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We study the effects of the reaction field on the spin relaxation. We find that they are not only re-
sponsible for a nonlinear frction process, as recently pointed out by several authors, but, in the case
of su%ciently strong coupling, they also result in a bistable precession process. This implies that at
weak temperatures the rate of the spin relaxation is expected to exhibit an Arrhenius-like depen-
dence on temperature.

I. INTRODUCTION

The theoretical interpretation of the data of resonance
spectroscopy widely rests on the Kubo stochastic theory
of line shape, ' called stochastic Liouville equation (SLE)
theory. The SLE theory is very popular especially in the
field of spin relaxation, where slow molecular processes,
the so-called slow motion, give the spin probe highly
non-Markovian properties.

It is well known that, within the SLE approach, ' the
magnetization does not relax towards its equilibrium
value corresponding to the given external field but to-
wards the zero value. Kubo and Hashitsume showed
that if a frictional resistance is assumed to accompany the
random field causing Brownian motion, the random equa-
tion of the spin motion leads to a Fokker-Planck equation
that guarantees approach to equilibrium. It is remark-
able that these authors found the friction associated with
random Auctuations to result in a nonlinear relaxation
process. Seshadri and Lindenberg found the same result
from a rigorous microscopic picture. A more phenome-
nological approach was followed by Stillman and Freed.
These authors studied the rotational dynamics of a mole-
cule within the theoretical framework of the SLE. They
made the assumption that the rotator reaches a canonical
equilibrium distribution, and using the detailed balance
method illustrated by Haken, supplemented the SLE
picture with a convenient reaction field. More recently,
an approach of the same kind was adopted and applied
by Grigolini and Roncaglia to the field of magnetic reso-
nance spectroscopy. With this technique, these authors
found the same nonlinear Auctuation-dissipation process
as did Kubo and Hashitsume and Seshadri and Linden-
berg. 4

In all these papers the system of interest reaches a
canonical equilibrium distribution either as a conse-

quence of a rigorous microscopic description or of expli-
cit constraints stemming from statistical mechanics. ' '

However, it must be noted that, both in quantum and
classical physics, the requirement for the equilibrium dis-
tribution of the system to be canonical in the unperturbed
Hamiltonian may be incorrect. In the case of a classical
oscillator coupled to a bath simulated by another stochas-
tic and dissipative oscillator, it has been pointed out that
the system of interest reaches an equilibrium distribution
that happens to be canonical with respect to a renormal-
ized potential rather than to the bare potential. The
same effect is present in quantum mechanics when the
weak-coupling assumption leading to the canonical equi-
librium distribution is rejected. '

The main purpose of the present paper is to study the
effects of the reaction field, i.e., the bath motion induced
by the coupling with the system, which is neglected in the
current SLE approaches. Moreover, we shall not impose
any constraint on the equilibrium distribution of the spin
system, but only the canonical equilibrium condition for
the initial state of the bath. For the sake of simplicity, we
shall limit ourselves to adopt a procedure that will permit
us to show the effects associated with the presence of the
reaction field within a conventional second-order cumu-
lant expansion.

We will find that the bare Hamiltonian must be re-
placed by a renormalized one, which will result in a non-
standard precessional motion. This means that, in addi-
tion to the external static field along the z axis, a com-
ponent orthogonal to it, which depends on the mean
value of the x component of the dipole, appears. In the
strong-coupling regime this renormalized Hamiltonian
results in a bistable precession motion, schematically il-
lustrated in Fig. 1.

The problem of spin relaxation, as originally imagined
by Kubo, ' is still the object of current interest due to its
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The imaginary frequency mimicks a precession process
that actually takes place in a three-dimensional space.
Thus a more realistic description is

jc(t) =p(t) XQO+p(t) XQ(t), (2.4)

FIG. 1. Scheme of the bistable precession motion resulting
from a strong coupling of the magnetic dipole with its bath. In
addition to the magnetic field along the z axis a component
along the x axis appears, the intensity of which depends on the
x component of the dipole itself. As a result, the spin executes a
sort of precession around the axis OA. A symmetric trapped
state exists, illustrated here by the precessional cone around the
axis OB. Because of thermal fluctuations the spin can also jump
from one to the other precessional cone. The axes OA and 08
are not fixed and their actual direction depends on the state of
the spin system. In the adiabatic limit the precessional motion
illustrated by this figure corresponds to the mathematical pic-
ture of Eq. (3.8).

close connection with the problem of colored noise. "'
In our paper we are not concerned with memory effects,
but only with the role of the reaction field, which is
neglected in these recent papers, too.

In Sec. II we illustrate how to make the semiclassical
approximation without neglecting the reaction field. In
Sec. III we adopt a convenient reference framework that
allows us to reproduce all the relevant effects of the reac-
tion field within a second perturbation order. The in-

teresting physical predictions will be discussed in Sec. IV.

Q)p
o. + cr x+&-z 2 x B (2.5)

This means that we restrict ourselves to studying a
strongly nonisotropic model in which the interaction
along the x direction prevails over that along the y direc-
tion. The nonisotropic relaxation case has also been stud-
ied by Faid and Fox. ' Here we focus our attention on
the nonisotropic case with no fluctuations along the y
direction. This is done, first of all, for the sake of simpli-
city. We do not aim to reproduce quantitatively a true
spin-relaxation process. Rather, we aim at a general dis-
cussion of the problems involved by the presence of the
reaction field within a model that has the essential as-
pects of a genuine problem of spin relaxation. The vari-
able x in Eq. (2.5) represents the thermal bath degrees of
freedom interacting with the spin system and &~ drives
the free motion of x. We also assume that the magnetic
dipole has a —,

' spin, so that the o. s are the Pauli ma-
trices.

We study the time evolution of the following "polariza-
tion vector:"

where Qp is the time-independent contribution to the
Larmor frequency, assumed throughout the remaining
part of this paper to be directed along the z axis, and
Q(t), a fluctuation resulting from the interaction with a
bath. The multidimensional character of the system of
equations (2.4) makes it necessary to have recourse to
higher than the second-order cumulants for a satisfactory
solution of the colored-noise problem to be obtained. '

We focus here on the problem of the reaction field, rather
than on that of the color of noise.

The theoretical investigation of this paper rests on the
following microscopic Harniltonian:

II. THE MICROSCOPIC HAMII. TONIAN
p=—(&o„&,, &~, &„&o,&, ), (2.6)

As is well known, the Kubo theory' has essentially a
phenomenological foundation. This is made especially
clear by the so-called Kubo stochastic oscillator. ' This is
a stochastic model, written as

p(t) =i [co(t)+coo]p(t) . (2.1)

This means that, due to the inAuence of the environment,
the dipole p(t) is driven by a stochastic process as well as
by the time-independent Larmor frequency cop. Within
the Kubo picture, the random frequency co(t) is assumed
to be a colored Gaussian noise, whose dynamics is de-
scribed by

which univocally describes the spin- —, density matrix

(( )z means the average over the spin degrees of free-
dom). To write the equation of motion of p, we proceed
as follows. First, from the Hamiltonian of Eq. (2.5), we
derive the Heisenberg picture providing the time evolu-
tion of o „(t), cr (t), cr, (t), and x (t). This picture also in-
volves terms such as x (t)o (t) and x (t)o.,(t), the mean
values of which in principle cannot be factorized into a
system and a bath part. By application of the semiclassi-
cal approximation, according to which x is regarded as
being a fluctuating c number, it is natural to make this
factorization assumption. We thus obtain

~(t) = y~(t)+ f (t), — (2.2)
Px =~pPy ~

(f(O)f(t))=2y(~'), P(t) . (2.3)

where f (t) is a white Gaussian noise, with vanishing
mean value, defined by

Py oPx Pz+ ~

Pz CK+ Py

x = —rx+rp„+~(r),

(2.7)
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where the friction I and the white Gaussian noise E, with
vanishing mean value, are related to each other by the
standard fluctuation-dissipation relation

(F(t, )F(t, ) & =2I (x'&5(r, —r, ),
with

2k~ T(x'&=

(2.8)

(2.9)

The fourth term of Eqs. (2.7) means that the bath variable
x is thought of as the coordinate of an overdamped oscil-
lator, driven by the white and Gaussian stochastic force
F(t).

Note that the quantum-mechanical variable x has dissi-
pative properties due to the interaction with a virtually
infinite number of degrees of freedom. All this is taken
into account by Hamiltonian of Eq. (2.5). The semiclassi-
cal approximation allows us to simplify the problem, by
replacing the quantum-mechanical dissipation process
with the standard classical fluctuation-dissipation process
of Eq. (2.8). On the contrary, in the last equation of the
set of equations (2.7), the reaction term I p„has precisely
the same structure as that of a rigorous Hamiltonian
description. Equations (2.7) are equivalent to those de-
rived from the discrete nonlinear Schrodinger equation
applied to the case of the nonlinear nonadiabatic dimer.
This fact will make us benefit from the results known in
this research field. '

The Fokker-Planck equation corresponding to Eqs.
(2.7) reads

Let us now make the assumption that the last term on the
right-hand side (rhs) of Eq. (2.13) can be neglected. This
means that the bath is not inAuenced by the effect of the
reaction term and the moments M„are replaced by ap-
proximated expressions, denoted by M„'. If we apply the
Zwanzig projection technique' to the quantum-
mechanical Liouville equation associated to the Hamil-
tonian of Eq. (2.5) and we then evaluate the resulting mo-
ments with the semiclassical approximation, these turn
out to be identical to the approximated moments M„'.
Since the Zwanzig approach supplemented by the semi-
classical approximation is known to be equivalent to the
SLE, we conclude that Eq. (2.10), with the last term on
the rhs of Eq. (2.13) neglected, is equivalent to the SLE.

The fact that the operator X of Eq. (2.10) turns out to
be equivalent to the SLE if the reaction term is neglected
is extremely important. Reference 2 shows how to ex-
press the absorption spectrum in terms of an infinite con-
tinued fraction, with truncation carried out at an arbi-
trarily high order so as to guarantee a satisfactory con-
vergence to the "exact" result. The same approach can
be used without neglecting the reaction term. This will
make it possible to study the effects induced by the reac-
tion field in the so-called slow-motion regime. This
continued-fraction procedure is virtually equivalent to a
resummation over all the cumulants and will be adopted
in a subsequent paper. ' In Sec. III we shall show how
to derive the bistable precession of Fig. 1 in a straightfor-
ward manner, without using this sophisticated calcula-
tion technique.

where

(2.10)

&a =— ~oPy ~Px
(2.1 1)

A=1 x+(x & 2Bx Bx
(2.12)

Xr =ax@,
BPy

—exp
Pz

—I p Bx
(2.13)

We have chosen to consider p,p, p, as three indepen-
dent variables, ranging over the whole real axis; in this
way, the constraint on the norm of the vector p turns out
to be simply a consequence of the dynamics originated by
Eqs. (2.7). Note that Eqs. (2.10)—(2.13) must be regarded
as being an exact description of the dynamics of the
whole system, system of interest, and bath. This is due to
the fact that we use the standard fluctuation-dissipation
process of Eq. (2.8), which makes exact the corresponding
multidimensional Fokker-Planck equation.

If we apply the projection method to Eq. (2.10), '7 we
obtain a generalized master equation fully equivalent to
it, depending on the moments'

M„= (X'J(t)gX~(t] )gry(t2) gran(t„))Xy(t„) &s .

(2.14)

III. RENORMALIZATION OF THE SYSTEM
OF INTEREST

We have now to approach the problem of replacing the
equation of motion of Eq. (2.10) with a reduced descrip-
tion concerning only the system of interest, i.e., the di-
pole p in this case. This must be done in such a way as to
properly take into account the role of the reaction force.
In principle this might be done with the version of the
projection-operator approach established by Willis and
Picard to put the system of interest and the bath on the
same footing. As already mentioned, in Sec. II, a further
technique to adopt might be the cumulant expan-
sion, and especially the resummation at infinite or-
der recently developed by Der and Der and Sehumach-
er. It is easy to prove, in close agreement with the
point of view of Chaturvedi and Shibata, that the per-
turbation expansion' ' of the Zwanzig master equation'
is equivalent to the standard cumulant expansion. Thus
the second-order treatment of the Zwanzig master equa-
tion' ' is equivalent to the second cumulant. Our view
is that, instead of looking for a resummation over all the
cumulants, a repartition of the total dynamical operator
X can be found that allows the corresponding second cu-
mulant to account properly for the relevant physical
properties of the system. This problem has been studied
in the recent past in the case of a classical oscillator of in-
terest nonlinearly coupled to another classical oscillator,
and it was shown that the second-order expansion corre-
sponding to the proper repartition results in the correct
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equilibrium distribution, whereas the more conventional
repartition was shown to produce the same result only
after resummation over all the perturbation contribu-
tions. The big advantage of the recipe illustrated in Sec.
II is that, after making the semiclassical approximation,
we set the dynamics of the system under the form of a
process of nonlinear stochastic physics. The latter has
the same form as that of Ref. 8, thereby allowing us to
use all the procedures proved to be effective in that case.

First, the oscillator is driven to a canonical equilibrium
distribution by the standard fluctuation-dissipation rela-
tion of Eqs. (2.9) and (2.10), and via the spin-bath interac-
tion, transmits its own canonical properties to the system.
As a result of this, the whole system is driven towards the
following equilibrium distribution:

'treq( px & p y & pz &
x ) e"p

1 CX

2kB T ' " 2
copp exp x + x

L

X5(p„+p +p, —1) . (3.1)

so that the total equilibrium distribution of Eq. (3.1) ap-
pears to be factorized into a system and a bath part, with
no interference term:

1 o. 2 o,
m, (p„,p, p„x) ~exp — coop, ——p +—x

B

X5(p +p +p, —1) . (3.3)

Integrating over x, we get that the spin part happens to
be canonical with respect to the effective Hamiltonian

r

(3.4)

This means that the weak-coupling prediction of usual
statistica1 mechanics

p,q(p) ~exp — coop, 5(p, +p +p, —1),
2k, T

(3.5)

must be replaced by the following more reliable predic-
tion:

p q(p) "exp
k T ~u

2 p

X5(p +p +p, —1) . (3.6)

This explains why an approach using the assumption of
Eq. (3.5) must be avoided.

Note that, in the weak-coupling case, the two equilibri-
um distributions, Eqs. (3.5) and (3.6), almost coincide. In
the strong-coupling case, on the contrary, we have a quite
significant discrepancy, due to the term that is quadratic
in the x component of the dipole that ultimately comes

It is indeed straightforward to verify that this is the sta-
tionary solution of Eq. (2.10).

Equation (3.1) naturally leads one to describe the
thermal bath in terms of a new coordinate,

(3.2)

from our proper treatment of the reaction term.
Equation (3.6) gives a complete description of the equi-

librium properties of the spin system for arbitrary values
of the coupling o., as is shown in Ref. 31. For example, in
the weak-coupling limit, the equilibrium value of the z
component of the dipole is expressed by the "canonical"
Langevin function as a function of temperature. In the
large-coupling case, on the contrary, Eq. (3.6) results in a
strong departure from this behavior, and this striking
effect is completely confirmed by the computer simula-
tion of Ref. 31.

It is also interesting to briefly analyze the dynamical
behavior of the system. By applying the transformation
of Eq. (3.2), the set of equations (2.7) is replaced by

Px ~oPy ~

p~(t) = —~op (t) —ap, (t}p,(t) —ap, (t)x(t),
p, ,(t)=ap„(t)p (t)+ax(t)p (t),
x(t)= —I x(t)+f (t) —coop (t)

(3.7)

[in this new "reference frame" the reaction field is given
by the term &oop (t)]. In the adiabatic limit we can re-
gard the variable x as being so fast fluctuating as to make
it possible to rep1ace it with its vanishing mean value. In
this way we get the "systematic" motion of the spin sys-
tem, which is described by the renormalized Hamiltonian
of Eq. (3.4) and whose equations of motion are

Px oPy ~

p~(t)= ~op (t) ap, (—t)p, (t), —

p, (t)=ap ,(t)p~(t) .

(3.8)

In the large-coupling regime, this set of equations is
proved to result in the bistable precessional motion il-
lustrated in Fig. 1. This is so because a systematic x com-
ponent of the "magnetic" field appears. When this x
component is large enough with respect to the original
component along the z axis, the dipole is prevented from
executing a fu11 precession around the z axis. The
analysis of this deterministic motion and the correspond-
ing predictions for the transition from the "untrapped"
(one precessional cone around the z direction) to the
"trapped" behavior (two distinct precessional cones) can
be carried out precisely as done by Kenkre and co-
workers to study the adiabatic nonlinear dimer, ' and
we refer the interested reader to those references for de-
tails. Using this analysis it is also possible to show that,
upon increasing the coupling o., the transition from two
distinct precessional cones into a single one takes place
abruptly at the threshold value a, =2coo. This behavior
depends on the nonlinear structure of the systematic part
of Eq. (3.8).

The transition from a trapped precessional motion to
the other one implies the existence of an activation pro-
cess, i.e., a very precise energy level has to be reached. It
is easy to predict from this fact that, at small tempera-
tures, the relaxation process has a dependence on temper-
ature of the Arrhenius type. This temperature behavior
in the field of spin relaxation is exhaustively studied in
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Ref. 33. In Ref. 33 the Arrhenius-like law at small tem-
perature is totally confirmed by computer simulation.

The new reference system of Eq. (3.2) suggests an
efficient way of dividing the dynamical operator X of Eq.
(2.10). The Fokker-Planck equation for the probability
distribution ~(p„,p~, p„x;t) corresponding to the set of
equations (3.7) reads

technical diSculties that have been the object of recent
investigation. ' We want to avoid the complicated calcu-
lations necessary to take into account the interplay be-
tween the "color"' of the stochastic variable x and the
unperturbed dynamics of the system. Thus, under the
basic assumption that X„((X~,we limit ourselves to
the first order in the ratios a/I and coo/I, thereby im-
mediately obtaining

a
&

rt(p„,p~, p„x;t)=Art(p, p„p„x;t),at (3.9)
Dz(t) =C (t) ap, — —ay~

a a
apy ap,

where

(3.10}

ax epz a spy apy p
p, (3.14)

a a
~ap y + trop~

ap apy

a
+~pxpz

apy

a
c'pxpy apz

a — a a
XI=ax p ax p - + cgjpM

apy ap ax

a2
X~ =—I x+ &x'&

ax ax

(3.1 1)

(3.12)

(3.13)

where

C(t)—:j ds(x ' '(s)x ' '(0) ) = (1—e "') . (3.15)
&x')

0 r

x ' '(t) is the unperturbed motion of the oscillator and so
it is a colored Gaussian stochastic process with zero
mean value [see Eqs. (2.7) and (2.8)]. In conclusion we
get for the reduced probability distribution o.(p, ; t) the fol-
lowing equation of motion:

Note that if we express Eqs. (3.9)—(3.13) in terms of x,
then we recover the model of Eqs. (2.10)—(2.13). In other
words, the latter set of equations is still an exact model.

The calculation of the second cumulant involves some

t3o (p; t) = [Xg +D2(t) ]o.(p; t),

where

(3.16)

a a aX„+D2(t)—:—co~ +conLt +ay„p,
ap~ apy apy

+ (' —e ') ~»+~.

a

pz

a a
Py~ Pzg

pz py

+ (1—e '} p a
a

apy
(3.17)

The first important property of this reduced Fokker-
Planck equation is that it results in the exact equilibrium
distribution, i.e., Eq. (3.6). This is an advantage of the
repartition of the total Liouvillian X induced by the new
"reference frame" of Eq. (3.2), which permits one to re-
cover the correct equilibrium properties within a
straightforward second-order treatment.

To fully appreciate the elements of our approach com-
pared with the predictions of the other theories, ' let
us evaluate the time evolution of the first moments of the
dipole p. We obtain

&P,„(t)) =~o&Py(t) &,
(P (t))= —

&p (t)) —a&~ (t)~,(t))

+a (1—e "')(p~(t)p, ,(t) )

2k~ Ta
(1—e "')(p, (t) ), (3.18)

(p, (t) ) =a(p, (t)p~(t) ) —a (1—e "')(p~(t) )

2k~ Ta
(1—e ') p,(t),
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If we consider macroscopic times, that is, I t ))1, we get
from Eqs. (3.18) the following set of difFerential equations
with time-independent coefficients:

(p (t) }=coo(py(t) },

(p,,(t) }=a(p (t)py(t) }—a (py(t) }

2k Ta
(p, (t)} .

We note that the relaxation terms 2k& Ta(p(t) },/I and
2k~Ta(p, (t)}/I are those predicted by the standard
Bloch theory. The terms ac@0(p (t)p, (t) }/I and
acoo(p~(t) }/I are nonlinear friction processes coincid-
ing with the predictions of Kubo and Hashitsume and
Seshadri and Lindenberg. More recently the same non-
linear dissipation process has been independently derived
by Kenkre and Wu. The novelty within the field of spin
relaxation is given by the second term of the second equa-
tion and by the first term of the third equations. These
terms correspond to the bistable precession illustrated in
Fig. 1 and are an effect of the renormalization of the
Hamiltonian of interest, which, in turn, is a consequence
of the presence of the reaction term, which is neglected
by the current treatments of the spin-relaxation problem.
According to the arguments of Ref. 8, we should have
had recourse to a resummation up to infinite order to
derive this bistable process if we had used the original
reference framework.

IV. CONCLUDING REMARKS

The interesting results of this paper are the following
ones:

(i) A procedure is adopted that allows us to carry out
the semiclassical approximation without losing the
inhuence of the reaction field. The Zwanzig projection
approach' applied to the quantum-mechanical Liouville
equation corresponding to the Hamiltonian of Eq. (2.5),
supplemented with the semiclassical approximation in
the evaluation of the moments and carried out to all per-
turbation orders would be unable to reproduce the effect
of the reaction field. It must also be stressed that this
procedure has the advantageous property of fully recov-
ering the SLE when the reaction term is neglected. No-
tice that to determine the spectra according to the predic-
tion of the SLE it is necessary to use a recursion method,
which determines the spectrum in terms of its
moments. " The moments evaluated with our pro-
cedure reduce to the moments provided by the SLE when
the reaction Geld is neglected. The iterative evaluation "
of the new moments should not pose serious technical
difficulties and it should be possible to determine the
effect of the reaction field also in the highly non-
Markovian cases of Ref. 2(a) with a minor additional
computational effort. This is a work in preparation. '

(ii) We have found interesting phenomena due to the
presence of the reaction field.

(a) Diferent equilibrium properties . In the weak-
coupling limit the equilibrium distribution is given by Eq.
(3.5). This means that the average value of the magnetic
dipole with spin —, is given by the Langevin equation rath-
er than by the hyperbolic tangent, as it should be in a
rigorous quantum-mechanical process. It is not yet com-
pletely clear to us whether this is a consequence of
neglecting the quantum fluctuations of the angular
momentum —, within its uncertainty cone, or that it stems
from the semiclassical approximation. If the weak-
coupling approximation is not made, then the system dis-
tribution turns out to be canonical with respect to the re-
normalized Hamiltonian of Eq. (3.4). This produces devi-
ations from the predictions of the standard statistical
mechanics that are much more significant than the
discrepancies between the Langevin function and the
quantum hyperbolic tangent. ' All this is supported by
the results of computer simulation of Ref. 31.

(b) Bistable precession The m. ain effect of the reaction
field is the renormalization of the Hamiltonian of the sys-
tem of interest, whose direct consequence is the bistable
precession process described in Fig. 1. We must ac-
knowledge, however, that our understanding of this effect
highly benefited from the results known from studies of
the nonlinear dimer. ' Moreover, the transition from one
to the other unstable precessional process of Fig. 1 im-
plies an energy activation process, so that it is easy to
predict that at weak temperatures the spin relaxation
must take place with a rate following an Arrhenius-like
law. This important prediction of the theory of the
present paper has been recently confirmed by computer
simulation. Of course this property is absent from the
relaxation theories developed so far, ' ' '" ' because
even in the few cases where attention is focused on the
important role of the reaction field, ' ' the important re-
normalization of the spin system has not been taken into
account.

It is also possible to make another prediction, stem-
ming from the fact that the process of transition from a
precessional cone to another has a rate which depends on
temperature via an Arrhenius-like expression. The tran-
sition from one configuration to another is an incoherent
process with a mean transition time that is the inverse of
such a rate. It is then expected that a stochastic reso-
nance effect takes place when an external coherent excita-
tion is tuned to the mean frequency of this process.
Computer simulation fully confirms this prediction.

From a theoretical point of view the significant results
of this paper stem from the idea of considering the densi-
ty matrix elements of the spin system as fluctuating quan-
tities. The idea is derived from the previous research
work of Grigolini, Wu, and Kenkre. It must be
stressed that a similar procedure, can also be found in the
semiclassical laser theory. However, in these theories,
the system of interest is the oscillator instead of the spin
system and the stochastic force is introduced after con-
traction over the spin system and not before. Within the
context of spin relaxation, our approach not only takes
the friction generated by the reaction term into account,
but remarkably results in the bistable precession illustrat-
ed in Fig. 1.
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