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This second paper of a series deals with special aspects of transition- (T-) operator theory for
diffraction of time-harmonic, acoustic scalar waves from an impenetrable obstacle with surface BA.
It was shown in the first paper [G. E. Hahne, preceding paper, Phys. Rev. A 43, 976 (1991)]that the
computation of the T operator and complete Green's function for the case of "sound-hard"
(Neumann-type) and "sound-soft" (Dirichlet-type) boundary conditions on BQ reduces to the deter-

'V

mination of the "radiation impedance" operator ZA and the "radiation admittance" operator Z& ',

respectively, characteristic of BA at wave number k0. In this paper, the short-wavelength and the
long-wavelength behavior of these operators as two-point kernels on a smooth BO are studied for
pairs of points that are close together. First, an exact, closed-form expression is obtained for both

'V

ZA and Zz ' for BO=a plane, on the basis of which a "tangent-plane" approximation to Z& and to
0 0 0

Z&
' for diffraction from a general smooth-surfaced, convex obstacle is proposed. This approxima-

0

tion is shown to lead, by means of the method of stationary phase, to the familiar "physical optics"
approximation and to the geometrical acoustics limit for diffraction with Neumann-type and with

V'

Dirichlet-type boundary conditions. Second, the dominant singularities in Zk and in Zz are ob-
0 0

tained for smooth BA, and the results are compared to analogous results for BQ as a sphere inferred
from the spherical harmonic expansions of the two operators.

I. INTRODUCTION

This paper is the second of a series. It is concerned
with applications of the general theory formulated in Ref.
1 for the transition- ( T )operator -approach to the
diffraction of time-harmonic acoustic scalar waves from
fixed, impenetrable obstacles, with given boundary condi-
tions for the wave function on the obstacle's surface. In
paper I the theory was derived for general homogeneous
impedance, or Robin (for the mathematician Gustave Ro-
bin), surface boundary conditions (SBC's). In this paper,
we shall treat only the two important special cases of
homogeneous Neumann (N) and homogeneous Dirichlet
(D) SBC's. These are also known as "sound-hard" and
"sound-soft" SBC's, respectively. In paper I, the detailed
geometry of the obstacle was left general; in this paper,
we specialize to obstacles whose bounding surface is

smooth, that is, has a continuous local curvature matrix.
In that part of the paper dealing with short-wavelength
approximations, we assume also that the obstacle is con-
vex. Our objective here is to work out the theory of pa-
per I given these simple geometries and boundary condi-
tions, partly in order to show that the formalism implies
the known "physical optics" method and geometrical
acoustics (also called ray acoustics) as limiting cases, and
partly in order to exhibit explicitly the dominant singu-
larities of certain operators that play an essential role in
the formalism.

Let the interior Q, the exterior 0",and the surface BQ
be, respectively, the subsets of Euclidean three-space E
occupied by the obstacle, by the uniform sound-

43

transmitting Quid, and by the boundary of both of these
two open sets. We fix a rectangular Cartesian coordinate
system, and associate points in E with three-vectors
written r, r„etc.; points in E that are also in BQ will be
denoted by r&, r», and so on. The differential of volume
of E is denoted d r, and that of area of BA by d 3, possi-
bly with subscripts. The vector n(rs) is the unit
outward-pointing (toward 0'") normal vector to M at rs.

We sometimes deal with functions on E that are
discontinuous across BQ. The limiting values of such
functions on BO are normally taken from values in 0'",
and are signified explicitly by affixing a + to the
function's argument: f (r) —+f (rs+ ) with rE fI'";
f (rs ) is the limit as r H —0 approaches rs.

Let c be the constant speed of sound in 0'", and let kQ,(k Q
(+ ~ be the wave number of a time-harmonic

sound wave, with co=kQc as the associated angular fre-
quency. The fundamental assumption in paper I was the
existence of a T operator, called T~k or TDk, such that

0 0

Eq. (1) in paper I [labeled Eq. (I-1)] enabled the computa-
tion of the complete Green's function (Ref. 2, p. 806) for
the diffracting system to be reduced to quadratures. The
+ superscripts indicate that we are dealing with a causal
diffraction problem, and, accordingly, with outgoing-
wave boundary conditions [Ref. 3, Eq. (3.7)] on Green's
functions as r~ ~. The results of paper I for the com-
plete Green's functions G&k (r&, r2) and Gzk (r&', r2) in

0 0

terms of the (obstacle-) free-space Green's function
Gk+ (r&', r2) and the respective T operator are given in Eqs.

0

(I-59) and (I-60). The only nonelementary operators in-
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'V

volved in the latter formulas are Zk, called the "radia-
0

tion impedance" operator, in the X case and its inverse
Z k ', called the "radiation admittance" operator, in the

D case. These nonlocal operators are defined in Eq. (I-
28), and map the space of complex-valued functions,
whose domain of definition is BQ, into itself linearly.
Briefly they are defined as follows: given outgoing-wave
boundary conditions as r ~ ~ for a wave function satis-
fying the scalar Helmholtz equation in Q", the wave
function is uniquely specified in 0'" by either the set of its
exterior limiting values as rara+, or by the set of its ex-
terior limiting normal gradients as rara+ (Ref. 3,
Theorems 3.13, 3.21, and 3.25). Accordingly, the
limiting-wave function on BQ is uniquely determined by
the limiting-normal-derivative function on BA, and the
converse is true as well; hence there must exist an inverti-

V'

ble linear functional operator, which we designate by Zk
O

that maps the latter function into the former for any al-
lowable wave function.

The remainder of this paper is organized as follows. In
Sec. II we shall determine closed-form expressions for

V' V

Zk (ra, , ra2) and Zk (ra, , ra2) for the case that BQ is a

plane; these results in turn suggest straightforwardly
what will be called the "tangent-plane" approximation
for the respective operator, given that BA is smooth, and
that ~r» —

ra&~ is small compared to the magnitudes of the
local radii of curvature of planar slices of BQ. In Sec. III
we shall combine the method of stationary phase and the
tangent-plane approximation to show that, when Q is
convex, the physical postulates that encompass the basis
of the familiar physical optics method (cf. Ref. 4, Chap.
I.2.13.4) are obtained asymptotically as ~ko ~

—+ ~. In Sec.
IV, we shall apply the results of Sec. III to derive further
consequences of the approximation scheme, that is, we
verify that physical optics as formulated here, plus the
method of stationary phase, yields the geometrical acous-
tics limit (Ref. 4, p. 30 and Chap. I.2.13.1) for G&k and

GDk, and yields asymptotically as ~ko ~
~ ~ the so-called

0
"extended boundary conditions" Eq. (I-16) for the com-
plete Green's functions, for difT'raction from smooth-
surfaced, convex obstacles. In Sec. V we shall work out,
in what amounts to a small ~ko~ approximation, correc-
tions to the tangent-plane approximations for Zk and

O

Zk
' that are linear in the local curvature matrix of BA.

0

These results are compared with corresponding results
for spherical BQ derived in the Appendix by a diA'erent
method. Section VI contains a discussion of work ac-
complished and of directions for further investigation.
Finally, in the Appendix we shall obtain infinite-sum ex-
pansions, in terms of spherical harmonics, for Zk and

o
Z k

' for the case that BA is a sphere of radius a, called
I

OG+
ko

@k (r, ;r2) —= Gk+ (r„'ra3) (ra3,.r2)d23
an o Bn)

S (a). A small-~ ko ~
expansion of these operators is used

to derive closed-form expressions for enough terms that
the remainder is a continuous kernel on S (a).

II. THE TANGENT-PLANE APPROXIMATION
FOR Zk AND FOR Z k

'

According to Eqs. (I-32) and (I-34) we have

Z„o= —U„o(Ia

Zk
' = Wk (Ia + Vk ) (2)

where the operators Uk, Vk, Vk, S'k, and Ia are
0 0 O 0

defined in Eqs. (I-18)—(I-21) and following (I-9). If Ml is a
plane, then Vk and Vk are both the zero operator, so

0 O

that in this geometrical case the formulas

Z = —Uko ko
V'Zk'=8'

(3)

(4)

are exact. If BQ is not planar but is smooth and convex,
and if Ir» —

ra21 is small compared to the local curvature
radii of BQ, then Vk and Vk are in a sense small —see

0 0

the discussion in Sec. V—and we are led to define the
"tangent-plane" approximations Zk and Z k

' as follows:
O O

'V

Zk (rai, ra2)=Zk, (rai,'ra2)= Uk (rai, ra2),

Z k '(rai'ra2) =Z i, '(rai, ra2) —=—
Wk, (ra, , ra&) .

(5)

(6)

III. DERIVATION OF THE PHYSICAL
OPTICS METHOD

In this section we shall use the method of stationary
phase to show that, when BQ is smooth and convex,
asymptotically as ko~~~ the approximate radiation
impedance and admittance operators of Eqs. (5) and (6)
yield an equivalent of the physical optics method (Ref. 4,
Chap. I.2.13.4) for diffraction. The results of this section
will be applied in Sec. IV to show that the extended
boundary conditions Eq. (I-16), and the respective geome-
trical acoustics limit, are obtained for the Green s func-
tions G~z and GDk asymptotically as

~ ko ~

—+ ~ when the
O 0

approximate intermediate results are applied to Eqs. (I-
59) and (I-60).

It proves to be the case that all the integrals needed for
the present purpose and for Sec. IV are derivable from
the following preliminary computation (we use the nota-
tional conventions of paper I, Sec. II), which is to be eval-
uated with the aid of the method of stationary phase (Ref.
5, Appendix III.3):

=(16~')-'f Ir, —
ra31 'Ira3 r2I '[n(ra3) (r2 ra3)&lr2 —ra3I j

an

X( —iko+ IIIr, —ra, l )exp[ikod (ri'ra3'r2) jd~3
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where we used the definition

d (r»ra3~r2) = Ir, —rs3I+ Ira3 (9)

In what follows, we shall replace the factor
( —iko+ 1/Ir2 —rs3 ) in the integrand of Eq. (8) by
( ik—o). This simplification is justified by the assumption
that IkoI —& ~ for those applications that r2 remains at a
nonzero distance from BA. In another application, we
will need the limiting normal derivative of Eq. (7) with
respect to r2 as r2~r&2+. An estimate shows that in this
case also the neglected terms are of order one higher
power of 1/ ko I

than the terms retained.
Now fix r1 and r2 and let r&3 range over BQ. The func-

tion d (r„rs3,r2) of Eq. (9) will have one or more station-
ary points. These can be of two types, either points of BQ
that are on the straight-line segment between r, and r2, or
points of tangency of BQ with any of the one-parameter
family of prolate ellipsoids of rotation having r, and r2 as
foci. Let r&, be such a stationary point. For conveni-
ence, we define the following:

g (u ', u ) =5
&
—g K, &K,&&u ru ~,

g(u', u )=1+ g K, pK, urdur,
a, P, y

(13)

dA =[g(u', u )]'~ du'du

The local outward normal vector is

n(u', u )=[g(u', u )] ' n, + gK, &u t &
a,P

(14)

where It, & is the 2X2 curvature matrix of BA at r&,
and 0 (u ', u ) is a term of third order in u ', u . In what
follows, we omit such third- and higher-order terms in
u', u . In this quadratic approximation, we find for the
local 2X2 metric tensor g &, its inverse g ~, its deter-
minant g, and the area element d A

g f3( u ', u ) =5 &+ g K, zK,p&u
r u ~,

n(rs, )=n, ,

raa ~1a r1a (10)

We can expand d(r, ;rs3, r2) about u'=u =0, retain-
ing only terms up to second order in u ', u:

d(r„R,(u', u );r2)=r„+r2,+ g A, &u u
a, P

(15)

where

Also, let t, 1 and t, 2 be tangent vectors to BQ at r&, such
that (t, i, t, 2,'n, ) is a right-handed triple of orthogona
unit vectors. Since d(r, ;rs3, rz) is stationary at rs3=rs„
we must have

A, &
———,'I(r„+rz,) n, K, &

+(1/r„)[5fi
—(t, r„)(t,ii r„)]

r1, .t, = —r2, t, for a = 1,2, +(I/rz, )[5 &
—(t, .rz, )(t,& r2, )]] . (16)

r1, n, = r2, .n,

We introduce local coordinates (u', u ) into BQ in a
neighborhood of r&, such that BA is given by

Let the eigenvalues of the symmetric, 2 X 2 matrix A, &
be A,, 1 and A, 2, where both are assumed to be nonzero,
and define

rs3=R, (u ', u 2)
cr, :—kok, /Ikok, , I

for a=1,2,
A =det(A, p)=A,„A.,2 .

(17)

2 2

=ra, + g u t, —
—,
' g K, &u u~n, +0 (u', u ),

a=1 a,P=1

(12)

The method of stationary phase [Ref. 5, Appendix III,
Eqs. (17)—(21)] now leads to the following approximate
value for the integral of Eq. (8):

@k (ri,'r2) — g I ( —iko/Iko I )(n. .r,.)(16~r,.r,.I A. I

'")

Xexp[i(~/4)(o„+o,2)+iko(r„. +r~, )]]+o(IkoI ), (18)
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8
lim 4&k (r„ra2+en(ra2)) .

6~0+ BF 0
(19)

In case (i), it is convenient to take the limit by allowing
r& to approach BA so that r&& =r&, is a stationary phase
point that does not change in the limiting process. Then
rj, is fixed, and we have

where the sum is over all stationary points r&3 = r&, of
d(r„'ra3,r2) as ra3 ranges over BQ.

We shall need to extract two limits from Eq. (18): (i)
the limit with r2 fixed, as r, H Q'" tends to r»,' (ii) the lim-
iting exterior normal derivative with respect to r2E0" as
r2 rg2&BQ, that is, if ri &QUA'" is fixed, we need the
following derivative as e approaches zero from positive
values:

A, ti
— (2r„) '[5 ti

—(t, r2, )(t,p rz, )],
r) 0

(20)

where we have used Eq. (11). Hence we have for r„~0
1/(2r „),al

A.„(n,rz, )
r( ~0

IA. I'~' — ln, r,.l/(2r„),
rla 0

i o p kp/lkp I

(21)

Thus the approximate limit of Eq. (18) is, in view of Eq.
(I-14),

~ k (rai r» — —r[n(rai )'I rz —rai )/In(rai )'(r2 rai ) I ]Gk (rai'r2)
IkoI 0

(22)

In case (jj), we retajn only the dominant term in kp, and hence will need only the derivative of d (ri', ra, ', r2) as a~0+,
where r&, depends on r2 and hence on e. We find that

ad
(r, ;ra, , r2) = In(ra&)'(ri ra2)l /lri —ra/iae ' ",=0+

Hence we have

(r, ;ra~+ )
Bn„ Iko I

aG+
—,["( a, ) (,— )/I"( a ) (

— )I]
~nr

(24)

We define the step function b, (rai', r2) as

~(rai rz) —= 1+n(rai )'(rz rai )/ln(rai )'(r2 rai ) I
. (25)

6(rai, r2)Gk (rai~r2) ~

a)

BGk '
(rai, r2) [Z k,'Gk+, ](ra»r2)

Bn&

BG+
ko

b,(ra„'r2)
&

(ra„r2) .
IkoI~ ~ Bng

(27)

That is, when r2& Q'" is in the illuminated part (respec-
tively, shadow part) of BQ the left-hand side of Eqs. (26)
and (27) are two times (respectively, zero times) the free-

Note that when r2E0" and r&& is in that part of BQ that
is "illuminated" by radial sound rays emanating from r2,
then b(rai r2) +2, while if r2&Q or if rai is on the sha-
dow side of BQ with respect to rz H 0'", then

A(ra, ;r, ) =0.
We will generalize the statement of the physical optics

method, from that of Ref. 4, Chap. I.2.13.4, to the follow-
ing asymptotic approximations, which are suggested by
the exact results for BR=a plane and by a physical intui-
tion for diA'raction at short wavelengths:

BG+
ko

Gk (ral r2) Zk
0 anl

space function given by the first summand on the left-
hand side.

%'e have, therefore, confirmed that the approximations
Eqs. (5) and (6) entail the asymptotic validity of the
Ansiitze of physical optics as formulated in Eqs. (26) and
(27). Note that if the exact Zk and Z k

' are used, the
0 0

left-hand sides of Eqs. (26) and (27) should be exactly zero
when r2EQ, by Eq. (I-28). It is now plausible, but we
shall not attempt here to prove, that the error terms
Zk —Zk and Z k

' —Z k
' are asymptotically small as

so that Eqs. (26) and (27) would also hold
asymptotically if r2& 0'" and the exact Zk and Z k

' are
0 0

used in the left-hand sides.

IV. EXTENDED BOUNDARY CONDITIONS
AND GEOMETRICAL ACOUSTICS LIMITS

We shall verify, using the results of Sec. III, that the
operator approximations Eqs. (5) and (6) applied to Eqs.
(I-59) for G~k and (I-60) for G~k yield the correct limit-

0 0

ing functions asymptotically as
I kp I

~ 00.
With the aid of Eqs. (I-56) and (I-57), Eqs. (I-59) and

(I-60) can be recast in a form that makes it convenient to
apply the results of Sec. III:
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aG,+

G~k (r, ;rz)=[1—
—,'On(r, ) ——,'Sn(rz)]Gk (r„rz)—— I&Gk —Zk

I'

aG+
ko

(r„rz)

G I—1

2 i, a

BG+
ko (r„rz),

BGk
Zk3n„o c}nI

(28)

1
GDk (r, ;rz) = [1——2'Sn(r, )

—
—,'Sn(rz)]Gk+ (r„rz)+—

aG,+
Is Gk+ Z k

'
Gk (r, ;rz)

Bn 0 0 0
T

+

Z
—1G+
ko ko

+—Gk+ I~
an,

(r, ;rz) . (29)

r&, +r2, =0,
so that Eq. (16) becomes

p (rl +r2 )(2ri r2 ) [5 p (t rz )(t p rz )]

(30)

(31)

We now apply to Eqs. (28) and (29) the approximate re-
sults Eqs. (26) and (27), and the corresponding equations
with the roles of the first and second arguments inter-
changed. It is evident that zero will be obtained [to order
0 ( I kp I

) ] on the right-hand side of Eqs. (28) and (29)
when both r, EQ and r2& Q.

We consider next the cases that either r, &Q and
r2EQ'", or r)EQ'" and r2EQ, or r)EQ" and r2EQ'"
with r& and r2 mutually "invisible. " For these geometri-
cal cases, two types of ray trajectories can arise connect-
ing r, and rz. First are the broken line segments (of
which more than one can occur, one for each point of sta-
tionary phase) that refiect from the interior of BQ; these
do not contribute to the implied integrals on the right-
hand sides of Eqs. (28) and (29) because of Eqs. (25)—(27).
Second are the rays that are straight-line segments be-
tween r& and r2, and which intersect BQ in one or two
points (each such intersection is a point of stationary
phase). We need to work out Eq. (18) in more detail for
stationary phase points of this type.

For a stationary phase point on a straight-line ray, we
can augment Eq. (11)by

find that

Gk (rl r2)

BG+
0

(r, ;rs3)Gk (rs3, rz)dA3
k

BQ2 (jn

(35)

G1vk
— 0+o (

I kp I ) .
ko

(36)

V' V'

The approximate operators Zk and Z k
' are symmetri-

0 0
cal, so that even if the approximate operators are applied,
the right-hand side of Eq. (28) satisfies the reciprocity
principle Eq. (I-4); hence in the present approximation
scheme Eq. (36) must hold in the case r, H Q'" and rzH Q
as well.

If r&HQ'" and r2EQ'" and are mutually invisible, Eq.
(28) becomes, following the use of Eq. (26),

GNk (rl r2) Gk (rl r2)

where BQ2 is that part of BQ that is illuminated by a
source at r2. Since the line segment between r, and r2 in-
tersects BQ within BQ2 the stationary phase point lies in
BQ2, and the integral on the right-hand side of Eq. (35) is
efFectively a transposed case of the integral in Eq. (7), and
can be estimated by means of Eq. (34) with r, and rz in-
terchanged; since n, .r&, & 0 in this case, we find that

hence

A,, 1
= (r„+rz, ) /(2r 1,rz, ),

A.,z=k, i(n, rz, )

I&.l'"=~.iln. rz. I,
1 o 2 kp ~lkp I

(32)

BG+
ko

(r, ;rs3)Gk+ (rs3,'rz)dA3
n 0

aG+
kp

Gk (r„'r&3) (rs3, rz)dA3, (37)
BQ1 0 Qrii

Note that in this geometrical case we have

r,.+r,.= Ir, —r, I .

Accordingly, Eq. (18) reduces to

I )Gk (ri

(33)

(34)

We can now compute, say, the right-hand side of Eq.
(28) when r, E Q and rzH Q'". Making use of Eq. (26), we

where BQ, z are defined as following Eq. (35). Again ap-
plying Eqs. (7) and (34), and using arguments similar to
those used in the preceding paragraph, we find that Eq.
(36) holds in this case, for which a nonzero exact result is
expected for lkp I

(~.
Similar arguments, which make use of Eqs. (29), (27),

(7), and (34), show that if r, H Q and rzH Q'", or if r, H Q'"
and r2&Q, or if r, &Q'" and r~EQ'" and r, and r2 are
mutually invisible, the present approximation scheme
leads to
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GD1, (r; r2) — 0+o ( ~ kli ~ ) . (38)

Finally, we combine Eqs. (26), (27), (28), and (29) when
r, and r2 are mutually visible. In this case just one sta-

tionary phase point contributes, and it lies in the
nonempty set BQ1ABQ2. In reducing Eqs. (27) and (28),
we can drop the portion of the integrals outside of
BQ& 0 BQ2, with the results

aG+
ko

(rs3, r2) dA3,
Bn

aG+
0

(r„'ra3)Ga+ (ra3, r2)+Gi, (r, ;ra3)0 0
1

k
Gxk (rl r2) Gk (rl r2) + n„ (39)

where the upper (respectively, lower) sign holds for the
case X=X (respectively, X=D). The integrals on the
right-hand side of Eq. (39) will be recognized as sym-
metrized versions (i.e., symmetrized with respect to the
arguments r, and r2, including the region of integration)
of the formulas that would be derived from the conven-
tional physical optics method (Ref. 4, Chap. I.2.13.4).
Both the latter and Eq. (39) yield the same asymptotic
form, as ~ko~~~, for G&1, and GD& as that which can

0 0

be obtained by geometrical acoustics methods [see Ref. 8;
the explicit formula in Ref. 4, Eq. I.112, is valid only if
the plane of incidence and reAection of the ray contains a
principal axis of the curvature matrix E, &, as defined in
Eq. (12), of BQ at the point of re6ection of the ray].

V. DOMINANT SINGULARITIES
OF Zg AND Z I,

'
0 0

In this section we consider a different kind of limit
from that considered in Secs. III and IV, that is, we study
the behavior of the radiation impedance and admittance
operators when ~r» —

rs2~ is small compared to the local
curvature radii of BQ, and, moreover, ~ko~ is sufficiently
small that ~ko~ ~r» —

rs2~ ((1. For this limiting behavior
the oscillatory nature of the signal is unimportant; to the
level of accuracy maintained in what follows, the results
are obtainable from the potential theory (Laplace equa-
tion) case ko=0.

Perspective as to the structure of the operators for a
general smooth BQ can be inferred from the treatment of
the sphere in the Appendix. If we denote the terms of the
types appearing in Eqs. (A3)—(A7) as being singularities of
successively weaker orders, the dominant and the next
weaker singular terms in the expansion Eq. (A12) for Z&

0
and Eq. (A13) for Z &

' are independent of ko. Still less
0

singular terms involve ko; no terms linear in ko appear,
since these are associated with contributions to the opera-
tors that have weaker singularities than the terms studied
or mentioned.

The operators Vk, Vk, and Zk can be expressed as
0 0 0

two-point kernels with integrable singularities of order
' as rs, ~rs2. These oPerators are known to

be "smoothing'* operators, that is, they will, when con-
volved with another integrable kernel, make the product
kernel less singular. For example, the kernel
(Vl, ) (rs, , rs2) has a logarithmic singularity as rs, rs2

0

and the kernel (Vl, )"(rs„rs2) is a continuous bounded

Zk ( sl', rs2) ZO( sl B2) (40)

(41)

Equations (I-18), (I-20), and (I-14) yield

kernel for n ~ 3: by way of proof, it is sufficient to verify
these results for ko =0, so that the arguments of Kang
working in E (Ref. 9, p. 1446), Kellogg (Ref. 10, Chap.
XI, Sec. 9), Cisotti (Ref. 11, Sec. 3), and Levy (Ref. 12, p.
223) apply. Thus it is plausible that when ~ko~ is small, it
is meaningful to make a formal series expansion of Eqs.
(1) and (2) in powers of V& and V& ', the approximations

0 0

Eqs. (5) and (6) will exhibit the dominant singularities of
the respective operators, while the first-order terms in
Vk and Vk will provide the sought-after correction term

0 0
in each case (we shall not attempt to compute still
higher-order corrections herein for nonspherical BQ).

An obstruction to the application of Eq. (2) to long-
wavelength problems is the circumstance that for ko =0,
BQ bounded, and Q nonempty, the constant function is
an eigenfunction of the homogeneous Neumann
boundary-value problem within Q, and hence the con-
stant function on BQ lies in the null space of both of the
operators I&+ Vo and Wo (Ref. 3, Theorems 3.17 and
3.32). [The operator obtained by taking the limit of Eq.
(2) as k0~0 should exist nevertheless and agree with
Z o

' —see the remarks in paper I, Sec. III C.] We offer
two arguments to the effect that the procedure used here
will yield acceptable results in spite of this difficulty:
First, with the methods of the Appendix, we can carry
out the computations for the case in which BQ is a
sphere, using the spherical harmonic expansions of
I&+ Vo and 8'0. The expansion of (I&+ Vo) ' in powers
of Vo diverges for zero-order spherical harmonics, but

V'

the correct result for Z 0 is obtained to within a higher-
order correction if only the first two terms in the expan-
sion are taken. And second, we are dealing with highly
local properties of Z o ', so that our procedure cannot
distinguish between compact and unbounded BQ—
indeed, we shall approximate BQ by a paraboloid —so
that the global structure of BQ plays no significant role
here.

We shall treat first the case of Zk by means of the
0

leading two terms in an expansion of Eq. (1). Further-
more, as just argued, the dominant two singularities in
Zk will be independent of ko, so that within the

0

prescribed limitations we have
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The integral equation (46) is to be taken over a disc, say,
of fixed radius A ))o.)0, as we are interested only in the
singular behavior of the integral as o.~0; contributions
to the integral equation (46) from outside the disc change
the result only by a continuous correction function of
(ra&,'ra2). The integral equation (46) can be evaluated in
polar coordinates (u ', u ) = (p cosP, p sing), the integral
over p being done first. If we drop the nonsingular con-
tributions depending on the cutofF radius 3, and use the
result

—Uo(ra„ra3)= —(2n. ~ra,
—

ra3~ ) (42)

a3) a3 a2)'(,; )=-
2~1 ra3 ra2

(43)

We need to calculate the correction term

(44)Uo(rai'ra3) ~o(ra3'ra2)d ~ 3 .
an

We approximate BQ locally by a paraboloid, and intro-
duce local coordinates as in Eq. (12), with the origin and
orientation of the coordinates being such that

f cos2& In( 1 —
cosP )d P =

0
(47)

rai (~ 0

la3~(u, u )

ra2~(0, 0),
(45) we find that Eq. (46) reduces to

(8ir) '[(IC„+%2~)in(1/o )+—,'(E), —K22)] . (48)

We define the mean curvature H(ra2) as

(49)H (ra3) =
—,'Tr(E);

where o )0.
We can now compute the integrand in Eq. (44); omit-

ting terms of higher order than the first in the curvature
matrix IC p of BQ at ra2, we find, using Eqs. (12), (14),
(45), that Eq. (44) reduces to

(877 ) I J du ~du [(o —ui)2+(u2)2]

X gE &u u~ [(u') +(u ) ] (46) our result for Eq. (44) can be expressed as follows for a
more generally oriented coordinate system on BQ:

( Uo Vo )(rai'ra2) =(4~) 'H(ra2)ln( 1 ~lrai —ra21)

+( ir) 'X [J'ap«a2) & pH«a2)][[t '«ai ra2)][t&.{rai ra2)]~lrai ra21 j .
a, P

(50)

Note that the second term on the right-hand side of Eq.
(50) is bounded but discontinuous as r» —+ra2, and van-
ishes identically when the curvature matrix K

&
is every-

where isotropic, that is, when BQ is a sphere. The result
Eq. (50) agrees with the corresponding part of the limit-
ing values, for both source and field points on BQ, of
what in the present notation is —4irG~o(r, ;ra2) obtained
by Cisotti [Ref. 11, Eq. (77)] and Levy (Ref. 12, p. 265,
bottom line), in accordance with Eq. (I-38).

We note that once the singular terms of Eqs. (42) and
(50) are subtracted from Zo(r»,'ra2), the remainder
should be a continuous kernel in (ra„ra2), which kernel
has a well-defined value as ra2 r» for all ra& HBQ. This
function on BQ is not determined by Levy's procedure, '

and appears to be a function of the global, as well as the
local, structure of BQ. In this connection, we note that
the logarithmic term on the right-hand side of Eq. (50)
does not scale properly with an overall change of the
length scale of the system.

Now we consider Z k . As before, our objective is to
0

obtain the next-most singular term beyond the zeroth-
order approximation of Eq. (6). Thus we have from Eq.
(2), given the stated limitations on ko and (ra, —

ra2~,

V' V'

Zk Zo0

o
—Wo Vo

(51)

(52)

Wk (ra„'ra2)= —2[n(ra( ) V, ][n(ra2). V2]

XG„+(r„r,)l. (53)

lko 1+
lrai ra21 Irai ra&I'

Xexp(&'kolra, —ra2[) . (54)

Note that for r»&ra2 the function on the right-hand side
of Eq. (54) admits of a representation that is intrinsic to
BQ, that is

[+an(rai )+k 0 ]U„(ra„ra2)~ (55)

Let us first study the operator 8'k . As defined in Eq.
(I-21), this operator is not representable as a two-point
kernel on BQ. For, suppose that Q is the half-space z &0
of E; then we would have
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where Zan(r») is the surface Laplace-Beltrami operator
with respect to ra& coordinates. We can regard the right-
hand side of Eq. (54) not as an ordinary function but as a
generalized function, which is represented by Eq. (55) as
a differential operator acting on a singular, but integ-

I

rable, kernel. The application of the generalized kernel
of Eq. (54) in a matrix element of the form described fol-
lowing Eq. (I-9), with smooth, rapidly decreasing func-
tions g(ra) and P(ra), can be defined by Green's theorem:

f dA, f dA2$(ra, ) Wk (r», ra2)P(ra2) f d~ i f d» l I+an(rai)+ko lf(rai)] Uk (rai'raz)4'(raz)
an an 0 an an 0

(56)

where the "boundary" terms vanish since either BQ is
compact or g(rai I

—+0 rapidly as
I ra, I

~ ao. This pro-
cedure is an example of Hadamard's computation of the
"finite part" of a divergent integral (cf. Ref. 14, Vol. II,
pp. 785—788, and Ref. 9, p. 1445). It can be justified by
performing the computation in the two-dimensional
wave-vector space associated with the plane BA, , from
which it can be inferred that no Dirac 5-function term of
the type Ckofian(ra, , ra2), where C is a dimensionless con-
stant, as been omitted in passing from Eq. (54) to Eq. (55)
and in turn to Eq. (56). Furthermore, a somewhat
lengthy computation shows that for the case that BQ is
the paraboloid of Eq. (12), the symmetrized form of Eq.
(55) has the property that

~k, ~l&an(rai)+&an(ra2)+2ko]

X Uk ( ra i, raz ) +0 (
I ra i ra2 I

(57)

[Note that in order to evaluate a matrix element expres-
sion of the operator on the right-hand side of Eq. (57),

( ~p Vp )(rai,' ra2) = —Zan(rai )

X Up ra&, ra3
an

~p(ra3 ra2)d~ 3 (58)

where the right-hand side of Eq. (58) is to be applied to a
function on BQ in the manner of Eq. (56). Computation
of the integral on the right-hand side of Eq. (58) can be
accomplished in a similar manner to, and to the same ac-
curacy as, the integral of Eq. (44), with the result that our
approximation for Z p is

I

Green's theorem must be applied once for each Zan. ]
Hence in this case also, and we presume for general
smooth BQ, no singularity of the strength of a Dirac 6
function is lost by the adoption of the approximation Eq.
(57).

For the purpose of estimating the second term on the
right-hand side of Eq. (52) the nonsymmetric form of Eq.
(57) is sufficient, so that this term can be written as

'V

Z o '(rai'ra2) =
2 I& a( nir)a++ a( nr)a]2U ( oir' azr)a

++an(rai)l (4') 'H(raz)ln(1/ rai rail )

+(8~) 'g I& p(ra&) & pH(ra&)]
a,P

X [t (rai) (rai raz)]l. ti3(rai) (rai ra2)]/Irai ra21 ] . (59)

Since

&an(ra, )ln(1/I rai raz ) = 2vr5an(ra—i, ra2) (60)

the correction term in Eq. (59) agrees with the corre-
sponding term in Eq. (A12) for spherical Ml.

The procedure used above is similar to that of Cisot-
ti, " who studied the function analogous to Givo(ri, 'ra2)
for the interior region Q; Levy's' approach for both
G~p(r„raz) and (BGDo/Bn„)(r,;ra2) entailed the use of a
preconstructed infinite family of solutions to Laplace's
equation in E to fit the boundary conditions on BQ to
desired accuracy. The present treatment and those of
Refs. 11 and 12 are all local. Consequently, the results do
not distinguish between Green's functions for the interior
and exterior regions, and the results are comparable and
agree to the order of terms computed here for
G&p(ra»raz). The results obtained herein for Z p

' can
also be extracted from Levy's results (Ref. 12, bottom of

p. 256) by the use of Eq. (I-41), augmented by manipula-
tions of singular quantities analogous to those applied in
Eqs. (53)—(58). Both Refs. 11 and 12 carried out the com-
putation to one higher order (only G~o was treated in
Ref. 11), in that they included contributions that are not
computed here and that are quadratic in K, &

and linear
in the unspecified cubic terms in Eq. (12). The results of
Refs. 11 and 12 differ for these higher-order terms for
G&p', Levy states (Ref. 12, p. 208, footnote 2, and p. 266,
footnote 1) that Cisotti's results for these higher-order
corrections are incorrect. The present work goes beyond
that of Refs. 11 and 12 in the respect of establishing ap-
proximate local analytic forms for the operators 8'p and
Z p

' that are intrinsic to BQ; these operators are not
representable as kernels on BQ, but, as is plausible from
the results obtained here, are realizable as products of
singular, but integrable, kernels and finite-order
differential operators.
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VI. SUMMARY AND DISCUSSION

The transition-operator formulation of diffraction
theory holds promise of providing a unifying framework
within which many disparate approaches to diffraction
problems can be seen as different facets of the same un-
derlying structure. The beginnings of this program have
been carried out in paper I and the present work. In par-
ticular, it was noted in paper I, Sec. III 0, that
Waterman's null-field method (cf. Ref. 3, pp. 104—106),
a medium-to-long-wavelength approximation for
diffraction, takes a natural place in this scheme. Sections
III and IV herein dealt with the other end of the wave-
length range: "physical optics" and geometrical (ray)
acoustics were derived from the starting point that 0 is
taken convex, BA is smooth, sound-hard or sound-soft
boundary conditions obtain, and the simple approxima-
tion to Z& or to Z & proposed in Sec. II is applied as the

0 0

essential ingredient in the respective T operator.
Section V was concerned with the improvement of the

generalized (in the sense of incorporating finite-order
differential operations) kernel approximations of Sec. II
for Z& and Z I, ', for the long-wavelength regime and for

0 0

nearby points on smooth (not necessarily convex) BQ. A
higher-order approximation along the same lines, but for
the special geometry that BQ is a sphere, was derived in
the Appendix.

The remaining paragraphs of this section are devoted
to a discussion of conjectured elaborations and applica-
tions of the T-operator formalism.

An advantage of the T-operator approach to
diffraction is that it can provide an alternative means of
avoiding the nonuniqueness problems associated with in-
tegral equation methods based on single- or double-layer
potentials. It is known that a suitable superposition of
singlet and doublet layers yields uniquely solvable in-
tegral equations (Ref. 3, Chaps. 3.6 and 3.9; Ref. 15; and
references given therein) for all ko such that Im(ko) ~0.
The surface integral operators that arise in the T-
operator formalism, given some restrictions for im-
pedance boundary-value problems, exist for all ko such
that Im(ko) ~ 0 (paper I, Sec. III C and Appendix). With
trivial exceptions, however, analytical or numerical ex-
pressions for operators of the latter type are not known at
the outset of a diffraction problem. But let us suppose
the further development of the theory of operators as ZI,

V'

and Z I, , along the lines of obtaining suitable analytical
0

approximations for their dominant singular terms, so that
the remainders are continuous two-point kernels on BQ
for geometries and (long-to-medium) wavelengths of in-
terest. Then these remainder terms could be obtained nu-
merically and the given diffraction problem would be re-
duced to quadratures. We note in this connection that
considerable analytical work has been done on an im-
pedance boundary-value problem in E, with BQ as a
straight line —see Ref. 16, Chap. VI, $16.

Another artifice suggested by the T-operator approach
is the simulation of a complex (say, nonconvex) obstacle
by numerically determined nonlocal impedance boundary
conditions of the type of Eq. (I-15) on a simpler surface

X, say, that circumscribes the actual obstacle boundary
c}Q. (For an example of such a geometry, and an approxi-
mation scheme that uses methods related to those dis-
cussed herein, see Ref. 17). The Helmholtz equation
would have to be solved numerically in the domain be-
tween BQ and X for a complete set (in a numerical sense)
of conveniently chosen boundary conditions on that part
of X which differs from BA. Approximate operators
Zzj, , Z zI,', and (Az+BzZ zi,

'
) 'Ax could then be

determined so that in the region exterior to X the com-
plete Green's function for the true obstacle is obtained by
this substitute means. Several diffraction problems could
be explored with reduced effort in this way provided that
X and ko are kept fixed, for then only the operator quo-
tient Az'Bz, and not Zzj, and Z z&, would change.

0 0

The limitations of this procedure, in particular, the range
of geometries and boundary conditions for which such a
simulation is numerically stable or at least mathematical-
ly nonsingular, are unexplored.

A geometry that is involved in numerical applications
is that of a rectangular parallepiped with edges a, b, c,
say, for ranges of values of ~koa~, ~kob~, and ~koc~. The
eigenfrequencies and eigenfunctions for the interior Neu-
mann and Dirichlet boundary-value problems are easily
determined for these geometries; this circumstance, and
presence of edges and corners, make these geometries of
particular theoretical interest as test cases for schemes
for obtaining approximations to Z& and Z I, . More-

0 0

over, this class of BQ can be useful in some numerical ap-
proximation schemes as an artificial boundary for a fine
rectangular grid that covers the diffracting obstacle. For
some theory and applications along these lines, primarily
to wave propagation in two space dimensions, see Refs.
18 and 19, and further references given therein.

Concerning the short-wavelength regime, it is plausi-
ble, at least on physical grounds, that the transition-
operator approach to difFraction is capable of subsuming
the widely used approximation schemes known collec-
tively as the geometrical theory of diffraction
(GTD). This theory is a collection of short-wavelength
approximations that associate a quantitative scheme with
an intuitively compelling ray-acoustical picture; the
method comprises modifications and extensions of "clas-
sical" ray acoustics so as to incorporate certain types of
diffraction phenomena that vanish in the classical geome-
trical acoustics limit. With respect to impenetrable obs-
tacles, two generic types of nonclassical phenomena are
treated: The first type is diffraction from convex obsta-
cles with smooth surfaces; these phenomena are described
in terms of so-called surface-diff'racted rays (i.e., the ray
manifestation of so called "creeping waves"), which prop-
agate along geodesic curves in BQ and continuously shed
tangential "diffracted rays. " The second type is
diffraction caused by departures on BQ from smoothness
on curves or at points; characteristic examples are
diffraction by the edge of a wedge or by a tip (apex of a
half cone).

An initial step in correlating the first type of diffraction
phenomena with the T-operator formalism would be to
extend the present work by a study, with a combination
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'V

of analysis and computation, of the behavior of Zk and

Z k
' in the medium-to-short wavelength regime both for

0

the sphere and for anisotropic convex surfaces as ellip-
soids. The objectives would be to secure approximate
useful forms for the operators that reproduce known re-
sults [as the extended boundary conditions of Eq. (I-16)]
adequately, and to study the presumed approach of the
operators to a short-wavelength approximation implied
by the creeping wave picture as realized in the GTD for
acoustic-wave scattering. A recent, mathematically
rigorous study dealt with short-wavelength diffraction
of D type, for strictly convex, smooth-surfaced obstacles,
and for field points near the shadow boundary of the in-
coming signal; this paper did not, however, investigate
the behavior as the source and field points approach the
obstacle's boundary.

Comprehension in terms of T operators of the second
class of diffraction phenomena treated by GTD would
presumably entail a determination of the behavior of Zk

0

and Z &' for canonical cases of nonsmooth convex sur-
0

faces, as a wedge formed by two planes and with various
wedge angles, a circular half cone with various aperture
angles, and so on. It is plausible that the results, when
properly formulated, could be generalized so as to apply
at least locally to moderately deformed versions of these
obstacles, in a manner analogous to the passage from
Eqs. (3) and (4) to Eqs. (5) and (6). No published work is
known to the writer that explicitly addresses the problem
of approximating the behavior of Z1, or of Z k ', when

0 0

one or both arguments of the associated kernel approach
a line or point where BO is not smooth; various chapters
of Ref. 4 provide some analytical starting points for in-
vestigations along these lines.

Other possible generalizations are readily imagined
that would increase the scope of applications of the
transition-operator formalism, but we shall not attempt
any further enumeration of these. The effectiveness of
transition-operator theory as a unifying principle for a

I

wide range of scattering phenomena is contingent on the
derivation of a substantial body of physically cogent re-
sults and useful methods.

APPENDIX: Zk AND Z k
'

0 0

FOR SPHERICAL an

X[Y, (r, )]*; (A2)

Fq. (A2) is given by Ref. 27, Eqs. (34) and (3S). No
closed-form expression in terms of known transcendental
functions is presently available for either of these sums
for general ko. In this appendix, we shall obtain approxi-
mate forms for the sums in Eqs. (A 1) and (A2) for the
case that

~ ko ~
a

~ r, —r2 && 1, which results become exact
in the limit ko~0. We shall give only very brief atten-
tion to the short-wavelength behavior of the sums.

We shall recapitulate some known or easily derivable
results. Let X,„,(r) be defined as following Eq. (55).
Then we have

Let BQ be a sphere S (a) of radius a with its center at
the origin of coordinates, so that r&&HBQ is given by
rs, =ar, . We use Eqs. (I-38) and (I-41), and the expan-
sions of Green's functions in Ref. 4, Eqs. (10.68) and
(10.5), to obtain the following expansions of the operators
Zk and Z k

' in terms of the orthonormal spherical har-
0 0

monies Y& ( r ) (as defined in Ref. 26), where
1=0,1,2, . . . , m = —l, —1+1, . . . , l —1, l, and the ar-
gument r is used to stand for spherical polar coordinates
on S (1):

h(' "(k()a )
Zk (ar„ar2)=(l/a) g g (, ), Y(~(r()

(=o m = (koah("—'(ko&)

X [ Y( (r2)]*, (Al)

koah, "'(koa)
Z k'(ar„'ar2)=(1/a ) g (, )

Y(~(r))
h,"'(k a)

[&s2())(r)——,']Y( (r)= —(&+—,')'Y( (r),

5sp(, )(r„r~)= g Y(~ (r, )[ Y(m (r2)]*,
l, m

(2~lr( —rp ) '= g(I+ —,') Y( (r()[Y( (rp)]*,
I, m

(2~) 'ln(1+2/~r, —r2~)= g [(l+—,')(/ +1)] 'Y( (r, )[Y( (rz)]*,
1, m

(2m) '[1—
~r)

—rz + —,'~r( —
r2~ in(1+2/~r( —r2~)]= g [(l+—,')(l+ 1)(l+2)] 'Y( (r))[Y& (r2)]*;

1, m

(A3)

(A4)

(AS)

(A6)

(A7)

Eq. (A4) is the closure property for spherical harmonics, Eq. (AS) follows from the inverse distance formula and the
addition theorem for spherical harmonics (Ref. 30, Appendix IV), and Eqs. (A6) and (A7) can be derived by suitable ma-
nipulations of the inverse distance formula. Furthermore, we have the inequality '

~P((x)
~

& I for —1 & x & 1, 1 =0, 1, . . .

hence if A1 is any sequence of complex numbers bounded above in absolute value, then the sum

g A((l+ —,') Y( (r))[Y( (r~)]*
l, m

(A8)

(A9)
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converges absolutely and uniformly (in ri, rz), and thus represents a continuous kernel on S (1).
We expand the coefficients in Eqs. (Al) and (A2) in what amounts to a descending series in powers of I + —,, when

l ))koa. Using Ref. 32, Eq. (10.1.3), we find

ht")(z)/[zht"'(z)]= —(I +1) ' —(z /2)[(l + —,
' )(1+1)(l+2)] '+O(l ),

zhi"'(z)/hi"'(z) = —(l + 1)+(z /2)[(l + —,
'

) '+(I + —,
'

) '(1+ 1) ']

+[(3z /4)+(z /8)][(l+ —,')(l+1)(l+2)] '+O(l ) .

Combining the results Eqs. (A3)—(Al 1), we find that Eqs. (Al) and (A2) become

Zk, (rai'raz)= (2n ~rai raz ) +(4na)»(1+2«rai raz~)

—(koa/4~)[1 —[ra, —raz(/a+((r» —
raz( /2a )in(1+2a/[ra, —raz()]

++1( ai'raz)

Z&'(ra, , raz)=(2vr~ra, —raz~) '[X .. .(raz) —1/4a ]—(2a) '5
z, ,(ra, , raz)

(A10)

(A 1 1)

(A12)

+(ko/4m. ) ~ra,
—

raz~ '+(ko/4~a)ln(1+2a/~ra, —
raz~ )

+(ko/16ira)(6+koa )[1—(ra, —raz(/a+()ra, —raz] /2a )ln(1+2a/(ra, —raz[)]+Rz(ra, , raz),

(A13)

where the remainder terms R, (r», raz) and Rz(ra, , raz)
are continuous kernels on S (a), both of which vanish
identically as ko~O. It is not difficult to verify that the
leading singular terms on the right-hand sides of Eqs.
(A12) and (A13) agree with the results obtained by speci-
alizing Eqs. (42), (50), and (59) to spherical BQ.

For the purpose of confining the domain of a numerical
integration of the Helmholtz differential equation to an
agreeably small volume of E, it is desirable to have a lo-
calized approximation to the operator of Eq. (A2) or
(Al), in order to effect radiation boundary conditions on
an artificial spherical boundary S (a) surrounding the
obstacle, such that a is as small as feasible, but also so
that koa~ ))1. A first-order differential equation of Ric-
cati type is easily obtained for the logarithmic deriva-
tive of ht("(z) or for the reciprocal function; such an

I

equation provides an asymptotic series for the coefficient
in Eq. (A2) or (Al) in descending powers of koa, with the
coefficients being polynomials of increasing order in
l(l+1). Correspondingly, an asymptotic expansion for
the sum of Eq. (A2) or (Al) in terms of descending
powers of koa with coefficients being polynomials in
X z, ,(ra) can be obtained. The leading terms of this ex-

pansion for Eq. (A2) agree with the leading terms in the
sequence of approximations to Z k

' derived by Jones

(see also Ref. 35). It is an open problem to obtain nonlo-
cal asymptotic approximations to the sums of Eqs. (Al)
and (A2) by analytic means, say along the lines of a vari-
ant of Watson's transformation (cf. Ref. 4, Chap. 10, and
Ref. 36).
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