensional example of Sec. IV. As one can see from
Fig. 1, propagation from r; to r is via two paths. Howev-
er, if r lies in the shaded region there are no classical
paths at all. This is, of course, sensible as the shaded re-
gion is the geometrical optics shadow. As propagation
into this region is purely by difFraction and the geometric
optics approximation must break down, we cannot treat
this case with our methods. We shall limit our considera-
tion to the complement of the shadow region.

The procedure to follow is straightforward, in princi-
ple. We simply solve the semiclassical hierarchy in much
the same manner as was done for the simple example of
Sec. IV. However, in this case the action for the reflected

By expanding the boundary condition in powers of a
and substituting (5.2) into the subsequent expansion and
into the Schrodinger equation, they obtain inhomogene-
ous boundary-value problems on the half space for each
of the G, (r). Solving these, the previous authors obtain

Diffracted ray

irect path

Shadow region

FIG. 1. Semiclassical propagation in a hard-core potential.
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2 . B%

2m Bt
(5.3)

integral forms of G&(r) and G2(r). Our semiclassical ap-
proach will yield the explicit expression for G, (r) and
Gz(r). This will allow us to evaluate the integral forms
presented by previous authors.

We thus wish to solve semiclassically the following
boundary-value problem for the Schrodinger equation,

%(r,O) =5(r—r; ),

'P(P, t)=0 for PH [r:lrl=a] for all t) 0,

(5.4)

(5 5)

where, for simplicity, we only consider the case of homo-
geneous Dirichlet boundary conditions. For much the
same reasons as in Sec. IV we shall work with the follow-
ing Ansatz:

%(x,p, t lx; ) = 1

(2vriR) i
im[(x —x;) +p ]

exp +exp
2At

iS(x,p, tlx;)
g (i')~bi(x, p, tlx;)

. j=O
(5.6)

Like previous authors, because of the cylindrical symme-
try, we have used a cylindrical coordinate system whose
origin is on the surface of the sphere of radius a and
whose axis goes through the source point r,- and the
center of the sphere. The boundary surface, in these
coordinates, is

where, as in Sec. II, we have used our knowledge of the
e —+0 solution. [Knowledge of the half-space solution for
the boundary conditions (5.5) saves us from explicitly
considering the half-space classical mechanics, although
this is of course straightforward. ] We can satisfy the
boundary condition (5.5) by imposing

g+(g2p2)1 /2

S(P, tlx, )= m(P —r;)

Sa 16a
(5.7)

In order to make the nature of the approximation (5.1)
clear, we shall take a slightly different approach to that of
previous authors. Let us perform the following rescal-
ings:

2 2JX Txnew& P TPnew& S=P Snew& bj '7 bj new

(5.8)

bo(P, t lx; ) =—
' 3/2

(5.13)

b, (P, t x, )=0,
where j & 0 and P is on the surface of the sphere.

Substituting (5.10)—(5.12) into (5.13) and using (5.7)
one determines the following boundary conditions on the
unknown functions:

Let us henceforth drop the "new" subscript and use the
rescaled variables until otherwise stated (this procedure
should not lead to confusion). The boundary surface, ex-
pressed in terms of the rescaled variables becomes

(5.9)

mx;
S, (O,p, tlx;)= p

BS)
S,(0,p, tlx, )= —,'p' (O,p, tlx, ),

(5.14)

(5.15)

S(x,p, tlx;)=
m[(x+x;) +p ]

2t
+eS, ( p,xtl )x

+e'S, (x,p, tlx;) +
3/2

(5.10)

bo(x, p, tlx;)=— +eb,'(x,p, t lx; )

+e bo(x, p, tlx, )+ . (5.11)

where e=y/a. Thus by having x and p of order unity
and e ((1 we impose (5.1), and under such conditions the
boundary is clearly a perturbation of a plane. The hard-
core problem for the case (5.1) thus becomes a perturba-
tion of the half-plane problem. To calculate (5.6) under
conditions (5.1) we now expand the unknown functions in
a power series in e:

b'(O, p, tlx, )=0, (5.16)

, aa, '
b (O, p, tlx;)= —,'p (O,p, tlx;) . (5.17)

Substituting (5.10)—(5.12) into (2.3) and (2.4) one obtains
the hierarchy of partial differential equations given in
(2.9)—(2.14) for the unknown functions, except that
V(x)=0 and the interpretation of the perturbation ex-
pansion is different. In Sec. II the perturbation series was
one in powers of the potential, whereas here the perturba-
tion parameter indicates deviations from the limit (5.1).
Solving the partial differential equations using methods
which should by now be familiar, one determines, after a
considerable amount of algebra,

b (x,p, tlx;)=Eb'(x, p, tlx, )+E bi. (x,p, tlx, )

+ s ~ e j )0 (5.12)

2 2
m XiP

S,(x,p, tlx;) =
X+X;

(5.18)
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2x,'p4

(x+x, )

x;p 4x;p
Sz(xp, t x;)= +

(x+x;) (x+x;)
4x; p
X+X;

3/2 [3],x,xp

(x+x;) J+bj'(x, p, t~x;)=

[1] 2x, x
+

(x+x, )
~+'

where

(5.19)

(5.20)

X; 3x;x(x +x;x+x; )
&) = —,'[3],

(x+x; ) (x+x; )

x;x(x —x;x+x; )+—', [7], (x+x;)
(5.24)

We evaluated b' and b. to about j=4. This was
sufficient to establish the pattern for general j as shown
above. The general j case was then established by induc-
tion. We need to calculate quantum corrections to all or-
ders in order to facilitate comparison with previous re-
sults.

We now formally sum the (divergent) semiclassical
series in fz using the identity

1, j=0
a(a+2)(a+4) . (a+2j —2), j)0

[n], n
. =z"i e'r ——+ l, z

, =0 (
—2z)J 2

(5.25)

b (x,p, t~x;)=
3/2

1

(x+x;) i

where

X(A +B~p +C~p ), (5.21)

4x;x(x —x;x+x; )
+[5]

(x+x;)
(5.23)

x;x(x —x;x+x; )
A) =5) 0—,'x, x —[1],2x, x+ —', [3] (x+x, )

(5.22)
x;x(5x +6x;x+3x; )—[3]J (x+x;)

where r(a, z) is the incomplete gamma function. Our ex-
perience in Sec. IV indicates that the formal summation
will give the correct answer, as there are no bound states.
We shall be able to verify this by comparing our answer
to that of previous authors. In order to facilitate com-
parison with previous work we now replace m by m/2
(previous workers used the reduced mass, as their propa-
gator was that for the relative coordinate in an equal-
mass two-body problem) and convert to the Boltzmann
factor. Also our scaling procedure has served its pur-
pose, quantifying the perturbation series about the limit
(5.1). We thus revert back to the original (unscaled) vari-
ables with the understanding that the unscaled variables
are all much less than a. We obtain for the full propaga-
tor

~[(x —x;) +p ]
(r~e ~H~r, ) =,i, , exp

2A,
2

+ . . .exp —,(x+x;) +p +—Qi+, Q2+ ' '1 1

2A.2 a a2

2

—1+—I+ — S+

where
(5.26)

2x p
X+X;

(x+x;) (x+x;)
3/2

Q( xp, t~ x)=

2x,'p4

(x+x;)
1/2

r(-,', ),

4x, p
x+x;Q, (x,p, t ix, ) =

p
g4 2

2X;X
r( —-',z)+ e'—

k2 2

(5.27)

(5.28)

(5.29)

2

N=D+E ~ +I
4

(5.30)

X XD=—
3 A,

2

2x, x(x+x;) ~ 4 x;x(x+x;)(x —x;x+x; )
1/2 3/2

e' — r( —',z)+- e' — r( ——',z),
2 " 3

(5.31)
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' 1/2

E= e' — I ( —',z)—
2

x;x(5x +6x;x+3x; ) e'
(x+x;)A,

3/2

r( —
—,',z)

4x,x(x+x;)(x —x;x+x, )+ e' — I ( ——',z),
2 (5.32)

1 xiF=— e'
2 A, 2

3/2 3x;x(x +x;x+x; )e'
r( —

—,', z )—
(x+x;)A,

5/2

r( —
—,', z )

5 x;x(x+x;)(x —x;x+x; )+- e'
2 2

7/2

r( —-'„z), (5.33)

where z=n(x+.x;) /2A, . We now compare this result with previous work. Previous work obtained an expression for
the propagator of the form

(r~e ~ ~r;) =Go(r)+ —G, (r)+ Gz(r)+. . .1 1

a

where the G;(r) are

(5.34)

1
Go(r) = exp

8(nDP)

(x —x;) +p
4DP

(x+x;) +p
4DP

(5.35)

XX 2 p 1

8(~Dp)' 4Dp 0 r' '(p r)' '— 4D (P r)— 2

1+
4DP(P r)—(5.36)

XX; 2

Gz(r) = exp
32p ( D)' 4Dp

X f dr exp
p 1

(p —r)'"
1

4D (P—r ) J p 1 /2( r ~ )
1 /&

d 'g e&p
Xl

2

X 4D(P r)+ — 1—+7P X;

P 2Dg
4' (P r) 8D(P ——r) Hp

P2 P 4DP3
(5.37)

where D =A /m. Note that the sign in front of rp /p is misprinted in Eq. (15) of the paper by Hemmer and Mork. '

One can readily recast our result in the form of (5.34). In order to compare our propagator with previous results we
evaluate the above integrals. In the previous work this evaluation is not attempted. As far as we know this has not
been done since. We illustrate this evaluation by outlining the calculation of the p term in a Gz(r). The term in the
large parentheses with coeKcient p can be written

1+ 4(P—r)
p 1+ 5(p ~) 2x (P r) 2x (P r)— —

P DgP Dr)P
(5.38)

where the variables r, g have been arranged so that only the combinations p —r, r g, and 7) appear. —The reason for
this will become apparent presently. The integral in question can thus be written

P XX2
PIT= exp32' 2p2(~ )5D/2 4Dp

4 5I, + I~ — I3+ I4 —— I5
P DP

(5.39)
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Q2J (z, &)=f dpe~'p /2exp
4DP

.m+1
~Fr

z(m +1)/4 2™~ I)/2 D1/2

XhI' +1)/2(z' D ' b, ),
J (z 0)—f dpepzpm/2

0

(m +3)/2

(5.40)

where I, ,i =1, . . . , 5 are all convolution integrals. We
can thus use Laplace transforms to evaluate these in-
tegrals. We again use the Watson form of the Laplace
transform and inversion formula. We shall need the fol-
lowing Laplace transform pairs:

By the convolution theorem

I. [I2(p) ]
=J, (z, x )J,(z, 0)J 1(z,x; ), (5.45)

exp[iz' D ' (x+x, )]
L I I2(P)]=, i

2D 1/2 z'
exp[iz' D ' (x+x )]7T .5

2
' 5/2

Using (5.42) one then obtains

(5.46)

where L, [ } denotes the Laplace transform operation.
Using the explicit forms of the spherical Hankel func-

tions one obtains

l m
( ), I +1 (5.41)

3/2 X+X ~

I2(p)=,/, 2pi 'erfc
D 1/2 2D 1/2p1 /2

oo

dP e~'(4P)" /'i "erfc
2D 1/2p1 /2

.„+2exp(iz' D ' b, )
z(n/2)+1

where h"' are the spherical Hankel functions of the first
kind and i "erfcz are the iterated error functions. Note
that (5.42) is quoted for the usual Laplace transform in
the Laplace transform tables of Refs. 29 and 33. It is
readily established by writing e~'=(d/dp)[(1/z)e~'], in-
tegrating by parts, and then using the identity

+4~'"p'"i'«« X+X;
2D 1/2p1 /2

3/2

I 1 (P)=, erfc
xD

X +X)
2D 1/2pl /2

x+x;I (P)=2mP' i e.rfc3 2D 1/2pl /2

In a similar fashion one establishes that

(5.47)

(5.48)

(5.49)

n —1 1 .n —2i erfcz = ——i " 'erfcz+ i" erfcz, n = 1 2 3. . .
n 2n

(5.43)

(see Eq. (7.2.5, Ref. 33) to establish a recursion relation
between K„and K„2. K, is related to J, and K0 can
be related to J 3 via an integration by parts.

We illustrate the evaluation of the I; (p) with the case
l=2

4 3/2D 1/2
+ X+X;

2D '/2pl /2i erfc

2m. D ' X+X;
Iz(P) = erfc

X
g 2D 1/2pl /2

I4(P) = P i erfc
2' X X +Xi.

4 x, 2D 1/2p 1 /2

(5.50)

(5.51)

4D (P r)—
7 1

X d g 1/2 1/2 exP
(~—q)

I2(P) = f dr(P r)' exp—

X.
1

4Dg

(5.44)

Using (5.43) and

r( —,', x )=&a erfcx,

r(a, x ) =x 'e "+(a—1)r(a —l, x )

repeatedly, one obtains, after a tedious calculation

(5.52)

(5.53)

1

23/2/3 a

2 1/2—mp P Xi

2i2 A3 2
p x;x(x;+5x )r(-', z)— r( —-', z)27 2 27

4p x;x(x+x;)(x —x;x+x; )+
A,

7 2

5/2 4' x;x
r( —~„z)— 24e(x;+x) A,

(5.54)
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where z =m.(x +x, ) /2A, . The evaluation of the other in-
tegrals in (5.36) and (5.37) proceed similarly. After cast-
ing our result, (5.26)—(5.33) into the form (5.34) we find,
after a little algebra, that our result and the result of pre-
vious authors agree. The high-temperature series for the
direct second virial coefficient

BO +&+=0, (6.1)

ity. There are, however, problems, with the direct treat-
ment of the Boltzmann factor. If one tries to develop a
semiclassical Ansatz for the Bloch equation

23/2
b2= dr re ~ —e Or

2Q,
I T 32' 3 A, 1 A, I

2v 2 a ir a 16V2ir a

say, of the form

(r~e ~ ~r, )= exp ——S(r,P~r, )
(2irfi)

X gfi b (r,p .r;),
j=0

(6.2)

+ e ~ ~ (5.55)

is readily established from the expression for the propa-
gator and is in agreement with the results of previous au-

rs 11, 12, 14—16

VI. DISCUSSION

The underlying motivation of this work has been the
evaluation of (5.55) via semiclassical means. Experience
with Wigner-Kirkwood expansions indicated that the
high-temperature series could be obtained via semiclassi-
cal methods. Our initial thoughts were that a semiclassi-
cal evaluation that included the rejected path would
yield (5.55). This procedure, however, only yields the
first two terms. If one tries to calculate the third term us-
ing the semiclassical series, then one encounters divergent
integrals. The presence of such divergent integrals is due
to the asymptotic nature of the semiclassical series. As a
result the calculation of the third- and higher-order terms
requires the full quantum-mechanical behavior, which we
obtained in our case via a formal summation of the
asymptotic series. The realization that (5.55) relies on
more than just the semiclassical form of the propagator
is, we feel, one of the main lessons of this work.

In Secs. IV and V we only evaluated the quantum
corrections for one of the two semiclassical Ansatze that
we presented in Sec. II. We have done this because, in
reproducing the virial coefficient results we needed to cal-
culate the quantum corrections to all orders. In the first
hierarchy b only depends on b 1 and this has allowed
us to calculate to all orders. In the second hierarchy,
however, R depends on all lower-order times. This
makes it difficult to calculate to all orders. As such we
did not attempt to work with the second Ansatz. In fact,
it appears from our simple model of Sec. IV that the
second Ansatz may be inappropriate for hard-core propa-
gators, as it is not clear that the known answer for the
propagator can be expressed in this form.

As we mentioned in the Introduction the reader may
wonder why, since our interest is primarily in Boltzmann
factors, we have considered the Schrodinger propagator
at all. Why were not the Boltzmann factors directly cal-
culated' The similarity between the two objects on a for-
mal level, being related by a simple formal substitution
(t +ifip), means that the—more general point of view re-
quires little extra effort. As the more general point of
view is desirable, we take advantage of its ready availabil-

then one does not recover the Hamilton-Jacobi equation
as the first term in the hierarchy. This leads us to wonder
to what sort of "classical limit" such an Ansatz corre-
sponds. Because fi appears in the t ~—imp substitution,
one might then be inclined to consider the following
equation:

I' +HI=0
at (6.3)

for (r~e ' ~"~r;), substituting t=A'p at the end of the
calculation. A semiclassical Ansatz of the form (6.2)
(with p= t in the right-hand side) above then yields

(VS) —V(x)+ =0,
2m Bt

(6.4)

i.e., the Hamilton-Jacobi equation with a potential whose
sign is reversed. This reversal of the sign of the potential
in going from the Schrodinger propagator to the
Boltzmann factor also appears in the path-integral for-
mulation and is not surprising. For the Wigner-
Kirkwood expansion, where the potential is treated as a
perturbation, this change of sign does not cause difficulty.
Also, if the hard-core case is treated as a boundary-value
problem, then the potential does not appear and so the
sign problem is not relevant. If, however, one considers a
strongly repulsive potential, e.g. , (3.1), then there is a
problem. This potential has well-behaved classical paths
and our procedure for deriving the semiclassical series for
the Schrodinger propagator is well defined. For the
Boltzmann factor, though (6.4) dictates that one must
consider the classical paths of the sign-reversed potential.
The classical paths in such a potential have a dramatical-
ly different behavior, as they tend to collapse into the ori-
gin. This difficulty is more disconcerting when one re-
calls that the n —+~ limit of the power-law potential
should recover the hard-core case. However, as we have
stated, the hard-core case can plausibly be handled as a
boundary-value problem. Because of these difficulties
with the direct treatment of the Boltzmann factor, we
have elected to take a naive view and work with the
Schrodinger propagator, where collapse problems do not
arise, recovering the Boltzmann factor via the naivet~ imp subst—itution. As we have recovered a number
of previous results with this naive method we are
confident that it is in some sense a valid procedure. How-
ever, it is clear that there are subtleties in the relationship
between the Schrodinger propagator and the Boltzmann
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factor that are not understood and deserve further inves-
tigation. It is amusing to note that in our case we can
handle the Schrodinger propagator, but difficulties arise
with Boltzmann factors, whereas in the mathematical
treatment of the path-integral method, the situation is the
opposite.

Our treatment of the hard-core potential raises ques-
tions regarding the treatment of strongly repulsive poten-
tials, in general. As we noted in Sec. III the Wigner-
Kirkwood expansion is well behaved mathematically and
yields finite virial coefficients for power-law potentials.
This is also clearly the case for typical (interatomic or in-
ternuclear) potentials, in general. As a result the
Wigner-Kirkwood expansions have been widely used to
calculate quantum corrections. However, the difficulties
in the generalized Wigner-Kirkwood expansions, which
we discussed in Sec. III, will also be present for typical
potentials. This is because typical potentials have a
strongly repulsive core, which cannot be treated in the
perturbative manner that appears intrinsic to the
Wigner-Kirkwood expansions. It appears that in such
cases the Wigner-Kirkwood expansion only gives the
asymptotic form of the propagator as ~r~~~, as only
the weakly attractive tail can be treated perturbatively
(note that for the Boltzmann factor the contribution of
any reAection is exponentially suppressed with respect to
the direct path). This asymptotic behavior is insufficient
to indicate the high-temperature properties. As is ap-
parent from the evaluation of the hard-core virial
coefficients, the major part of the integrand is the region
a & r & a+A, , i.e., within A, of the turning point. Here the
refIected and direct actions are of similar magnitude.
The proper treatment of semiclassical propagators for
strongly repulsive potentials is indicated by our treatment
of the hard-core case. One needs to determine the classi-
cal paths and evaluate the corresponding classical action.
For each path one needs to solve a hierarchy of partial
differential equations for the quantum corrections. One
then takes a linear superposition of each resulting semi-
classical series. In this calculation there will be unknown
functions, which can be determined via the imposition of
boundary conditions on the propagator (for example, the
vanishing of the propagator as ~r~~0). Propagation in
the vicinity of turning points require a full quantum-
mechanical treatment. The carrying out of this pro-
cedure is indeed difficult. However, for the purposes of
calculating virial coefficients, our hard-core calculation
indicates, as we outlined above, that these can be deter-
mined by knowing the behavior of the propagator near
the turning points. The classical mechanics for a general
strongly repulsive potential in the vicinity of the turning
points may be amenable to calculation, as it was in the
hard-core case. Note also that our considerations indi-
cate that previous high-temperature expansions of b2 for,
say, the Lennard-Jones potential ' '" are incomplete.
Observing the structure of the high-temperature series of
b2 for the hard-core case, we note that the first term is
the classical term and that the higher-order terms all
come from rejections. These terms are corrections in
powers of A, . Thus we expect reAection corrections for
the Lennard-Jones case that are of powers of k and thus

are of similar order of magnitude to the terms that are
derived from the Wigner-Kirkwood expansion.

Our semiclassical treatment, while an improvement on
the Wigner-Kirkwood expansion, does have limitations,
the most severe of which is that it relies on the presence
of classical paths. For propagation into the shadow re-
gion in the hard-core problem (see Fig. 1) there are clear-
ly no classical paths so that we cannot apply our forrnal-
ism. This is not surprising, as propagation into the sha-
dow region is a purely diffraction phenomenon and our
A nsatz is of the form of a perturbation about the
geometric (matter) optics limit. Evaluation of the antipo-
dal matrix element (1.2) requires a means of treating
propagation into the shadow region. There is some pros-
pect of a modification of our treatment to handle such
cases. The action in the hard-core case is essentially the
path length squared. While there are no classical paths
into the shadow region there are paths that skirt the hard
core and are of minimum length and therefore of
minimum action. Indeed, such paths (see Fig. 1), referred
to as diffracting paths or enveloping rays, have been con-
sidered by previous authors. ' ' ' ' From a path-
integral point of view these paths will dominate the path
integral in the semiclassical limit, despite the fact that
they are not classical paths. In particular, Lieb's evalua-
tion' of the exchange second virial coefficient via that
path-integral method shows that in the high-temperature
limit such minimum-length (though nonclassical) paths
dominate the path integral. In actual fact there is some
hope that propagation into the shadow region can be
handled via our Ansatz, as the minimum action paths,
while not being classical paths, still satisfy Hamilton's
variational principle of mechanics so that the action con-
structed from them should nevertheless be solutions of
the Hamilton-Jacobi equation. The issue of propagation
into the shadow region is one which we hope to examine
further.
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APPENDIX

In this Appendix we describe the solution of the linear
inhomogeneous partial difFerential equation

dF(r, t ~r, ) r —r,+ VF(r, t ~r;)+ F(r, t ~r;)—
at 2t

=G(r, t~r, ) .

The methods of solving such equations can be found in
almost any standard textbook on partial differential equa-
tions. ' Here we merely outline the solution of this
particular case for the purpose of completeness.

One solves this equation via the method of characteris-
tics. This method is motivated by the fact that the com-
bination of partial derivatives in (Al) reduces to an ordi-
nary derivative along curves in space time that are called
characteristic curves. If a region of space time can be
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filled with such curves and if the function F is specified
on a hypersurface in this region, which intersects each
characteristic curve only once, then one can solve for F in
this region. The characteristic curves are functions r, (o. )

and t, (o ), which satisfy
aH dI;)+ H(, I;)=G(;+ (A5)

By letting t =cr and r=r;+vcr in (Al) and using (A4),
one obtains

dr, r, —r; dt, =1,
do. t ' do. (A2) which is readily integrated to give

the solutions of which are t, =cr and r, =r,. +vo. , where v
is arbitrary constant vector (these are the classical paths
corresponding to the action So).

Consider now the function
H(v, cr ~r; ) =f0 o

d/2

G(r;+vs, r~r, )dw

H(v, o ~r;) =F(r;+vo, cr ~r;).,

then

(A3)
+

d& C(v),1
(A6)

aII aF
(v, o ~r, )= (r, +vo, o ~r;)+v VF(r;+vo, o. ~r;) .

(A4)

where C is an arbitrary function. Using (A3) one readily
establishes (2.23). Equation (2.18) is simply the d =0 case
of (2.22).
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