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We study the phase-space behavior of the standard two-level system (spin 2 ) coupled to a har-
monic oscillator (without the rotating-wave approximation), the classical counterpart of which is
known to display deterministic chaos. We study the quantum-mechanical phase-space behavior by
means of harmonic-oscillator coherent states (Husimi representation). Stationary quantum Poin-
care sections may be defined; they show many parallels to their classical counterparts. We also
study the time development of initially coherent states and observe a tendency towards a decay into
many small wave packets in phase space for parameters in the chaotic regime.

I. INTRODUCTION

Various aspects of the correspondence between classi-
cal and quantum systems have been the subject of intense
interest during the past 15 years or so, following the rap-
id development of nonlinear classical dynamics. The
status of the quantum chaos problem has been reviewed
several times. ' Despite the large amount of effort de-
voted to the question, how the occurrence of classical
chaos manifests itself in the properties of a corresponding
quantum system, the answer is still far from clear. Thus,
it is still worthwhile to study in detail the quantum-
classical correspondence for simple model systems such
as the one to be introduced below. Model studies of this
kind have often concentrated on aspects of the energy
spectrum (level statistics) or on the shape of energy eigen-
functions in coordinate representation, and important in-
sights have been obtained in this way. However, as the
notion of classical deterministic chaos is firmly based in
phase space, it should be rewarding to construct suitable
phase-space representations for quantum systems in order
to detect similarities or differences to classical phase-
space behavior. This type of approach was indeed fol-
lowed by various authors in recent years.

Beautiful studies of this kind were carried out by
Chang and Shi, and by Radons and Prange, who com-
pared quantum quasienergy eigenstates to classical Poin-
care plots for a kicked rotator and obtained striking simi-
larities. In the present paper, we shall report results of a
similar study on a comparably simple, but autonomous
system.

The system is defined by the quantum Hamiltonian

II=—,'(P +Q —1)+cooS, ++SgQS„.
p and Q are momentum and position operators of a single
Cartesian degree of freedom, S (a=x, zy) are spin- —,

'

operators. The operators obey the usual commutation re-
lations, in particular,

PQ —QP = i (fi—= 1),
S,S —S S,=iS
S2 —S2+S2+S2

X P z (2)

The Hamiltonian (1) describes a two-state system in-
teracting with a harmonic oscillator, the natural frequen-
cy of which we use as a unit of energy; coo is the level
splitting of the unperturbed two-state system and g is the
coupling parameter. For some purposes it is convenient
to use a slightly different form of H, introducing raising
and lowering operators for the spin —,

' and the oscillator in
the usual way:

H=b b+cooS, +g(b+b )(S++S ) .

The model (1) enjoys great popularity in various fields of
physics, such as atomic, molecular, and solid-state phys-
ics, and quantum optics. In its different fields of applica-
tion, the Hamiltonian (1) bears different names, among
them "Rabi Hamiltonian" and also "molecular polaron
model"; references to earlier work may be found, for ex-
ample, in Ref. 15.

Within the context of nonlinear dynamics and chaos,
the model (1) probably was first studied by Belobrov,
Zaslavski, and Tartakovski. ' These authors considered a
classical version of (1) and observed exponentially
separating phase-space trajectories. Feinberg and Ran-
ninger' used Poincare plots to analyze the nonlinear be-
havior (of the classical model) in more detail. Graham
and Hohnerbach' studied the dynamics of the quantum
model and found that for sufBciently strong coupling the
occupation probabilities of the two levels (S,=+—,

'
) show

irregular behavior, more precisely, they are quasiperiod-
ic, involving a large number of incommensurate frequen-
cies. For small coupling, the system behaves rather regu-
larly and the occupation probabilities show periodic "re-
vivals. " The dynamics of analogous quantities in the
classical model was studied in Refs. 18—20; chaotic be-
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havior showed up on all these studies. On the other
hand, numerical studies ' of the eigenvalues of the
quantum model revealed spectral features quite untypical
for a system displaying quantum chaos: the nearest-
neighbor level spacing distribution shows neither the
Wigner behavior believed to be typical for chaotic sys-
tems nor the exponential form normally associated with
integrable systems. Furthermore the spectrum shows
striking regularities which can be described by an asymp-
totic scaling law for the highly excited states. Graham
and Hohnerbach pointed out that the level-spacing dis-
tribution approaches the Wigner form if the single two-
level system in (1) is replaced by N two-level systems (for
example, N=9). In contrast to the one-spin model, the
X-spin model has the advantage of possessing a well-
defined classical limit. ' ' Thus, studies of the ¹pin
model with varying N should be helpful in bridging the
gap between the extreme quantum limit defined by (1)
and its classical counterpart, and in observing the transi-
tion from quantal to classical dynamics.

In order to study the dynamics of the quantum model
(1) in the usual arena of classical dynamics, that is, in
phase space, Klenner, Doucha, and Weis investigated
the time dependence of the Wigner function defined on
the bosonic phase space. However, the Wigner function
has some disadvantages; it often shows violent oscilla-
tions between positive and negative values (on a scale
given by Planck s constant) instead of vanishing in re-
gions where the corresponding classical phase-space
probability density is small. It is thus hard to decide
whether the irregular time evolution observed in Ref. 7 is
an indication of quantum chaos or merely an artifact of
the Wigner function. In order to avoid these difhculties,
we shall employ the Husirni phase-space density (see Ref.
26 and references cited there). This density is based on
boson coherent states and equivalent to the "normal-
ordered phase-space quasip rob ability distribution"
employed in quantum optics. The Husimi density is
non-negative, because it eliminates the physically ir-
relevant A-scale oscillations of the Wigner function by a
minimal Gaussian smoothing ' ' in accordance with the
minimum uncertainty property of the coherent states. In
this sense the Husimi density represents the quantum
state (pure or mixed) in phase space "as classically as pos-
sible. "

Our paper is organized as follows. In Sec. II we
present a classical counterpart of the model (1) and dis-
cuss some aspects of its phase-space behavior. We
present some Poincare plots and estimate the borderline
in parameter space between regular behavior and large-
scale chaos. In Secs. III and IV, respectively, we define
stationary and dynamical "quantum Poincare sections"
based on the Husimi density and compare them to the
classical Poincare plots of Sec. II, in order to discuss as-
pects of the quantum chaos of the model (1). Finally, in
Sec. V we summarize our results.

II. THE CLASSICAL CASE

As discussed by Graham and Hohnerbach, ' there is
more than one possibility to obtain a classical model from
(1). We choose a classical analog which is given by the

energy function

h = —,'(p +q )+coos, +&Sgqs, ,

ds Bh= —sX
dt Bs

which imply the conservation laws

ds2

dt ' dt
Writing the equations of motion more explicitly

q
dt

(4)

(5)

d$~
Ct)0' (6)

de
Mo ~ Sgqsz

de' =&Sgqs

we obtain five coupled nonlinear differential equations.
Due to the two conservation laws (5), the effective state
space has three dimensions, thus allowing for classical
chaos. The classical model may be obtained from (1) in
(at least) two ways. One may replace I' and Q in (1) by
the classical quantities p and q and the spin- —,

' operators
by spin-S operators and then consider the limit A~O,
S—+ oo with AS =const, to obtain the energy function h

(replacing AS by the classical vector s). (Strictly speak-
ing, h is not a classical Hamiltonian, as it is not complete-
ly expressed in canonical variables; for a canonical for-
mulation see, for example, Ref. 25.) Alternatively, one
may write down the Heisenberg equations of motion cor-
responding to (1) and take expectation values, approxi-
mating expectation values of operator products by prod-
ucts of expectation values, to obtain the set of classical
equations of motion (6). We note in passing that the
"rotating-wave approximation" (RWA) popular in quan-
tum optical applications of (1), that is, the neglect of
b "S+ and bS in (1'), makes the model exactly soluble in
the quantum case and integrable in the classical case
(see, for example, Ref. 25). This is due to an additional
conserved quantity (b b+S, in the quantum notation) as-
sociated with the RWA.

The equations of motion (6) possess four stationary
solutions or fixed points, the stability of which is
governed by the parameters

coo (1—coo)
p=

sg $32g co0$

where q and p are the coordinate and momentum of a
classical Cartesian degree of freedom, and s=(s, s~, s, ) is
a classical vector. The dynamics is given by the (not fully
canonical) equations of motion

dp Bh dq Bh

dt Bq
' dt Bp
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where s = s . The first two fixed points are given by

p =s =0, s =+s(1—A, )'i

q= —&8gs, , s, = —sk . (8)

Obviously these fixed points exist only for 1, & I; in this
case they are the classical ground states (minimum energy
configurations) and thus they are stable (elliptic) fixed
points. The third and fourth fixed points are given by

g =p =sx sy

s, = —ssgn(co&) (FP3),

s, =+ssgn(coo) (FP4) .

(9)

These fixed points exist for all parameter values. FP3 is
the ground state (and thus stable) for A, ) 1 and unstable
for k &1. FP4 is stable for p 1 and unstable other-
wise.

The classical ground state and its energy eo are thus
completely determined by the parameter A, . The classical
ground-state energy is given by

may be related to the paritylike symmetry of the quan-
tum system

II=exp[in(b b+S, + —,')] . (12)

(a)

-1.0

This symmetry allows' for (2k+1)-quantum transitions
associated with near degeneracies ("narrow avoided
crossings") in the energy spectrum, especially for weak
coupling (small g).

As discussed above, for small IA, I there are two classi-
cal ground states, corresponding to stable equilibria of
two symmetrically displaced harmonic oscillators. Poin-

e = —Iru Is[ —,'(I&I '+ IXI )e(1—k )+e(X'—1)], (10)

where e(x) denotes the Heaviside unit-step function.
Graphs of eo and the ground-state position of the oscilla-
tor are shown in Fig. 1. The bifurcation of the classical
ground state at A, = 1 was already discussed by Feinberg
and Ranninger. ' It is interesting to note that there exists
a close analogy to the ground state of the quantum sys-
tem, which is approximated very well by a superposition
of two displaced oscillator ground states (that is, coherent
states, which are minimum uncertainty states), as numeri-
cal evidence shows. (See Refs. 29 and 30 and also Sec. III
below. )

We have studied the trajectories following from (6) for
several parameter combinations by standard numerical
integration procedures, for example, a fourth-order
Runge-Kutta method. The occurrence of chaos or order
in phase space is determined by the parameters A, and p.
For IA, I

«1 and IpI «1 chaos invades almost the whole
energetically available phase space. Regular structures
may only be found close to the ground state(s). For
IXI &&1 and/or IpI ))1 the phase space exhibits mainly
order, chaos may only occur in small regions close to the
unstable fixed point(s).

%'e have defined a Poincare surface of section by s =0
with (dldt)s &0. [This corresponds to a minimum of
s„(t), as may be seen from the equations of motion. ] The
most prominent features in the regular regions of our
Poincare plots are e11iptic periodic points corresponding
to stable periodic orbits of period 2k+1[ "(2k +1) reso-
nances"], leading to "island chains" of 2k +1 elliptic re-
gions. Figure 2 shows a 7-resonance as an example. The
parameter values chosen in the figure correspond to
A, =4.2 and p= 16.48 and thus phase space is expected to
be predominantly ordered. However, as the energy is
rather high, chaotic regions begin to show up, which
originate from the hyperbolic periodic points situated be-
tween the elliptic ones, in accordance with the scenario of
homoclinic chaos (see, for example, Ref. 31). The
predominance of "odd resonances" in the classical system
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-5. 0

1. 0

I i I i I i I i I s

I I

2. 0
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O

0 i I I i I & I I I t I I I i I & I i I i I
I I

1.0 2. 0

FIG. l. (a) Classical and quantum ground-state energies in
units of ~os, vs A, . The solid line represents the classical
ground-state energy eo [Eq. 110)], the thin lines correspond to
the quantum ground-state energy. The solid (dashed) lines cor-
respond to the two possibilities in calculating g and coo from
given A. and p, [Eq. (7)]. The solid lines correspond to the larger
g values, and to p values of 0(0.4)2 (from bottom to top),
whereas the dashed lines represent the smaller g values and the
same series of p values, from top to bottom. The dashed and
solid lines for p=0 coincide, as they should. (b) Classical equi-
librium position of the oscillator, in units of &8gs, vs A, .
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FIG. 4. Same as Fig. 3, for h = —0.48.
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FIG. 2. Classical Poincare plot of various trajectories for
g =0.5 ct)p=4. 2 energy h = 15. Abscissa is q, ordinate p.

nances of period 4(F) and 6(H, I). Note that the 6-
resonances are not symmetric with respect to the line
p =0, in contrast to the remaining periodic points. In the
following two sections we sha11 compare characteristic
features of the classical Poincare sections to correspond-
ing quantum sections, which we shall introduce.

care plots at energies above the ground-state energy will
then lead to large elliptic features encircling the ground
states. These orbits, reflecting the symmetry of the dis-
placed harmonic oscillator, are visible in many Poincare
plots, for example, in Figs. 3 and 4. For analogous
features of the quantum system, compare Sec. III, espe-
cially Fig. 9.

We now turn to the interesting case of resonance,
coo=1, and strong coupling, g =0.S. In Figures 3—6 we
observe a transition from integrability to global chaos
with growing energy. At energy h = —0.499 (barely
above the classical ground-state energy eo= —0.5) the
Poincare plot shows already two elliptic Axed points, one
in the center, and one close to the boundary of the al-
lowed phase-space region. At h = —0.48 we observe a
3-resonance as a new structure, and for h = —0.25 a
large variety of stable islands is observed, surrounded by
a "chaotic sea" (Fig. 5). The transition to (almost) com-
plete chaos (Fig. 6) is accompanied by a dominant 3-
resonance (Fig. 5, C). Besides this dominant feature, Fig.
5 still shows the two fixed points ( A, B) already observed
at low energy, a 5-resonance (G), and small even reso-

0.8 .
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0.8 I I I I I I I I I I I I I r I I I I I I I I I I
I

0

0.05

P
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-0.

-0.3 0
q
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0
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FIG. 3. Same as Fig. 2, for g =0.5, cop= 1, h = —0.499.
FIG. 5. (a) Same as Fig. 3, for h = —0.25. (b) Some of the

regular structures of (a).
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p(p q)= &—p qlplp q &

0

I I I I I i I I I I I i I I I I I i i f I i I I [ I I i i I I i I I I I I I I
I

FIG. 6. Same as Fig. 3, for h =3. The chaotic "sea" of
points is formed by one single trajectory.

III. STATIONARY QUANTUM POINCARE SECTIONS

In the present section we investigate the question
whether any signature of the classical chaos shows up in
the shape of the energy eigenstates of the quantal model
(1). In the next section we shall consider the quantum
dynamics. We define a phase-space description of the bo-
sonic degree of freedom by means of the harmonic-
oscillator coherent states:

lp, q ) =exp l. ' (pQ —qP) 1 l
0 &, (13)

where l0) is the ground state of a harmonic oscillator
with unit mass and frequency [coo=g =0 in (1)].

The unitary operator appearing in (13) describes a dis-
placement of both position and momentum. It is thus
clear that every coherent state may be associated with a
phase-space point via

&p, qlQlp, q & =q, &p, qlPlp q & =p . (14)

From the oscillator ground state the coherent states in-
herit the property of minimum uncertainty product
bpAq and equal uncertainties Ap=Aq. Coherent states
thus provide the closest possible quantum-mechanical
analogs of classical phase-space points which makes them
especially useful for studying the classical limit of quan-
tum systems. (In fact, Schrodinger introduced them for
exactly this purpose. ) The state lp, q ) is an eigenstate of
the annihilation operator b —= (Q +iP)lv 2 with the com-
plex eigenvalue

(q +ip)
v'2

which is also often used to label the state. Due to the
overcompleteness of the coherent states, operators are
completely characterized by their diagonal elements in
the coherent-state representation. A density operator
p=p ~0 may thus be described by the non-negative
phase-space function

s„ l cr &
=o

l
cr ), o =+-,' (17)

and the product states

l~ p q&—= l~&lp, q&

serve to define the stationary Husimi density on the quan-
tum Poincare surface of section

u„(p, q) —=
l &N, +l —

—,',p, q & I'

The numerical determination of the eigenstates lN, +)
and the corresponding eigenvalues poses no particular
problems. In a basis formed by simultaneous eigenstates
of S„b b, and II (12), H is obviously given by a tridiago-
nal matrix. Eigenvalues and eigenvectors of the (suitably
truncated) Hamiltonian matrix were determined by Stur-
mian bisection and inverse iteration.

In analogy to the discussion of Sec. II, we first present
our results on the quantum ground state. It is obvious
from Eqs. (7) that for a given spin quantum number S
(S = —,

' in our case) the parameters g and coo are not
uniquely determined by the values of A, and p. In the
classical case the ground-state energy (divided by lcool)

and the oscillator ground-state position do not depend on
the sign chosen in inverting (7). This is no longer true in
the quantum case; furthermore, the ground-state proper-
ties now also depend on the parameter p, in contrast to
the classical case. Figure 1 shows results for the ground-
state energy E, + as a function of A, , for various values of
p. The differences between classical and quantum

which is called its Husimi density. For the special case of
a pure state, p=lg)&gl, the density p(p, q) evidently
reduces to l&glp, q)l . For more information on the
properties of coherent states and of the Husimi density
(especially as compared to the Wigner function), we refer
the reader to Refs. 33, 34, and 26, respectively.

In order to compare stationary classical phase-space
structures to corresponding features of stationary quan-
tum states, one may try to construct quantum Poincare
sections. This is straightforward for purely bosonic sys-
tems: the phase space is introduced via (multi-mode)
coherent states and a quantum Poincare plot is defined as
a contour plot of the Husirni density on the appropriate
surface of section. In the study of nonlinear dynamical
systems, this concept was first applied in Ref. 5. For the
present spin-boson system the definition of a quantum
Poincare map is less evident. As the classical Poincare
surface of section was defined by the condition that s, (t)
be minimum, we decided to use a projection to the nega-
tive x direction with respect to the quantum spin. We
stress that this choice is to a certain extent arbitrary;
there are several kinds of spin coherent states ' which
make other choices of the spin state possible.

We denote the eigenstates of K by l N, + ), where +
denotes the "parity" II [Eq. (12)], and N =1,2, 3, .. .
The ground state is l 1, + ) . The eigenstates of S„are
denoted by lcr )
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ground-state energies are not large, nor does the quantum
ground state depend strongly on p or on the sign choice
mentioned above.

We have studied the shape of the quantum ground
state in phase space, that is, the function wi +(p, q) (19)
for values of A, between 0.1 and 2, and various values of p,
in order to look for the quantum-mechanical counterpart
of the classical bifurcation at A, = 1 shown in Fig. 1(b).
Again we have to take into account that for given values
of A, and p, two sets of values of g and coo are possible.
Choosing the branch with larger g values leads to a
ground state which clearly displays a bifurcation,
whereas the ground state corresponding to the weak-
coupling branch does not show spectacular changes of
shape as A, and p are varied. In the following we shall re-
strict our attention to the strong-coupling branch, if not
explicitly stated otherwise. For A, =2, the Husimi density
of the ground state on the quantum Poincare surface of
section displays a single maximum resembling the ground
state of an unperturbed harmonic oscillator in its circu-
larly symmetric Gaussian shape. For very large values of
p the contour lines of w, + (p, q) change from circular to
slightly elliptic shape. At A, = 1 (where the bifurcation
occurs in the classical system) the contour lines change
from circular to pear shaped as p grows, and for even
larger p, a slight constriction in the outermost contour
lines begins to develop, signaling that a second maximum
is about to appear. [It is often useful to study the loga-
rithm of w, +(p, q) in order to see emerging new struc-
tures. ] This tendency becomes more obvious at A. =O. S;
and at A, =O. 1, the quantum ground-state picture in phase
space is clearly dominated by two centers corresponding
to the classical oscillator ground-state positions. In Fig.
7 we display wi + (p, q) for A, =0.1, p=10 on a logarith-
mic scale. On a linear scale, the secondary maximum
would hardly be visible, as it is about two orders of mag-
nitude smaller than the absolute maximum. (There are,
however, also parameter values for which the secondary
maximum is clearly visible also on a linear scale, for ex-
ample, g =2.8, coo= 10.)

For A. =O. 1=@ ' we have also computed the station-
ary quantum Poincare sections of some excited states (up
to X =80), and again the results are reminiscent of two
symmetrically displaced oscillators: wz+(p, q) is of ap-
preciable size on two annuli of radius (approximately)
&2%, centered around the classical oscillator ground-
state positions. [Remember that for a harmonic oscilla-
tor eigenstate

I
n ) the Husimi density is

Ground state (N=1)

-20:
10

20

—30:

—40

—20

N=BO

30

20

10

FIG. 7. Logarithm of the Husimi density wl +(p, q) of the
ground state, on the quantum Poincare surface of section. Pa-
rameter values are g =7.0799, ~o= 20.05 (k =0. 1 =p ').
Values of w l + (p, q) less than e have been omitted for clarity.
The maxima are located at the ground-state positions of the cor-
responding classical oscillator, the maximum value of w& +(p, q)
is approximately 0.46.

(20)

which assumes its maximum value at (a~ =(p
+q )/2=n ]Figure 8. shows the excited state %=80 as
an example.

In order to study another interesting analogy between
classical and quantum Poincare plots, we consider the
spectrum of H In Fig. 9 we. display some (positive-
parity) energy levels as functions of coo, for fixed g =0.S.
The presence of a large number of regularly arranged
narrow avoided crossings of energy levels is a conspicu-
ous (and we11-known) property of the spectrum. The ar-

20

«~C -20
-20

F&G. 8. Similar to Fig. 7, logarithm of w8o+(p, q). Values
less than e have been omitted.
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rangement of these avoided crossing b 1'ngs may e easily un-
derstood by considering the lim't f'mi o zero coupling con-
stant g. In this limit the spectrum of positive-parity ei-
genvalues is trivially given by

E~ ~ =N —1+(—I )+
2

(21)

corresponding eigenstates are products of oscil a-
tor eigenstates (with quantum number n =N —1) and
eigenstates of S, [with eigenvalue ( —1) /2]. For
coo=2k+ I (k =0 1. . .
N=2l (l =1 2. . .

t e energies of the states with

, . . . ) and N =2l +2k + 1 coincide, so that

small) values of the coupling constant g, all these degen-
eracies are lifted and the resulting avoided crossings are
s ifted to other values of coo. This leads to the "distorted
columns" of avoided crossings visible in Fig. 9. (The

55

50

40

35

30

25

15

10

5

l. i I i I i ( ~ I i I i I i I
I I I

0 2 4 6 8 10

FIG. 9. S ectrum ofp positive-parity energy eigenvalues for

g =0.5, and coo between 0 and 10. All apparent level crossin s

are actually avoided.
paren eve crossings

avoided crossings corresponding to k =0 and k =1 only
appear for g values much smaller than 0.5 and
absent in Fi .'n Fig. 9.) It is reasonable to assume that the char-
acter of the twe wo states involved in a given avoided
in is not c'

g
'

changed grossly, as compared to the zero-
oi e cross-

coupling case.
Thus, in every avoided crossing of a given column, we

may expect a pair of states closely related to the
harmonic-oscillator states with
n =2l —1 and

i quantum numbers
n =2 —1 and n =2(l+k). A superposition of these
states leads to a characteristic shape in phase space. The~ ~

Husimi densities of the two individual t t
'

lds a es yie circu-
ar y symmetric shapes [compare Eq. (20)] hoowever,

a so an interference term" proportional to
cos 2k+1)P, where P is a polar angle in the ( ) 1in e p, q p ane.

(2k+1-
u ing quantum phase-space picture 'th

1)-fold rotational symmetry will thus be charac-
teristic for all vr a avoided crossings of a given column. Of
course, the eigenstates will tend t do sprea out more and
more in phase space, as energy grows. In fact, this be-
havior is precisely what one Ands numericall da y, an more-

b classic
e c assical phase-space structure ase as revea e

y c assical Poincare plots shows striking parallels. We
have studied this correspondence in some detail for

~or these parameter values, the

involvin the
spectrum isplays a series of narrow avoidedvoi e crossings
invo ving the pairs of states (N, N+1)
= 4, 5), (17, 18),(34, 35), (59,60), (88, 89)(119,120). As

- o rotational sym-was to be expected from the (2k+1)-fold r
metry o the zero-coupling states discussed above, the
stationary quantum Poincare plot f ts o s ates involved in
these avoided crossings show 2k + 1

(k=2 . . . 7
ow maxima

&~arranged around the origin in a roughly
circular fashion. In contrast stat fa es ar away rom avoid-
ed crossings (for example N =10) d ho not s ow any pro-

feature of an sta i
nounced phase-space structure. (A more or less trivial
eature of any stationary quantum Poincare plat at the

present parameter values is the fact that the phase-space
ensity is essentially concentrated on an annul

corres on
'

n an annu ar region
ponding to the classical energy shell. ) A

le of a state
'

e . s an exam-

Fi. 10 aco
p a s a e involved in an avoided crossing h'ng we s ow in

'g. ) a contour plot of the Husimi density (19) for the
eigenstate ~18 +e ~, ~. This figure should be compared to

the same values
the classical Poincare plot of Fig. 2 h' h'g. , w ic corresponds to
t e same values of the coupling parameters, but to a
slightly different energy. (The classical and quantum en-

E,8 + = 16.32, respectively, where the corresponding
ground-state energies are e = —2. 1 and E = —2. 15.0 1, +
A classical Poincare plot at h =16.37, corresponding to
t e quantum eigenvalue E&8 +, does not di6'er from Fig. 2

in a qualitative way, nor are the phase-space structures
isp aced by any appreciable amount. ) Figures 2 and 10

are both dominated by a cycle of seven phase-space "is-
ands" coinciding very well. Of course, small-scale struc-

tures in classical Poincare plots are invisible in quantum
Poincare plots due to the uncertainty relation Ap Aq

As diss discussed above, every avoided crossing is related to
—2

its zero-coupling counterpart involving two harmonic-
oscillator eigenstates. In the avoided crossing involving
the state of Fig. 10 we thus expect the oscillator states
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FIG. 10. Contour plot of a stationary quantum Poincare sec-
tion at g =0.5, coo=4.2, eigenstate

~
18, + &. This picture should

be compared to the classical Poincare plot in Fig. 2.

n = 13 and n =20 to dominate, and this is confirmed by
the numerical results. The two oscillator states contrib-
ute roughly two-thirds to each of the two eigenstates with
N = 17 and 18, respectively, i.e.,

and similarly for 1V =17. If coo is changed so that one
moves away from the avoided crossing, one of the two
dominant eigenvector components becomes stronger and
the other one weaker. Thus the interference effect lead-
ing to the observed approximate (2k+1)-fold rotational
symmetry becomes weaker and the observed phase-space
structure gets lost. A similar loss of structure occurs if a
pair of states immediately above or below an avoided
crossing is considered, e.g. , the two states N =19 and 20
at coo=4. 2. Of course, these two states are also involved
in an avoided crossing, which, however, occurs at a
different value of coo and thus the interference effect men-
tioned above does not fully show up. States far away
from any avoided crossing do not show any significant
nontrivial phase-space structure. As a typical example
we show the state

~ 8, + & in Fig. 11.
As exemplified in Figs. 2 and 10, the classical Poincare

plots show the same kind of symmetry as the correspond-
ing quantum Poincare plots. However, the change of
symmetry with increasing energy (at constant coo) occurs
in a different way. In contrast to the quantum Poincare
plot, the classical Poincare plot does not completely lose
its structure at an energy value halfway between two
neighboring avoided crossings. Instead, as energy in-
creases, the 2k + 1 islands dominating the Poincare plot
at a given avoided crossing move inward and at the outer

FICs. 11. Same as Fig. 10, eigenstate ~8, + ).

boundary of the energetically allowed phase-space region
a new set of 2k+3 islands appears which is going to
dominate at the next higher avoided crossing. The two
sets of regular island structures are separated by a chaot-
ic layer which tends to become wider as energy grows.

It would be interesting to look into quantum phase-
space behavior in more detail in order to see whether the
small-scale classical structures have quantum counter-
parts, and whether individual quantum states related to
stable and unstable classical periodic orbits may be
identified, as Radons and Prange recently demonstrated
in the case of the kicked rotator. For this purpose, how-
ever, the effective value of Planck's constant must be
changed, i.e., higher spin quantum numbers must be
studied.

At resonance (coo= 1, and strong coupling, g =0.5) the
correspondence between classical and quantum Poincare
plots is not as close as in the case discussed above
(coo=4. 2, g =0.5). In the present case, the parameters A,

and p (7) are unity and zero, respectively, so we expect
classical chaos to be far more pronounced than in the
former case, where both A, and p were fairly large.
Whereas the classical Poincare plot shows almost com-
plete chaos already at energy h =3 (Fig. 6) with small
stable period-3 islands, quantum Poincare plots at com-
parable energies, for example, for the states N =4 (Fig.
12) and N =5 show rather clear features of threefold ro-
tational symmetry whose extent in phase space is much
larger than that of the classical islands in Fig. 6. At
higher energies, classical chaos invades the whole avail-
able phase-space region, whereas stationary quantum
Poincare plots still show some degree of regular struc-
ture, for example, approximate fivefold or sevenfold sym-
metries close to the states N = 12 (Fig. 13) and N =24, re-
spectively. It should be noted that these symmetries of
the quantum Poincare plots may again be traced back to
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FIG. 12. Same as Fi .aine as Fig. 10, for g =0.5, coo= eigenstate
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e time

~Lid I ~)»» I » I I I I I I I II I I I I I I I I I I I I I I I I I I I I

I
11111I 11 « I I I I I I I I I I I I I I I I I I I I I

0 2 4 6

FIG. 13. Same as Fi . 12s ig. 12, eigenstate ~12, + ).
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FIG&. 14. Trace w (p, q, t) of the Husimi matrix of an initially
coherent state with qp=3/&8, pa=0, at the "Poincare time"
t~ =7.64m. , in the case of resonance and strong coupling
(coo= 1 g =0.5). The contour lines correspond to values of 0.05,(coo 1,g
0.1, 0.15, etc.

FIG. 16. Same as Fig. 14, for qo=5/&2, t~ =50.64~, loga-
rithmic. M& and M2 denote the main maxima; at 1, 2, 3, and 5,
there are minima. For reasons of symmetry, one would expect
another minimum at 4.

one (M2) which is surrounded by a (roughly) fivefold
symmetric structure of ridges and valleys. This structure
again resem esbl the classical phase-space structures
displayed in Fig. 5 (compare especially the regions
marked A and G). At still higher energy (qo =4 2,
0=0, (H) =20, Fig. 17) the phase-space density splits

up into many small wave packets which are rather evenly

distributed over the energetically available phase-space
region. o pN articular ordered phase-space structure is
discernible.

To summarize, we can tentatively identify phase-space
structures from classical Poincare plots and quantum
"Poincare snapshots. " Similar sequences of structures

10

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I

I

-5 -1 -3 -2 -1 0 1 2 3 0 5

-10

I I I I I il I

-10 -8 -6 -4 -2 0 2 0 6 8 10

FICs. 15. Same as Fig. 14, for q0=5/&2, t~ =50.75m.. The
contour lines correspond to values of 0.03, 0.06, etc.

FIG-. 17 Same as Fig. 14, for qo =8/&2, t~ =51.78m, logarsth-
mlc.
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develop in both cases as energy increases; the energy
scales, however, are quite different.

V. SUMMARY AND OUTLOOK

We have studied the phase-space behavior of a simple
two-state model coupled to a harmonic oscillator. A
classical limit of this model is known to display chaotic
behavior, whereas the quantum model may be ca11ed in-
tegrable in a certain sense. In the classical case we have
found that the degree of chaos of the system may be sim-
ply characterized by the two parameters A, and p (7). To
study the quantum phase-space behavior we have em-
ployed the Husimi density based on harmonic-oscillator
coherent states. The Husimi representation turns out to
be ideally suited for the study of quantum phase-space
phenomena as it does not mask intrinsic structures in
phase space by spurious oscillations, in contrast to the
Wigner function which is also often used for similar pur-
poses. We have defined stationary quantum Poincare sec-
tions corresponding to stationary states as well as dynam-
ical quantum Poincare maps reAecting the time develop-
ment of the closest possible quantum approximation to a
classical phase-space point, namely, an initially coherent
state. Despite the apparent convict between classical
chaos and quantum integrability, we have observed many
parallels between classical and quantum phase-space
structures. In the regular part of parameter space we ob-
serve phase-space patterns dominated by tori (associated
with displaced harmonic oscillator orbits) and "chains"
of 2k + I islands (associated with stable periodic orbits).
The island chains in the stationary quantum Poincare
plots may be understood in terms of the well-known nar-
row avoided crossings (near degeneracies) occurring in
the energy spectrum for not too strong coupling. The
quantum-mechanical phase-space patterns seem to be
more stable against chaos than their classical counter-
parts. In dynamical quantum Poincare "snapshots" we
also have observed parallels to regular classical phase-
space features, even for parameter values where the clas-
sical system shows completely chaotic behavior. If pa-

rameters are changed to an even more strongly chaotic
regime, we observe a decay of an initially coherent state
into many seemingly independent wave packets in phase
space.

In the present (spin- —,) model it is difficult to study in
great detail the parallels between classical and quantum-
mechanical phase-space behavior due to the limited reso-
lution imposed by the uncertainty relation. A study at
higher spin quantum numbers should be able to supply
finer phase-space details. Employing coherent states for
the spin as well as for the harmonic oscillator would give
additional flexibility in defining alternative Poincare sur-
faces of section which might provide further insight into
the quantum dynamics. A more systematic study should
also involve a comparison between the nature of the clas-
sical phase-space trajectories and the trajectories of the
corresponding quantum-mechanical expectation values
developing from an initially coherent state. A study of
this kind was recently performed by Fox and Lan for
the kicked rotator. Another interesting topic is the role
of dynamical barriers in quantum phase space, (i.e., tori
and cantori) which has been studied for the kicked rota-
tor in. To summarize, we have found many interesting
parallels between classical and quantum phase-space
structures, but in contrast to Radons and Prange we did
not detect the quantum analogs of Kol'mogorov-
Arnol'd-Moser tori and other small-scale classical phase-
space structures in the present extreme quantum limit,
S=—,'. Finer phase-space structures will probably show

up at higher spin quantum numbers.
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