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Period doubling and hysteresis in a periodically forced, damped anharmonic oscillator

M. Debnath and A. Roy Chowdhury
High Energy Physics Diuision, Department of Physics, Jadaupur Uniuersity, Calcutta 700032, India

(Received 27 August 1990)

The motion of a periodically forced, damped anharmonic oscillator governed by the equation of
motion, x +Ux = A 2x + A 4x '+ A 6x '+F cos( Ot ), has been studied. The analysis of the response
function of this equation when treated analytically, and later, numerically, uncovers a hysteresis-
type phenomenon. The stability and response of the system and the onset of period doubling have
been observed through an analytical approach, and they are corroborated with a numerical analysis
for different values of F and 0 (Q is the frequency of the periodic forcing system). Two different
methods have been used. In the first, the damped system is converted into an undamped one by
making an ansatz for x of the form x =R(x), a polynomial in x. The second approach, however,
studies the system directly. It has been observed that there exists a wide difference between these
two systems. Furthermore, period doubling may be predicted through the use of the harmonic bal-
ance technique and Mathieu equation. Lastly, a numerical integration in phase space clearly indi-
cates orbits corresponding to the initial period, then to double the initial period, and subsequently
to higher multiples.

I. INTRODUCTION

The steady-state vibrations in a nonlinear system under
the inAuence of a periodic or quasiperiodic forcing term
have been widely discussed. ' The behavior of such sys-
tems is usually studied by appropriate analytical and nu-
merical methods. Such analysis reveals the existence of
phenomena (such as subultra- or principal resonances,
jump phenomena, or hysteresis) and a transition from a
stable to an unstable region. With the advent of the
study of chaotic motion by means of strange attractors
and Poincare maps, it has become necessary to look for a
better understanding of these nonlinear systems with
higher-order nonlinear terms.

The present analysis has attempted to proceed through
two different routes. In the first, the system is made to
resemble an undamped one by making an ansatz for x,
that is, one sets x =R (x), where R is a polynomial in x
and the consistency is forced (in the system without the
forcing term). Such a method had been used to obtain
the heteroclinic orbits of the anharmonic system itself.
In the second procedure, the damped system is treated
directly. The analysis presented shows widely different
characteristics of the two treatments attempted. The
method of harmonic balance is used to study the
skeleton ' curve and the full resonance curves in both
the situations. Then, the stability is analyzed by search-
ing for the existence of stable nodes, foci, saddle points,
etc. Lastly, the important phenomena of period doubling
have been observed for different values of the parameters
and the frequency of the periodic forcing system, 0,
through a Mathieu-equation analysis.

The concluding part of the paper reports a numerical
analysis of the equation in phase space by using the
Runge-Kutta method. The results of the study confirm
the period doubling observed in the analytical treatment

and show clearly the orbits corresponding to the initial
time period T, and also for 2T, and subsequently, for nT.
Prior to achieving these results, the nature of the fixed
points of the unperturbed system has also been exhibited.

II. FORMULATION

A. Stability

I With the .assumption ofx=R(x)

The nonlinear system under consideration has been
presented as

x+ vx =P(x)+F cos(At),

where P (x)= A2x + A &x + A 6x . For F =0, Eq. (l)
had been studied by Otwinowski, Paul, and Laidlaw.
They had shown that it was possible to obtain exact
heteroclinic orbits, however, on the basis of the assump-
tion x =R (x)=a2x +a6x . This part of the present pa-
per proceeds with the same assumption, and thus Eq. (1)
may be written as

x+(ua6 —A4)x +(va2 —Az)x —A6x =F cos(At) . (2)

Let k =Ua6 ~4 ~o=uaz ~z Near the resonance,
A=coo, thus we set A=coo+eh. The strategy usually
adopted is now followed, and thus it is assumed that

x =a (t) cos(At)+b (t)sin(At)

=r(t)cos[At+P(t)) .

Substituting in (2) and neglecting the higher harmonics
the following may be arrived at:
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—2aQ+e —'kb (a +b ) —e—,'A6b (a +b ) +(coo Q—)b

=0,
(4)

2bQ+e —,'ka(a +b ) e—,' A—6a(a +b ) +(coo Q—)a

=F .

Now using coo —Q = —e(2Q)+O(e ), the following
equations are obtained for the singular points (ao, bo) of
(4):

4kaoro ——', A6aoro —2QAao =—=F',

4 kboro 8
& 6boro 206bo =0

FIG. 1. Different zones of stability for different values of am-
plitude. (U =1.0, 22=1.25, 24= —3.0, 26=1.5. )

Equation (5) immediately leads to

—,", A6p —
—,",kp +[—,', k + —,'A6(2Qb, )]p —

—,'k(2QA)p

F+(2Qb, ) p= — =F'
E

(6)

C D 0 D
B A 0

and bo =0 whe e

A = [—4kao —
—,
' A6ao —(2Qb, )],1

D = [ —
—,'k(3ao)+ —", A6ao+(2Qb, )] .

1

2Q

Thus we have, as the condition for center,

AD (0 as B =C=O,

The stability of the system can be studied by a small shift
from the singular position (ao, bo). We set a =ao+a,
b =ho+@ in Eq. (4). The Jacobian of the system is

2. 8'ithout the assumption ofx=R(x)

We now again analyze the regions of stability without
the assumption x=R(x). This time the equation of
motion is written as

x+coox+(Ux —A4x —A6x )=Fcos(Qt) .

As before we set

x =a (t)cos(Qt)+b (t)sin(Qt)

=r cos(Qt +P),

whence proceeding as before, we obtain

—", A6p + A426p + 24+ ——A6 p
2 5 4 9 2 5 6

160 160 2 0

which results in

o =I —",,' A6p ——", kA6p +3[—,', k + —,'(2Qb, )A6]p
—3k(2QA)p+(2Qb, ) j)0.

The condition for saddle point is

AD )0 as B =C=O,
which results in

cr&0.

So the nature of the singular point may be ascertained by
the curves o. =0 and Eq. (6).

In Fig. l we have plotted (2QA) versus p according to
the equation o =0 and Eq. (6) for various values of F' .
The different types of region may occur depending upon
the chosen parameter values. A few possible cases have
been considered and shown in Fig. 1.

+ A~p +(4h +U )p=
3h

which is again a fifth-degree equation for p and quadratic
in 6'=2QA. An analysis similar to that of Sec. IIA1
can be done by considering a small variation from the
singular values a o and b o, which leads to different zones
of stability. Numerical analysis of this case is depicted in
Figs. 2(a) and 2(b) for two sets of parameters.

In Figs. l, 2(a), and 2(b) we have depicted the regions
pertaining to center and saddle point for the parameter
values A2, A4, A6, and F. It may be observed readily
that the system, with and without the ansatz x =R (x),
behaves in a widely different manner. It appears there-
fore that the heteroclinic orbit obtained by Otwinowski,
Paul, and Laidlaw describes a completely different dy-
namics.
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co = (
——'A6r —'A—4r ) .1

2'COp

(14)

(0 0)

F cos(Qt+P)
I (

2 ~2)2+ 2II2 )1/2

and by our assumption this must be equal to
r cos(Qt +P). Now, if we are near the resonance region
Q =~p+ eh, the above analysis entails

536
r +—A4r +6 +r 4r

26

F2

4cor e02COp

(16)

As is well known, the nonlinear oscillator can now be in-
terpreted as a linear oscillator with the frequency-
amplitude relation given by Eq. (14). It has now become
a standard result of the linear theory for that of an oscil-
lator with frequency co under a forcing F cos(At)

(b)

which, in fact, is the required response curve. On the
other hand, setting Bp/BE=0, p=r, we obtain the
skeleton curve

F) =1.d

Fl =1.245

E) =0.4

FI

(0 0)

FIG. 2. (a) Figure showing different zones of stability for
different values of amplitude. (U =1.0, A2 = —1.0, 24= —3.0,
26=1.5, 0=0.01.) (b) Figure showing different zones of sta-
bility for different values of amplitude. (U =1.0, 32= —1.0,
A4:30)3615)Q:001)

B. Response curve

x = r cos(cot +f)+Ex i (13)

where the frequency co is near mp and co=mp+E'co& ~ Sub-
stituting (13) in Eq. (12) and neglecting terms of 0 (e ) we
get

It is already known that the actual characteristics of
the motion of such forced nonlinear oscillators are usual-
ly best described with the help of response curves. This
was demonstrated by Bogoliubov and Mitropolsky in
1961. The same procedure is adopted in the present case.
The hysteresis-type phenomenon occurring in such non-
linear motion can very easily be understood with the help
of such analysis. For our present situation we again start
from

x + Ux +coox +e( —A 4x —A 6x ') =0 .

This is the situation without the forcing term. We fur-
ther assume that the solution is given as

b, "=(2coob, )= —
( —', A6p +—', A~p) . (17)

In Figs. 3(a) and 3(b) we have plotted the response curve
and the skeleton curve for various values of F' =(Il je)
large and small, while the other parameters are restricted
to two sets of values. According to the procedure men-
tioned in the general discussion by Bogoliubov and Mitro-
polsky it would now be easy to ascertain the regions of
stable and unstable motion from these diagrams. One has
to sort out the regions of the curve along which Bp/Bh"
is greater than 0 or Bp/BA" is less than 0. The figures ob-
tained fall in two basic categories. For higher values of
I', we get Figs. 3(a) and 3(b) which are typical examples of
hysteresis-type motion as had been observed in the case
of the Du%ng oscillator. As the magnitude of frequency
of the periodic forcing term increases or decreases, the
amplitude of the oscillator moves along OA and then
suddenly drops down to N and proceeds up to C, which
on reduction of frequency moves back up to 0' and sud-
denly jumps to B, thus forming the hysteresis loop. This
type of motion, a jump had already been observed in the
case of the DuKng oscillator by Bogoliubov and Mitro-
polsky.

On the other hand, for smaller values of F we get the
curves shown in Figs. 4(a) and 4(b), where the hysteresis-
type motion is no longer visible; these figures now only
depict the zones of stability of the motion. The response
curve in the case with x =R (x) has also been studied. In
this situation a new phenomenon occurs. The portions of
the curves OA and NA do not meet, and as may be seen
from the analytic expression of 6 in terms of p, they actu-
ally are asymptotic (p~ ~ ). Therefore the motion on ei-
ther side of the skeleton curve is not connected to the
other, and the hysteresis phenomenon is now absent.
Thus it may be concluded that when the ansatz x =R (x)
is introduced following the methods used by Otwinowski,
Paul, and Laidlaw, the motion of the nonlinear oscillator
is totally changed. Although consistency has been in-
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&2
F =0.5

C'=o.3

Skeleton curve

(0,0) 2w, 4

F =0.3

Skeleton
curve

(0, 0)
2 &p4

FIG. 3. (a) Hysteresis curves for different values of amplitude together with skeleton curve. (v =1.0, A2= —1.0, 34= —3.0,
26=1.5. ) (b) Hysteresis curves for different values of amplitude together with skeleton curve. (U =1.0, A2= —1.0, 24=3.0,
A6= —1.5. )

voked, the two types of motions represented are quite dis-
tinct. Even though heteroclinic orbits were obtained by
Otwinowski, Paul, and Laidlaw, yet it does not represent
the actual damped motion given by Eq. (1). Lastly, the
response function has been evaluated numerically by in-
tegrating Eq. (1) through the Runge-Kutta method,
whence x is obtained at every instant of time. The
response function is then defined by

R =(x') —&x)',
where ( ) denotes an average over a period T =2m/Q.
The corresponding result has been depicted in Figs.
5(a)—5(c). In Figs. 5(a) and 5(b), the response curve is seen
to be quite similar to the one obtained analytically. On

the other hand, Fig. 5(c) shows that for the one obtained
at the parameter values, period doubling has been ob-
tained.

C. Period doubling

The next important feature of the nonlinear system un-
der consideration has been the phenomenon of period
doubling, which may be deemed to be one of the most im-
portant routes to chaos. Such period doubling actually
was observed to occur in the analytical procedure, which
utilizes the properties of the Mathieu equation, an ap-
proach adopted by earlier authors. '

Let us consider a small deviation 5(t) from the solution
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ta)

Skeleton
curve

F = 0.1

F =0.08

F =0.06

F = 0.035

F = 0.01

(0,0)
0

(b)

35

(0,0)
2 mob

FIG. 4. (a) Response curves for different values of amplitude together with skeleton curve. (U =1.0, A2= —1.0, A4= —3.0,
A6=1.5. ) (b) Response curves for different values of amplitude together with skeleton curve. (U =1.0, A2= —1.0, A4=3.0,
A6= —1.5. )

discussed in Sec. II B. So we set P' and Q' are given by the following expressions;

x =r cos(Qt +P)+5(t), (19) (22)

d5 d5+K +[P+g cos(2$')]5=0,
dt2 dt

(20)

whence by neglecting the contribution of higher-order
harmonics we get the following equation for 5(t): Equation (20) difFers from the usual Mathieu equation

due to the presence of the first-order derivative term, yet
it can be analyzed according to the same procedure of
Fourier analysis. Let us now substitute

where 5(P')= g [A' cos(mg')+B' sin(mP')]
m=0

(21)
in Eq. (20), so that we get

(23)
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{O,Q)

{0,0)

(c)

F&G. 5. (a) Numerically obtained response curve. (U =1.0, 4&= —1.0, 34= —3.0, 36=1.5, F=0.15. ) (b) Numerically obtained
response curve. (U =1.0, A2= —1.0, 34=3.0, A6= —1.5, F=5.0. ) (c) Numerically obtained response curve. (u =1.0, A2= —1.0,
34=3.0, A6= —1.5, F =6.1. )
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[(P —m )A' +KmB' ]cos(mP')+ —g A' [cos(m+2)P'+cos(m —2)P']
m=0 m=0

+ g [(P —m )B' K—mA' ]sin(mP')+ —g B' [sin(m +2)P'+sin(m —2)P']=O .
m=0 m=0

(24)

FIG. 6. (a) Zone boundaries and locus curve. (U =1.0, A2= —1.0, A4= —3.0, A6=1.5. ) (b) Zone boundaries and locus curve.
(U =1.0, A~= —1.0, A4= —3.0, A6=1.5. ) (c) Zone boundaries and locus curve. (U =1.0, A2= —1.0, A~=3.0, A6= —1 ~ 5. )
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(c)

FIG. 6. (Continued).

From Eq. (24), considering terms up to second harmon-
ics, we get the following expressions for even solutions:

The coefficient of cos(0), for period vr, is

The coefficient of cos(2$'), for period ~, is

(P —4) A 2+2KB2+ —(230+ A„')=0 .
2

PRO+ —32=0 .

The coefficient of cos(P'), for period 2', is

(P —1)A', +KB', +—(3', + 23)=0 .
2

(25)

(26)

The expressions for odd solutions are as follows.
The coefficient of sin(P'), for period 2n, is

(P —1)Bi —ICA i+ (B3—B—
i )=0 . (28)

n
S2

FICx. 7. Trajectories for the unperturbed damped system. (v =1.0, Az= —1.0, A4=3.0 A6= 1.5 ~ ) F& F2 F3 stable focus
points, ' S&,S2, saddle points.
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(.b )

Fi

(c)
(d)

(e)

FIG. 8.
0=1.221. )

Q= 1.221. )
Q= 1.221. )

0=1.221. )

A, = —1.5,
Aq = —1.0,
A = —1.0,

(a) Phase diagram for the damped system under perturbation. (v =1.0, A2= —1.0, A4=3.0, A6= —1.5, F =0.5,
(b) Phase diagram for the damped system under perturbation. (v =1.0, A2= —1.0, A4=3.0, A6= —1.5, F=1.0,
(c) Phase diagram for the damped system under perturbation. (v =1.0, A&= —1.0, A4=3.0, A6= —1.5, F=2.5,
(d) Phase diagram for the damped system under perturbation. (v =1.0, A2= —1.0, A4=3.0, A6= —1.5, F=5.0,
(e) Phase diagram for the damped system under perturbation showing period doubling. (v =1.0, A2 = —1.0, A4 =3.0,
F=6.1, A=1.221. ) (f) Phase diagram for the damped system under perturbation showing multiple periods. (v =1.0,
A4=3.0, A6= —1.5, F =6.81, 0=1.221. ) (g) Phase diagram for the damped system under perturbation. (v =1.0,
A4 =3.0, A6= —1.5, F =7.0, 0=1.221. )
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(g j

The coefficient of sin(2$'), for period vr, is

(P 4—)82 —2K' 2+ —8~ =0 .

So from the above relations we get the condition for
the existence of a nontrivial solution 5(t) with period vr

[that is, when the Floquet multiplier (p) is + 1]

4A
Q =2P (P —4)+

(P —4)
(30)

and the condition for the existence of a solution 6(t) with
period 2m [that is, when the Floquet multiplier (p) is —1]
1S

FIG. 8. (Continued).
Q =4(P —1) +4K (31)

(a)
(b)

{d)
(c)

FIG. 9. (a) Phase diagram for the damped system under perturbation. (v =1.0, Az= —1.0, 34=3.0, A6= —1.5, F=400.0,
A=1.221. ) (b) Phase diagram for the damped system under perturbation. (v =1.0, A, = —1.0, 24=3.0, 36= —1.5, F =456.0,
0=1.221. ) (c) Phase diagram for the damped system under perturbation. (v =1.0, A2= —1.0, 34=3.0, A6= —1.5, F=458.51,
A=1.221. ) (d) Phase diagram for the damped system under perturbation. (v =1.0, 3&= —1.0, 24=3.0, A6= —1.5, F=480.0,
A=1.221. )
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Lastly, the expression for P and Q implies a relation be-
tween them for all values of r (which we call the locus
curve), and such a relation may be written as

—'0 Q +MQ+N=0,

and (32), respectively. It is clearly seen that they give the
region in the P Q-plane for the phenomena of period
doubling, bifurcation, and hysteresis. These figures also
very clearly show the positions of intersection "of Eqs.
(30) and (31), with (32).

M= 0 ——'A Q ——'pQ9A4
40 A 6

(32) D. Global phase-space analysis

9A4 9A4p2~4+ A 2 +2g2 A p p~2
2 40A6 4A6

In Figs. 6(a), 6(b), and 6(c) we have plotted Eqs. (30), (31),
I

Since all the analytic computations presented above in-
volve some degree of approximation, we now try to sup-
port our previous inferences by attempting some direct
numerical analysis in the phase space. Our Eq. (1) has
five fixed points given as

(x,x)=(0,0), (Qy, O), (Qy, o), ( —Qy„o), ( —Qy, o),

with

1
[ —A4+(A4 —2A6A2)' ] .

2A6

If we integrate Eq. (1) with the help of the fourth-order
Runge-Kutta method taking initial values near each of
these points, the behavior of these fixed points would be-
come understandable. In case the parameter set assumes
a different value, the corresponding fixed points reduce in
number, two of them becoming imaginary. The nature of
these fixed points has already been depicted in Fig. 7. It
is seen that (0,0) is a stable focus point, two on the left
and right of it (near to it) are saddle points while the ex-
treme two are stable focus points. Now, if the periodic
perturbation is introduced and the equation is again nu-
merically integrated for various values of F, an interest-
ing event takes place. When F is small (say, of the order
of 0.5) the phase-space trajectory upon interaction does
not leave the vicinity of the zone of the fixed point, close
to which the initial value has been chosen. Now, if F is
increased to say 1.0, and the trajectory is plotted again, it
encompasses the fixed points on one side of the x axis.
These are shown in Figs. 8(a) and 8(b). Further, if F is in-
creased to 2.5 and 5.0, the phase diagram becomes as
shown in Figs. 8(c) and 8(d). The trajectory appears to
roam from one side to the other and comes back again,
completing one periodic orbit. If F is again increased to
6.1, the period doubling is clearly observed as has been
shown in Fig. 8(e). Higher-order trajectories are shown
in Fig. 8(f) and 8(g) due to further increases in the value
of F (6.81 and 7.0). Now when F=7.0, we observe a

chaotic-type motion from the wandering of the orbits as
has been shown in Fig. 8(g). But with a further change in
the value of F, say when it is set to be equal to some other
higher value, single closed orbits again appear in the
phase-space diagram. This phenomenon is an indication
of the appearance of the window in the chaotic regime,
which is a common property of all period-doubling bifur-
cations. %'e have checked that at F =400.0 the single or-
bit again appears [see Fig. 9(a)] and the process repeats
until again chaos appears [see Figs. 9(b), 9(c), and 9(d)].

III. DISCUSSION

In our above analysis we have made a detailed study in
regard to the behavior of the nonlinear oscillator with
higher-order nonlinearity, and under a periodic forcing
term. Both analytical and numerical methods are adopt-
ed. The period doubling, stability, and response of the
system as observed in the analytical treatment are corro-
borated by the numerical analysis performed. An impor-
tant outcome of our analysis is that the system shows
widely different behavior with or without the ansatz
x =R (x).
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