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Localization factor for multichannel disordered systems
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The localization factor (inverse of the localization length) is derived as a function of the transmission
matrix r for multichannel disordered systems using a multiplicative ergodic theorem of Oseledets [Trans.
Mosc. Math. Soc. 19, 197 (1968)]. The wave-transfer-matrix formalism is used in which the transfer ma-
trices are symplectic and elements of the special unitary group SU(d, d). Modeling the disordered mul-
tichannel system via a product of random-wave-transfer matrices and applying the theorem of Oseledets
as a starting point, it is shown that the multichannel localization factor (the smallest Lyapunov exponent
of the random matrix product) can be expressed asymptotically as a function of any one of three matrix
norms of the transmission matrix v. As a by-product of this analysis, we a1so develop expressions for the
remaining Lyapunov exponents as a function of v.. The localization factor result is compared with two
others appearing in the literature.

I. INTRODUCTION

In the study of one-dimensional localization, whether
quantum mechanical or classical, the transfer-matrix for-
malism has proven to be a powerful tool in understanding
important properties of the phenomenon. In this formal-
ism, a single-channel system (random chain) or mul-
tichannel system (random wire), bordered on both ends
by its undisordered counterpart, may be modeled via a
product of random transfer matrices. For the single
channel system, we can use 2X2 wave-transfer matrices,
8 ., so that the random matrix product appears as

+n

where y is the localization factor or the inverse of the lo-
calization length on a per bay basis. This definition of lo-
calization factor is consistent with that found in [2—4].
This result tells us, for example, that

2 e
—yn2 (2)

the transmitted energy decays exponentially with the
number of bays as that number becomes very large. Our
goal in this paper is to find the multichannel analog to
the single-channel result (1). In the multichannel case we

for the n-bay disordered system, where ~„ is the transmis-
sion coefficient, p„ is the refIection coefficient, e is com-
plex conjugate, and ~r„~ + ~p„~ =1. (Frequently, in the
solid-state literature one finds this stated as T +R = 1.)

As the single-channel system becomes very long, we
can appeal to a theorem of Furstenberg [1] on products
of random matrices to show that with probability 1,

will appeal to a theorem of Oseledets relevant to products
of random matrices to derive our result. This mathemati-
cal approach allows us to present the multichannel locali-
zation factor in a general setting applicable to both classi-
cal (in acoustical and optical systems, e.g.) and quantum-
mechanical localization.

Before turning to the details of the derivation, we want
to recall briefly a few key papers that have inAuenced the
study of localization from the transfer-matrix perspec-
tive. As mentioned above, the pioneering work of
Furstenberg [1] on products of random matrices has pro-
vided rigorous results that have immediate applicability
to the one-dimensional localization problem. McCoy and
~u [5] were apparently the first to recognize the impor-
tance of Furstenberg's theorem to disordered physical
systems when they studied random Ising models of
ferromagnetic materials. However, Matsuda and Ishii
[6,7] were the first to bring Furstenberg's work to bear
on the localization problem. They carefully related
Furstenberg's results to eigenmode localization and wave
propagation in disordered mass-spring chains and some
simple quantum-mechanical models.

In 1968 the Russian mathematician Oseledets [8]
proved a multiplicative ergodic theorem that has
enhanced our understanding of the asymptotic behavior
of products of random matrices. This theorem, as we will
see shortly, has important applications to the study of lo-
calization in multichannel systems. More recently, Refs.
[9—17] have examined solid-state localization from a
transfer-matrix perspective, frequently exploiting the
work of Oseledets. Mathematicians have taken renewed
interest in the theory of products of random matrices as
indicated by two recent publications [18,19]. In recent
years classical localization has generated much interest
with Refs. [2,20—22] advocating the transfer-matrix per-
spective. When thinking of classical localization, one
would more naturally use the words single wave and mul-
tiwave instead of the words single channel and mul-
tichannel, respectively. Indeed, the results presented here
were originally derived with classical localization in
mind.
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In Sec. II we state our assumptions about the wave-
transfer-matrix properties we use in the multichannel-
localization-factor derivation (the assumptions are stated
in more detail in Appendix A). The multichannel locali-
zation factor is presented in Sec. III (the derivation is
shown in Appendix B, where we also provide a formula
for all d Lyapunov exponents as a function of the
transmission matrix). Here we include a comparison
with two results that have appeared in the literature.
Concluding remarks are made in Sec. IV.

II. WAVE-TRANSFER-MATRIX ASSUMPTIONS

Our assumptions about the wave-transfer matrix for
multichannel systems will follow from two properties of
the scattering matrix usually found in the solid-state
literature [11,23,24]. These properties are discussed at
length in Appendix A and we summarize them in this
section. We assume that the 2d X2d scattering matrix of
one disordered bay bordered on both sides by an undisor-
dered system is both symmetric and unitary. This corre-
sponds, respectively, to the assumptions of time-reversal
symmetry and current conservation coupled with the ex-
clusion of any evanescent states. In classical localization,
symmetry of the scattering matrix implies symmetry of
the corresponding impedance matrix, while the unitarity
of the scattering matrix implies we have a dissipationless
system and that we have excluded evanescent waves.

Our two assumptions about the scattering matrix S
translate into two properties of the wave-transfer matrix
8'. First,

S symmetric 8' symplectic

and, second,

S unitary, detIV=1= IV, W &SU(d, d),

If we set V„=8'„8'„then the sequence of matrices
(V„V„)' " converges with probability 1 as n~~ to a
random matrix B with 2d nonrandom eigenvalues

rd rd ]e ) ~ ~ ~ ) e ",e f ~ ~ ~ f e

These y, 's are the Lyapunov exponents of the random
matrix product O'„O', . We are, of course, interested
in the instances when all the channels or waves are local-
ized, so y, ~ yd )0. In random dynamical sys-
tems, Lyapunov exponents are considered a measure of
chaoticity [25].

The theorem of Furstenberg applied to 2d X2d ma-
trices allows us to calculate y„which is the uppermost
Lyapunov exponent. However, in this multichannel case
with yd ~ y„yd represents the channel or wave with po-
tentially the least amount of decay, and so it carries ener-

gy along the multichannel system farther than any other
channel or wave. As a result, yd is the quantity of in-
terest when calculating multichannel localization e6'ects.

Note that we can also express the Lyapunov exponents
of this random symplectic matrix product in terms of its
singular values (see Appendix A) o =cT.(V„). If we re-
call that the singular values of a symplectic matrix occur
in reciprocal pairs,

—1 —1

where o.
&

~ . . ~ o.
d

~ 1. Then, with probability 1,

1
y = lim —lno (V„), 1&j&d .

n~co n

This result [18] will be very useful in Appendix B where
we derive yd as a function of the transmission properties
of the system.

The multichannel localization factor (or the dth
Lyapunov exponent of V„) is (see Appendix B)

where f is the complex conjugate transpose. The product
of these 2d X2d random wave-transfer matrices is sym-
plectic and an element of SU(d, d ) and is written

—1 —1
n +n +n pn

p—n pn n

(3)

where now ~„ is a transmission matrix and p„ is a
reAection matrix. In Sec. III the subscript n will be
suppressed in the transmission and reAection matrices.

or

or

1
yd = — lim —ln[tr(r r )]'~

n~oo n

III. THE MULTICHANNEL
LOCALIZATION FACTOR

In this section we present Oseledets's theorem applied
to products of random symplectic matrices and then the
key result of the paper, the multichannel localization fac-
tor as a function of the transmission properties of the
disordered system.

From a theorem of Oseledets [8,18,19] we let
8'&, 8'2, . . . , W„ form a sequence of independent identi-
cally distributed random symplectic matrices of size
2d X2d. Suppose also that

E(sup[incr, „(W, ),0] ) &+ ~ .

where ~ is d Xd, and v.;. is the ijth element of ~ and all
the results hold with probability 1. In the limit (as is
shown in Appendix B) all three results are equivalent and
notice that all three agree with the single-channel relation
of Eq. (1) where r is a scalar transmission coefficient.
Again, the reader should bear in mind that the three re-
sults above are only equivalent asymptotically. The easi-
est interpretation of the result can be placed on Eq. (7).
This result says that the surviving channel which
transmits energy the farthest is governed by the transmis-
sion coefficient with the largest absolute value, which
makes perfect sense. As a byproduct of this analysis, we
also develop in Appendix B expressions for the remaining
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Lyapunov exponents as a function of ~.
We are also able to compare our result with two others

that have appeared in the literature. Imry [15] made ex-
actly the same assumptions about the wave-transfer ma-
trix as we have, and, through the work of Pichard, was
aware of Oseledets's theorem. In his paper, Imry made
some heuristic arguments concerning the conductance
2tr(v r ), leading to the inverse localization length I/g
(the same as our multichannel localization factor, where
each bay was measured in atomic units L ), being

lim —In tr(r ~ ) .
s. L

The problem with this result is the missing square root
over tr(sr ) [26].

Next we compare our result with Johnston and Kunz
[11),who relied rigorously on theories of products of ran-
dom matrices. In their paper, Johnston and Kunz used
the work of Tutubalin and Virster [27,28], though they
were aware of Pichard's studies. Arguing, as we have,
that the smallest Lyapunov exponent of a random sym-
plectic matrix product is the localization factor for long
multichannel systems, they derived the localization factor
as

1y&= — lim —In~r;~~ for any r;&,n~ oo Pg

in other words, the magnitudes of all elements of the
transmission matrix behave asymptotically in the same
way. This result differs from the one presented in Eq. (7)
in that our yz involves the limit of ~~;J. ~,„. Johnston and
Kunz said their result was only proved for matrices of di-
mension 4 X4 or smaller, while no such restriction holds
for the Eq. (7) result. Even if the Johnston and Kunz re-
sult were found to hold for larger matrix dimensions, our
results would not contradict. In addition, it is useful to
evaluate whether the result of Ref. [11] makes sense for
the undisordered or perfectly periodic system (though
Johnston and Kunz made no explicit claim that their re-
sult held for such systems). For a perfectly periodic sys-
tem with n bays, the transmission matrix ~ would look
like

—ik n
e

—ik n
e d

with all the off-diagonal terms zero. Using the results of
Ref. [11],we are tempted to take any element of ~ to get
the proper localization factor. Yet if we choose any off-
diagonal term, we get the following absurd result:

y~ = — lim —ln(0)
1

n~oo g
OO

lim
n~co 0

This is in contrast to Eq. (7) which takes the element of z—ik. n
with the maximum absolute value, namely,

~
e '

~

= 1,
from which we find

This is precisely the result for perfectly periodic systems,
i.e., there is no localization.

Note that all three of our localization results, Eqs. (5),
(6), and (7), only hold as n ~ ~. Indeed, all three must
give equivalent answers in the limit. However, if we were
to evaluate each of the three expressions for finite n, we
would likely find three different answers. This is a conse-
quence of the three matrix norms satisfying the following
inequalities:

,„~o,„(r)& [tr(r ~ ) ]'

Therefore, when doing numerical simulations of mul-
tichannel localization, averaging should be done on
In~w;. ~,„so as not to mispredict the localization factor.
Numerical averaging on In~r;, „should be a computa-
tionally more e%cient alternative to the numerical
methods employed in [9,29,30] to find the dth Lyapunov
exponent.

IV. CONCLUSION

In summary, we have derived the multichannel locali-
zation factor as a function of the transmission matrix of
the disordered system. The transfer-matrix formalism,
which has proven to be very powerful in the study of
single-channel localization, was used here as well, in con-
junction with a theorem of Oseledets dealing with prod-
ucts of random matrices. We expressed the multichannel
localization factor (the dth Lyapunov exponent of the
random matrix product) as

1
y„=— lim —Ino, „(r ),n~ oo Pg

or
1

yz = — lim —ln[tr(~ r")]'
n~ oo tl

The result was compared with two others appearing in
the literature. As a byproduct of this analysis, we also
developed expressions for the remaining d —1 Lyapunov
exponents as a function of ~.

An analytical formula for y& would be desirable so as
to avoid having to take a long matrix product as has been
done in Refs. [9,29,30]. Recently, a number of attempts
[31,32] have been made to derive Lyapunov exponents for
random matrix products representing various multichan-
nel systems. The work of Bougerol and Lacroix [18] may
provide some additional guidance for such efforts.
Indeed, an estimate of the dth Lyapunov exponent to first
order in the variances of the random variables of the
disordered multichannel system coupled with the results
of this paper could provide powerful insights into the
multichannel localization phenomenon.
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APPENDIX A: PROPERTIES OF THE SCATTERING
AND WAVE-TRANSFER MATRICES

In this appendix we discuss some of the properties of
the scattering matrices and wave-transfer matrices used
in the paper. These matrices describe the propagation of
traveling waves in the passbands of periodic or disor-
dered periodic systems. We will state the scattering and
wave-transfer matrices in their most general forms and
then impose conditions on the scattering matrix and dis-
cuss what this implies for the wave-transfer matrix. The
scattering and wave-transfer matrices are of dimension
2d X2d. Note that we wi11 suppress any subscripts on
our transmission and reflection matrices. Scattering and
wave-transfer matrices are discussed in [33] and for some
specific disordered systems in [34].

The scattering matrix S in its most general form is
r

A, , r L B
(A 1)

J Jt

where A and B represent vectors of traveling-wave ampli-
tudes in the indicated directions, t and r are the transmis-
sion and reflection matrices, respectively, for the right-
ward traveling waves, and t and r are the transmission
and reflection matrices, respectively, for the leftward
traveling waves.

The corresponding wave-transfer matrix 8' involves a
rearrangement of the state vector, so that we relate waves
on the right of a bay to those on the left of a bay:

where t is complex conjugate transpose. Now S S=I
tells us that

r r+t t=I
t t+r &=I
r~t+t 9=0

(A3)

0
0 —I

Similar conditions from SS~=I and det8'=1, also tell
us that W is an element of SU(d, d ). We conclude that

S unitary, detW=1 W, W ESU(d, d) .

Now imposing both symmetry and unitarity on the
scattering matrix, we have

where r =r and

—t '*r t= —t r t

These are precisely the same conditions, along with
detR'=1, that must hold when 8' is an element of the
special unitary group SU(d, d) or

8'~A 8'=6, det8'=1,
where

A
B. t —rt 1r

A.
1

B ~

1

(A2)
Equivalently, when the wave-transfer matrix is symplec-
tic and an element of SU(d, d), we have

Now we require that the scattering matrix be sym-
metric. This means that

and

where superscript T is matrix transpose. A little algebra
shows that these are exactly the same conditions needed
for the symplecticity of the wave-transfer matrix 8'
namely, that

W J8'—J
be satisfied, where

0 I
—I 0

Thus,

S symmetric~ 8 symplectic .

Note also that a determinant identity for partitioned ma-
trices applied to 8', and t =t prove that. det8'=1.

Now we impose the requirement that S be unitary,
namely,

S S=SS =I

We now derive a result that will be useful in Appendix
B. From the condition t ~t+9 '8 =I above we can prove
that

0(p, [ttt] ~ 1,
where p;[ ] is the ith eigenvalue of the indicated argu-
ment. Also, note that

p;[t t]=p;[t t ]

so that all the results stated below hold for t t as well as
t~t. First we assume that t t is invertible so that it is pos-
itive definite:

t~t &0 .
%'e also have that r r is at least positive semidefinite:

r 9&0.
From Eq. (A3) we have

t t=I —rr.
Performing an eigenvector decomposition on the above
Hermitian matrix, we get

t t=I —rP
= U [I diag(p [r r ]—) ] Ut .
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The positive definiteness of t t and the positive
semidefiniteness of r r now imply

0&p, [r r]&1

norm of a matrix:

II 1Vz llz
llz

and

0&p, [L t]&1,
where llz llew

is the usual Euclidean length of the vector z.

which is the desired result.
Before we close this appendix, we mention the singular

values of a matrix. Any reader not already familiar with
singular values and the singular-value decomposition of a
matrix is encouraged to consult [35]. The singular values
o.

, of a complex 2d X2d matrix 8'are

cr, (W)=[A., (W W)]', i =1, . . . , 2d

where we reserve A, ( ) to indicate the ith eigenvalue of
the transfer matrix 8' and products of transfer matrices
and where we assume that the o.; are ordered such that
o.; ~ o.;+&. Note that the singular values of a symplectic
matrix will occur in reciprocal pairs o and 1/cr No.te
also that the maximum singular value o.; of a matrix is
usually denoted by o. „and coincides with the spectral

APPENDIX B: DERIVATION
OF THE MULTICHANNEL
LOCALIZATION FACTOR

The derivation of these results begins by recalling Eq.
(4) for j =d,

1
yz = lim —lno z( V„) .

n~oo n

Recalling that the dth singular value of V „ is the posi-
tive square root of the dth eigenvalue of V „V„,we have

1
yg = lim 1nk, g( V„V„) .

n~oo 2n

Recalling Eq. (3) and suppressing subscripts, consider the
matrix

V„ V„ = 2(r ~t) ' I—T( T) —1
(

1') —1

2(r*r )
' I—

Here Vn V, is symplectic, so its eigenvalues will occur
in reciprocal pairs A, &, . . . , A,d, 1/A, d, . . . , 1/k&, where
X] Ad 1e

Our analysis will be simplified by recognizing the fol-
lowing [14]:

A,g+ =p„[4(71 )
' —2I]

Xd

=p;„[4(rr )
' —2I]

=4p;„[(rrt) ']—2,

( v„'v„)+(v„'v„)-'= 4(re )
' 2I—

0
0

4(r*r )
' 2I—

(82)

where we have used a couple of determinant identities in
the last equation. Now, taking the same limit on both
sides,

where each block in the matrix is d Xd. The matrix has
repeated eigenvalues A, , + 1/A, „.. . , A,z+ 1/A, & for a total
of 2d eigenvalues. However, we notice that these eigen-
values are the eigenvalues of the two diagonal blocks of
this block diagonal matrix. The eigenvalues of each
block are real because both blocks are Hermitian. In ad-
dition, each block is the complex conjugate of each other,
and real eigenvalues being invariant with respect to com-
plex conjugation, both blocks must have the same eigen-
values.

So the eigenvalues p of 4(r r )
' —2I are

1 1
P] ki + p ~ ~ ~ y Pd kd +

1 d

where

lim ln ad+1 1

n oo 2'

We notice that

lim ln ad+1 1

n~ oo 2n Ad

= lim in[4p;„[(rr ) ]—2] .
n —+oo n

lim ln(A, & ) 1+1 1

n~ oo 2n id

lim ln(k, q )
1

n —+ oo 2n

+ lim ln 1+1 1

n —+ oo 2n Ad

Pi — —Pd .

Now let pj [ ] be the jth eigenvalue of the indicated argu-
ment. So,

Recalling that kd ~ 1, the second term above must vanish
in the limit. So we are left with (recalling the definition
of yz)
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yd = lim
1

ln(A, & )
2n

1 In[4p;„[(rr ) ']—2] .
n

11m
n~oo

11m

—lno q(r)
1

n

1—lno;„(r) .
n

Note that

1
pmin[(r r

pmax ——zz

So we can write

Now we return to examining yd and proceed to show
that, in addition to Eq. (83),

1
y, = — lim —in[tr(r r")]'" .

n~oo n

First, examine

or

1
yd = lim ln

n~oo 2n
4

2

1
11m ln

n~ oo 2n

1
(4 2p,„—[r rt] )p,„[rrt]

1
lim Intr(rr ) .
n~ oo 2n

Take an eigenvector decomposition of the Hermitian ma-
trix z ~ and rewrite this as

lim ln tr[U diag(p, )U ],
n —+ oo 2n

or

1 1
yd = lim ln

n m 2n p [rr ]

+ lim ln(4 —2p,„[rr ]) .1

n~ oo 2n

where U is a unitary matrix. Recalling that
tr( 8 B C)=tr(B C 3 } for compatible matrices we see
that the above limit equals

1
lim ln tr[diag(p, ) ]n~ oo 2n

In Appendix A we showed that 0 &p,„[rr ] ~ 1, so
that the second term above must vanish in the limit.

We are left with
or

1
lim In(p, + +p) )

n~ oo 2n

1y~= — lim Inp, „[rr ],n~ oo 2n

or recalling the definition of singular values, with proba-
bility 1,

1
y&

= — lim —Incr, „(r) .
n~co n

(83)

and from earlier in this appendix,

As a byproduct of this analysis, we can find all d of the
Lyapunov exponents of V„ in terms of the transmission
matrix r. First, recall that Eq. (4) implies

y = lim In(A), 1 ~j ~d1

n~ oo 2n

1 P2 Pd
11m ln p 1+ + +

n~ oo 2n p1 P1

Recalling that p1~ ~ pd & 0, we have that the term
in the large parentheses is finite and bounded below by 1

and above by d, so when taking the limit, we are left with

1
lim Inp&[r rt],
n~ oo 2n

which is precisely equal to

1
lim 1no, „(r) =y z

—.
n~oo n

Thus we have indeed shown that, with probability 1,

AJ+ =p [4(7rt} ' —2I]. .
j

1y„=— lim —ln[tr(r r )]'~
n~oo 7l

(84)

=4p [(rr ) ']—2 .

Note here that

p [(r rt) ']=.
) 1 j

p~-, +i[re )

1
y = — lim Incr& +,(r), — .

n —woo n
l~j~d .

This reproduces our result for yd, and also tells us that

So taking limits on both sides and discarding vanishing
terms we find, with probability 1,

One final simplification in our result is now possible.
Starting with

1
yq = — lim In[tr(rr )],n~ oo 2n

let r;J. be the ijth element of the matrix r. Now (this is
the square of the Frobenius norm of z),

d d
tr(r r') = y y Ir,, I'

i =1 j=1
= lrii I'+ lri21'+ +

I rgg I'

We have that for one element of r, Ir;~ I~ Irk&I, kAi, .
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lA j, and we will denote it ~w;~ ~,„. So,

i =1 j =1 +ij max

So,

and because the term in the large parentheses is finite and
bounded below by 1 and above by d, it vanishes after
taking the limit, so we are left with, with probability 1,

y„=— »m in~~„ i,„
1

II ~ oo 277

or

y, = — »m y„=— lim —
inner, , ~ .„.1

II~ 00
(BS)
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