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Transition operators in acoustic-wave diffraction theory. I. General theory
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The objective of this paper is the establishment of a formal theory of the scattering of time-
harmonic acoustic scalar waves from impenetrable, immobile obstacles; the time-independent for-
mal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete
Green's function and the transition ( T) operator, provides the model. The quantum-mechanical ap-
proach is modified to allow the treatment of acoustic-wave scattering with imposed boundary condi-
tions of impedance type on the surface BA of an impenetrable obstacle. With k0 as the free-space
wave number of the signal, a simplified expression is obtained for the k0-dependent T operator for a
general case of homogeneous impedance boundary conditions for the acoustic wave on BA. All the
nonelementary operators that enter the expression for the T operator are formally simple, rational

V'

algebraic functions of a certain invertible linear operator Zq, which is called the radiation im-
0

pedance operator, and which maps any sufticiently well-behaved, complex-valued function on BQ
V' V'

into another such function on BA. The nonlocal operators Z& and Z&
' are defined only implicitly,

0 0

in that ZI, is the operator that maps the limiting-value function on BQ, of an outgoing-wave solu-
0

tion to the scalar Helmholtz equation into the uniquely corresponding limiting-normal-derivative
V'

function, and Z& does the inverse operation. Previous appearances in the literature of these opera-
0

tors, or their analogs for other elliptic, linear partial-differential equation systems, are cited. An
analytical study of the dominant singularities of the operators (considered as two-point kernels on a
smooth BQ), and of their behavior in the geometrical acoustics limit, is the subject of a second paper
[G. E. Hahne, following paper, Phys. Rev. A 43, 990 (1991)].

I. INTRODUCTION

We shall establish a formal theory of the diffraction of
time-harmonic acoustic scalar waves, analogous to the
time-independent formal scattering theory for the parti-
cle waves of nonrelativistic quantum mechanics (Ref. 1,
Chap. 2.5; Ref. 2, Chap. 5; Ref. 3, Chap. 7; Ref. 4, Chap.
8; Ref. 5, Chaps. 1 and 2). The formalism will be de-
scribed as the transition- (T )operator formul-ation of
diffraction theory, because of the central role played by
this entity in the mathematical framework.

This paper is the first of a series, and is referred to as
paper I. A companion paper, which deals with subjects
that derive from those of this paper, will be referred to
herein as paper II.

We shall recapitulate the basics of the theory of
scalar-wave diffraction in Sec. II. But first, in the follow-
ing paragraphs, we shall state the fundamental formula
[see Eq. (1)], outline the scope of this paper, and indicate
the topics to be covered in paper II.

Acoustic-wave diffraction will be understood to be the
scattering of time-harmonic scalar waves from an immo-
bile, impenetrable obstacle that is embedded in a uniform,
nondispersing, nonabsorbing propagation medium in
which sound prop ag ates with constant speed c, with
specified boundary conditions for the acoustic wave on
the obstacle's surface. We shall use the (obstacle-) free-
space wave number ko, where —~ & ko & + ~, to de-
scribe the (normally unstated) time dependence
exp( ikoct ) of a signal. A—t least the full range of real ko

needs to be accounted for, since the transformation of the
Green's functions and the transition operator from the
frequency domain to the time domain, and the reduction
of the scattering (S) operator to an expression in terms of
the Tz+„operators [analogous to Ref. 1, p. 90, Eq. (5.32)],
would require an integral over all real ko.

We consider waves in three-dimensional Euclidean
space E; the points of E are denoted by three-vectors r
relative to some fixed origin of coordinates. Source-free
waves are presumed to satisfy the scalar Helmholtz equa-
tion [Ref. g, Eq. (7.2.3)]; complete Green's functions will
be defined as in Ref. 8, Eq. (7.2.5)—albeit with a different
normalization —with boundary conditions of the type de-
scribed in Ref. 8, p. 806.

Let Gz& (ri,'r2) be the Green's function for a
0

diffracting system, where the superscript + means outgo-
ing waves at infinity, and the X denotes a particular type
of Green's function. X will take the value (absent),
R, N, or D herein, where X absent will denote a free-
space Green's function, and X=R, or N, or D denote
that, respectively, some general homogeneous impedance
(here called Robin, after the mathematician Gustave Ro-
bin), or homogeneous Neumann, or homogeneous Dirich-
let boundary conditions, are satisfied by the Green's func-
tion at the obstacle's surface. The N- and D-type bound-
ary conditions, and hence the associated complete
Green's function, etc. , are obtained as special cases of R-
type boundary conditions. We shall make plausible the
existence of, and work out simpler forms for, T operators,
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TRANSITION OPERATORS IN ACOUSTIC-. . . . I. 977

called Tz&, or, more explicitly, T~z (r, ;rz), associated
0 0

with a given obstacle geometry, boundary conditions, and
wave number. These T operators are defined implicitly
by the equation

GRk (rl r2) Gk (rl r2)+(Gk TRk Gk )(rl r2)

where the operator product on the right-hand side of Eq.
(1) is defined as follows:

(Gk Tz& Gk+ )(r, ;r~)= J,d r3 J,d r46k+(r„r3 gQ ( 3 r~)Gk+(r4, rz) . (2)

The quantum-mechanical equivalent of Eq. (1) is Ref. 1,
p. 89, Eq. (5.2lb), or the un-numbered equation in Ref. 4
on p. 134 following Eq. (8.10), or Ref. 5, Eq. (1.4). Mar-
cuvitz [Ref. 10, Eq. (15)j defined an operator that is
analogous to T for the scattering of classical electromag-
netic waves from an obstacle.

The complete causal Green's function 6~& (r, ;r2) is
0

proportional to the acoustic velocity potential (Ref. 8, p.
308) at r„given a spherically symmetric, point-source
loudspeaker at rz. In Eq. (1), G~& comprises the super-

0

position of the signal G&+ that would be present if there

were no obstacle, plus the complete scattered signal
Gk+T~q Gq+. Note that the linear operator T~+~ has the

0 0 0 0

effect of creating the complete source distribution for the
scattered wave from the initial free-space wave. If the
TRk operator satisfying Eq. (1) were known, it would

0

yield full information on scattering phenomena at the
specified wave number, for the given obstacle geometry
and boundary conditions.

'We anticipate some results of Sec. IV by saying that
some of the advantages of the T-operator description of
diffraction are that the entity Tzk (r„r2) (i) is zero if ei-

ther r, or r2 is outside the scattering obstacle, (ii) has an
elementary structure if either r, or r2 is inside the obsta-
cle, and (iii) has a nonelementary structure only if both ri
and r2 are on the surface of the obstacle. Thus the origi-
nal diffraction problem in E reduces to a certain
mathematical problem in the two-dimensional surface of
the scattering obstacle.

Perturbation theory in the manner of the sequence of
Born approximations (Ref. 1, Chap. 2.2.4) is not available
for the treatment of connected-obstacle diffraction, since
the coupling of the wave to the scatterer is infinite within
the obstacle. Nevertheless, if the T operator for each of
several disjoint and acoustically weakly coupled obstacles
is known, the combined complete Green's function can be
assembled by multiple-scattering theory (Ref. 1, Chap.
2.5.4). For example, suppose that there are just two obs-
tacles 0, and Qz, such that in the other's absence they
would have the associated T operators T,+k and T2+k,

respectively. Then the complete Green's function
G &+0 2 k when both obstacles are present has the

0
multiple-scattering expansion

G+Uq ~ =GI,++G~+T) k Gk++Gk+T2+k GA++G~+Tq+I, G~+T+I, Gk++GI,+T) k G],+T2+k Gk+

+Gk+T)+I, GI,+T2 k Gk+T,+I, Gk+ +G~+T2+k Gk+T)+k G+T2+k G~++ (3)

That is, the combined Green s function is an infinite sum
of terms, such that each summand has an associated
Feynman diagram with a cogent physical interpretation:
the wave's free-space "propagation" from one place to
another is represented by G&+, and each complete
"bounce" of the wave from a given obstacle is represent-
ed by the corresponding T operator.

The remainder of this paper is organized as follows. In
Sec. II, we shall formulate the kinematics (geometry,
functions, integrals) of the generic diffraction problem of
scattering from a given, fixed obstacle, and introduce the
dynamics, that is the equations of motion and boundary
conditions for the Green's function, for R-type diffraction
from an obstacle. In Sec. III A we shall, following Colton
and Kress, " define four "primitive" operators that map
the space of complex-valued functions, whose domain of
definition is the boundary of the obstacle, into itself
linearly. In Sec. IIIB, we shall define operators Zk and

0
Z & that will be called the radiation impedance and ad-

0

rnittance operator, respectively, on account of a partial

G~k (r, ;r~)=6~k (rp', ri) .+ ~ = + (4)

In paper II we shall propose what will be called the

analogy to the surface impedance and admittance of an
obstacle (Ref. 8, p. 311); simple operator-algebraic ex-
pressions for ZA and Z k in terms of the primitive

0 0

operators are derived. In Sec. IIIC we single out for
mention some mathematical properties of the various
operators that derive from the considerations of Secs.
III A and III B. In Sec. III D we shall cite a number of
previous investigations in which operators analogous to

ZI, or Z k
' played a role. In Sec. IV we shall derive ex-

0 0

pressions for the operator Tz+k in terms of the Zk opera-
0 0

tor (or simple algebraic functions of it) and of operators
of elementary structure. Finally, in the Appendix we dis-
cuss mathematical sufficiency conditions that guarantee
that an impedance boundary-value problem has a unique
complete Green s function satisfying the principle of re-
ciprocity, that is,
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"tangent-plane" approximation to the T operator with ei-
ther %-type or D-type boundary conditions being im-

posed. We shall then show, by means of applications of
the method of stationary phase, that this approximate
form yields the familiar "physical optics" method, and
furthermore yields the correct geometrical acoustics (ex-
treme short wavelength) limit for the corresponding com-
plete Green's function for convex obstacles with smooth
surfaces. Also in paper II, we shall investigate the dom-
inant singularity structure of the operators Zk and Z &

'
0 0

for smooth BQ.
In the papers in this series, recourse will be had to suit-

ably modified quantum-mechanical terminology and ki-
nematics, such as "on the wave-number shell" or "on the
frequency shell" (instead of "on the energy shell" ),
"wave-vector space" (in place of "momentum space"),
position space, and representations of wave functions or
matrices of operators in one or another (possibly continu-
ous) basis of states. This parallelism is justified by the
mathematical resemblance of the classical and quantum
formalisms, and by the desirability of having Dirac's
transformation theory available for mathematical appli-
cations in the context of classical wave theory. Some
familiarity with the mathematical framework of quantum
mechanics, as presented in, say, Levine (Ref. 1, Part I), or
in Messiah (Ref. 12, Vol. I, Chap. VII), or in Dirac (Ref.
13, Chap. III), will be presumed on the part of the reader.
We note in this connection that Deschamps' has advo-
cated the use in classical electromagnetic field theory of a
formalism for kinematics where certain inner products
are denoted with symbols resembling Dirac's brackets,
and of a dynamical approach akin to Feynman's, includ-
ing a theory of wave creation, scattering, and detection
events mediated by free-space propagation, each possible
event sequence being describable by a diagram analogous
to a Feynman diagram for a quantum scattering process.

II. ELEMENTS
OF ACOUSTIC DIFFRACTION PROBLEMS

In this section, we shall establish some geometrical, no-
tational, and other kinematical conventions to describe a
generic physical system of interest, and specify the
dynamical problem, i.e., the equations of motion and
boundary conditions, for the complete Green's function
for the diffraction of acoustic waves from an obstacle.

We consider the scattering obstacle to occupy an open
set 0, take 0'" to be the connected, open subset of E ex-
terior to the obstacle that contains the uniform ambient
Quid in which the acoustic wave propagates, and take BQ
to be the two-dimensional surface that is the boundary
both of 0, and of 0". The open set A need not be con-
nected, and can be empty, as in the case of diffraction
from a thin plate, or from a thin screen with apertures.

All those, and normally only those, three-vectors
r &E with subscripts in the form r& will represent
points belonging to the given subset BQ of E . We em-
phasize that r& is not intended to be a tangent vector or
normal vector to BQ, but is an ordinary three-vector that
connects the origin with a point in the two-dimensional
subset BQC:E . The unit vector n(rz) is the outward-
pointing (toward A'") normal to BQ at rz, and is well

We call T a symmetric operator if T = T.
Next, let 6 be any open set in E . Then we define the

unit step function
r

+1 if rEA;6 r='
0 otherwise .

We can also consider Oz to be a projection operator in
9(E-') such that 6~ has position-coordinate representa-
tives 6~(r, )5 (r, —rz). Accordingly,

On+ B,„=I, (8)

except for operands having 5-function-type singularities
on BQ.

Integrals over BQ will be defined with respect to the
usual area measure, here called dA, that is "subduced"
from the Euclidean metric on E (Ref. 11, p. 33). When
integrals over the product space BQ(3)BO(3BQ(3 . . of
complex-valued functions, say F, occur, they are denoted
as follows:

f dA f dA2 f dA3 . F(rai'raz'rs3
an an an

In this connection, we shall make extensive implicit use
of a second kind of bilinear inner product (, )&z, which is
defined for function pairs f(rz), P(rz) in the linear space
V(BQ) of complex-valued functions with domain BQ:

(@ W)sn =f— (9)
an

If BQ does not have a finite area, we restrict ourselves to
functions whose magnitude decreases rapidly outside a
finite-area subset of BQ. If Y is an operator that maps
V(BQ) into itself linearly, the g, P matrix element of Y is
defined as ( 1t, Yp )&&. We define the transpose of an
operator and symmetric operators in this function space

defined if BA is smooth, as we shall assume is the case
everywhere but on isolated points or curves in BA. The
direct product notation (II;0), (BA;II), (BQ;BA), etc. ,
denotes subsets of (E;E )=E @E'; (r„r2) denotes a
point in (E;E ), (rz„'r2) a point in (BO;E ), etc.

Let V(E ) denote the linear space of complex-valued
functions with domain E; such a function represents a
kinematically allowable acoustic velocity-potential field
(see, for example, Ref. 8, p. 308, or Ref. 11, Chap. 3.1) in
obstacle-free space. We will deal with operators that map
V(E ) into itself linearly. The unit operator in this func-
tion space will be called I; I has as its position-
coordinate representatives the Dirac 6 function on E,
that is, 5 (r, —r2).

We define the bilinear inner product (, ) 3 as follows:E3

( P C )~3 =f,d r%'(r)N(r) = (4, %' ) (5)

for any pair %H P(E ), 4E V(E ) for which the integral
exists. If T is a linear operator that maps P(E ) into it-
self, we define the matrix element (O', T4) 3. The uniqueE '

transpose T of a linear operator T is determined by the
requirement that for all choices of suitable function pairs
W, 4, we have

(4, T"4) 3=('0, T4)
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lim [ lim N(r&,'rz)]=4(ra&+ +;ra2+ ) .
r&

—r01 + r2 r&2+
(10)

as in Eq. (6) and its sequel. We call the unit operator act-
ing in V(M) by Ia, Ia is symmetric, and is represented
by the two-dimensional Dirac 5 function 6an(ra&, ra&).

We shall often encounter Green's functions, wave func-
tions, etc. , whose values are well defined for all points in
0 g 0'", and whose values or gradients may be discon-
tinuous across BA. Appending a plus (respectively,
minus) sign to the argument of a function on BQ means
that the limiting values from Sl'" (respectively, 0) are to
be taken, as in %'(ra+) [respectively, 4'(ra —)]; the +
limit is to be understood for such ambiguous functions if
no sign is given explicitly. If a function N has two argu-
ments in 0'", and if the limiting values on (BO;BQ) are
order dependent, the argument that approaches BQ last
is given an extra +:

~Gxu,
'(r»+;r, ),

BGx
(r„r»+)

Bn,

stand for the limiting exterior normal-derivative function
on BQ of the Green's function with respect to the left (l )

or right (r) argument. We adopt the convention that
whenever an operator of the type that maps V(BQ) into
itself appears within an (operator) X (operator) product or
(operator) X (function) product surrounded by brackets
[], restriction of the inner variables to BQ and an integra-
tion over BQ is implied. For examples, let PH V(BQ),
and suppose Y [with coordinate representatives
Y(ra, , ra2) ] maps 9'(BA) into itself; we have

For the purposes of the derivations in Sec. IV it is con-
venient to define condensed notation for integrals over
BA, . We let

BG+
ko

(r»ra3+ ) Y(ra3, ra&)
n»

[YP](rai)—= f dw2[Y(ra&, ra, )P(ra2)] ~

[ YG&+ ](rai, r2)—: d 43 [ Y(rai, ra3)G&+ (ra3+; rz) ],
an 0

aG,+ OG,+'
Y

' (r„r2)=f dA3 f dA4an„an, ''
an '

~n

aG+
ko

(ra4+ ~ r2)
Bn

(12)

(13)

exp(iko ~r, —r2~ )
r, ;r 4~ r, —r~

(14)

The superscript + on the G symbols indicates that
outgoing-wave boundary conditions are satisfied at large
distances from the source and from the scattering body
(Ref. 11, Chap. 3.2, or Ref. 15, p. 189).

Let 2 and B be a pair of linear operators mapping
V(BO) into itself, and such that the physical dimension of
B is that of A X (length); both A and B can be ko depen-

Some further notational conventions will be given in Sec.
IV.

Having dealt with needed kinematical preliminaries,
we shall now proceed to formulate the dynamics of
diffraction theory on the basis of Morse and Feshbach's
(Ref. 8, Chap. 7.2) treatment of the complete Green's
function Gz& (r„'r2) associated with a diffraction prob-

lem. Let G&+ (r„r2) be the traveling-wave, free-space

Green's function [Ref. 8, Eq. (7.2.17), with a different
choice of normalization]:

dent, but we shall not make this fact explicit in the nota-
tion. These two operators will specify the particular im-

pedance boundary conditions to be satisfied, in that the
complete Green's function is required to satisfy

(r»., r, ) =0, (15)[AGRI, ](rai, r2)+ B
0 anl

G~z (r, ;r2)=0 if r, &Q, or if rzEA, or both .
0

(16)

We obtain the 1V case, or the D case, by specializing to
3 =0 and B= I&, or to 3 =I

&
and B=0, respectively.

The conditions Eq. (15) are the "surface" boundary con-
ditions on BQ, and depend on the physical properties and
the geometry of the obstacle; sufFicient conditions on 3
and B so that there is a unique Gz& (r„r2) satisfying re-

0

ciprocity are given in the Appendix. The conditions Eq.
(16) are the generalizations of so-called "extended"
boundary conditions (see, for example, Ref. 16, p. 6) to
complete Green's functions.

The Green's functions satisfy an inhomogeneous scalar
Helmholtz equation in their left-hand arguments:

|i (r, —rz) if X=R, N, or D, for all (r„'rz)E(Q'";0'")

or if X=(absent), for all (r, ;rz)E(E;E )

g~+k~ G+ r .rx"o ' ~ undefined if X=R, N, or D, and r&HBQ

0 otherwise .
L

(17)
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We note that Gxk (r„r2)—Gi,
+ (r„r2) is analytic (Ref. 11, p. 72) in r, for any (r„r2)H(Q'";Q'"), r2 fixed, in particular

0 0
for r, in a neighborhood of r2.

More general types of nonlocal, linear, exterior boundary-value problems can be formulated (cf. p. 4 of Ref. 17, and
other references cited therein), in which the speed of sound is position dependent or sound absorption takes place in
0'", or in which the values of the wave function in Q'" explicitly infiuence the limiting values on BQ and reciprocally, at
the level of Eqs. (15) and (17), by means of so-called "trace operator" terms and "Poisson operator" terms in the respec-
tive dynamical equations. We shall not consider these generalizations here.

III. MATHEMATICAL PRELIMINARIES TO EXTRACTION OF THE T OPERATORS

A. De6nition of the four primitive operators

Our goal now is to obtain an—insofar as is feasible explicit —expression for the operator Tsk such that Eq. (1) yields
0

the Green s function Gzk defined in Sec. II. We shall in this subsection recapitulate the definitions of the four opera-
0

tors of Ref. 11, Chap. 2.7, and specify the relations between these operators and the limiting values and normal deriva-
tives on BQ of potentials derived from singlet and doublet layers on BQ.

We define the four linear operators (called "primitive" herein) Uk, Vk, Vk, and Wk, each of which maps a suit-
0 0 0 0

ably well-behaved, complex-valued function in V(BQ) into another such function, as follows

( Uk f )(rai ) = —2 d A 26„+ (rai'ra&) f(ra2)
0 an 0

OG+
k0

( V„ f )(ra, ) = —2 d A2
&

(rai ra2)f (ra2)
0 an Bn„

BG+
0 (ri., ra2)f(ra2)

k

(8'„ f)(ra, )—= —2 n(ra, ) V, dAz
&0 an Bn„

aG„+
(Vi', f)(rai)—= 2 I dA2

&
'(rai', raz)f(ra2)0 an Bnl

(18)

(19)

(20)

(21)

The integrals on the right-hand sides of Eqs. (18)—(21) ex-
ist as (possibly improper) "principal-value" integrals' for
any fixed r» EBQ. The right-hand side of Eq. (21) can be
evaluated in two ways, as rI~ra& from either Q or from
Q'". In view of the jump conditions Eq. (27), these limits
coincide.

We note the important results (Ref. 11, pp. 61 and 62)
that the operators Uk and 8'k are symmetric, while the

0 0

operators Vk and Vk are transposes of one another (and
0 0

hence the notation is justified). We note also—see Sec.
III B, Sec. III C, and Ref. 11, Eqs. (3.45) and (3.48)—that
beyond these adjoint properties the primitive operators
are not independent, that is, there exists a nonlinear
operator-algebraic relation connecting them.

At least for ko&0, the four primitive operators admit
of a simple physical interpretation in view of the relations
giving a fiuid's Bow velocity field and pressure field in
terms of a velocity potential field (Ref. 8, p. 308). In fact,
let P(ra) and lt(ra) be singlet- and doublet-layer source
distributions, respectively, on BQ such that the associated

velocity potentials, for r, EQ U Q'", are [Ref. 11, Eqs.
(2.31) and (2.33)j

u (r, ) = — d A z G„+ (r, ; ra2)P(ra2)
an 0

(22)

BG
0

(ri ra~A(ra» .
k

U(r, )= —I dA~
aQ Bn

(23)

Then the limiting values (which are proportional to the
limiting surface pressures) and limiting normal gradients
(which are the limiting normal fiuid velocities) derived
from u and u on BQ can be expressed in terms of the
operators Uk, Vk, Vk, and 8'k according to Table I

0 0 0 0

(see Ref. 11, Theorems 2. 12, 2.13, 2.19, and 2.21), where
the + or —subscripts indicate whether BQ is approached
from Q'" or 0, respectively. From the results given in
Table I, the following jump conditions are obtained (Ref.
11,Theorems 2.12, 2.14, 2.18, and 2.21):

rand

TABLE I. Effects of the operators UI, , V&, V&, and 81, .
0 0 0 0

Q+, v+
Bu+ Bv+

Bn
'

Bn

Singlet-layer density P

Ug /2

(VI,' +Ig)/2

Doublet-layer density l(

(V„+I )/2

8'I, /2
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u+ —u =0,
V+ U

(24)

(25)

Bu+
Bn

Bv+

Bn

Bn

Bn

(26)

(27)

B. The radiation impedance and admittance operators

Let ko be complex with Im(ko) ~0, and let iIlk (r) be
0

an outgoing-wave solution to the scalar Helmholtz equa-
tion in Q", for which the sources are all in 0 or are dis-
tributed on BQ. In view of the existence and uniqueness
theorems for the exterior Dirichlet and exterior Neu-
mann boundary-value problems (Ref. 11, Chaps. 3.3 and
3.4), the wave function 'Ilk (r) is completely and uniquely

0
determined either by its limiting-value function
'I'& (ra+), or by its limiting-normal-derivative function

0

(B%'& /Bn)(ra+) on BQ. Hence there is a one-to-one
0

correspondence established, in that a limiting-value func-
tion on BQ for some outgoing-wave solution uniquely
determines a limiting-normal-derivative function on BA,
and conversely. Moreover, any reasonably well-behaved,
complex-valued function on BQ can serve in either role,
and there is obviously a linear relationship between the
limiting-value functions and the corresponding limiting-
normal-derivative functions. There must, therefore, exist
two mutually inverse operators —we shall suppress the
BQ dependence and call them Zk and Z k

'—which map
0 0

V(M) into itself linearly, and which have the uniquely
defining properties that for any outgoing-wave solution
+„+(r),

k
0 „+ (ra+ ) = Zk

an
(ra»

(28)

Bn
(ra+ )=(Z k '4'k )(ra) .

0 0

We note that "mutually inverse" here means that
'V 'V V'

k ko 0 ko ko (29)

The "ha.cek" in Zk is intended to distinguish this entity
0

from the conventional surface acoustic impedance of an
obstacle (Ref. 8, p. 311); Z& depends on the geometry of

0

the obstacle and the physical properties of the ambient,
sound-transmitting Quid, but does not depend on the
physical properties of the obstacle. In physical terms,
Zk is proportional to the nonlocal operator that maps

0

the local normal velocity field into the local pressure field
just outside BQ, for a free-space acoustic wave satisfying
outgoing-wave boundary conditions at infinity. Accord-
ingly, we shall call the operators Zk and Z k the "radi-

0 0

ation impedance" and "radiation admittance" operators
for i)A, respectively. [As we are concerned primarily
with diffraction in the frequency domain rather than in

'V V'

Zko Z ko

Z i=Z.
ko ko

(30)

where —r means the inverse of the transpose (or, what
proves to be the same, the transpose of the inverse) of an
operator.

We shall now undertake some operator manipulations
suggested by the argument of Ref. 11, Chap. 3.5, or Ref.
22, Sec. II. The results of Table I will be used to express

V

the operators Zk and Z k in terms of the operators
0 0

defined in Eqs. (18)—(21). Let u(ri) and U(ri) be as
defined in Eqs. (22) and (23), respectively. The limiting
values and normal derivatives of u(r, ) as r, ~r»+ are
given in terms of the singlet-layer distribution P(ra2) by
the results of Table I; elimination of P between these ex-
pressions yields

Bu+
"+= Uk ( Vk Ia)—

0 0 Bn
(31)

and hence, comparing Eqs. (28) and (31), we must have

Z„=Uk (Vk Ia)—
Z ko'=( Vko Ia)U„O' . — (32)

Similarly, applying the results of Table I to Eq. (23), and
elimination of P, implies that

BV+
U+ = ( Vk +Ia )8'„' (33)

We infer from Eqs. (28) and (33) that

the time domain, we have incorporated into the operators
defined by Eq. (28) certain simple factors that are normal-
ly not so incorporated —see Ref. 8, p. 311; note that the
operators Zo and Z 0

' are well defined. ] In this connec-
tion, Beranek (Ref. 20, Part XII) defined a complex num-
ber "radiation impedance'* for an acoustic emitter in
terms of the geometrical averages over the radiating sur-
face of the normal velocity distribution and of the pres-
sure distribution.

The operator Zk can also be construed from a
0

different physical viewpoint: We suppose that 0 coin-
cides with a quid-filled cavity that is completely sur-
rounded by a hypothetical material with surface acoustic
impedance given by the nonlocal operator Zk . Then any

0

acoustic signal of frequency koc that impinges on BQ
from the inside will be absorbed completely without re-
verberation by the material; the "room" Q together with
the given wall conditions on BQ comprise an anechoic
chamber, at least for signals with frequency koc. As we
shall discuss further in Sec. III D, operators analogous to
Zk and Z k, and the corresponding entities in the time

0 0

domain, have a long history of appearance (sometimes
implicit) in investigations of boundary-value problems.

The argument of Maccamy and Marin (Ref. 21, Ap-
pendix, proof of Lemma 1) for the two-dimensional case
has an obvious three-dimensional analog; accordingly,
both Zk and Z k

' must be symmetric operators, that is,
0 0
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Zk, =(Vi, +Ia)IVk, '

Z k
'= IVk ( Vk +Ia)

(34)

Zk '=Uk '(Vk —Ia»
(35)

Zk, = IVk, '( Vk;+Ia»

Z k
' = ( Vk +Ia )

'
IVk

By taking adjoints of both sides of Eqs. (32) and (34) we
find that

Z„o= ( V„o Ia
—
)

'
Uko,

We also can obtain the adjoint forms Eqs. (35) and (36) by
using the definitions Eq. (28) in Eqs. (3.79) and (3.80) of
Ref. 11.

We shall conclude this subsection by establishing for-
mal relationships between certain (two-sided) limiting
values or limiting normal gradients of the N and-D-type
complete Green's functions, and the operators I&, Zk,

0

and Z k
'. The results, that is Eqs. (38)—(41), will be stat-

0

ed in a naive mathematical form, which is meant to sug-
gest a sequence of operations such as those that were
used to obtain Table I.

%'e will use the following formula, which can be de-
rived as sketched in Ref. 8, p. 808:

BG+
0

(ra3+ r2)
Xke„..(r])G~~ (r],'r2) —Gk+ (r„r,)e„..(r, ) = d&3 Gk (1] la3)

8

aG+
0 +ra3) &k ( a3+ r2)

Bo„ 0

where for X=R, N, or D, the leading factor B,„(r]) is

redundant by Eq. (16).
We consider the N case first. In Eq. (37), let ri ~ra]+,

followed by rz r&z++. Using the results of Sec. III A,
we obtain an operator equation which can be solved to
yield the symmetric limit operator

GNk (ra]+ ra2+ + ) Zk (ral ra2) (38)

Bn
(ra]+; ra2+ + ) =5an(ra], ra2) . (39)

For the D case, we first take the limiting normal gra-
dient of both sides of Eq. (37) as r]~r»+, and then let
r2~r&2+ +. The solution of the resulting operator equa-
tion is

~&Dk,
(ra]+ ra2+ + ) = ~an(ra] ra2) .2

anl
(40)

A fourth limiting form can be derived from Eq. (37) (D
case) by taking the limiting normal gradients of both
sides first with respect to r, as r, —+r»+, then with
respect to r2 as r2~r&2++. The solutions of the result-
ing operator equation and Eq. (36) imply that we have the
symmetric limiting operator

8 GDk
(ra, +;ra2++ ) = —Z k '(ra, ra2) .

Bnl Bn, 0
(41)

where we have used Eq. (35). Physically speaking then,
Zk (ra, ', ra2) is proportional to the acoustic overpressure

0

at the surface point r&&+ with a time-harmonic point
source at r&z+, provided that the obstacle forces the
sound wave to satisfy "sound-hard" boundary conditions
on BQ. Next we let r, ~r»+, and then take the limiting
normal derivative of both sides of Eq. (37) at ra2++; an
operator-algebraic equation is obtained, the solution of
which is

C. Mathematical observations

In this subsection, we shall note that the results of
Secs. IIIA and IIIB give rise to certain mathematical
properties of the operators discussed there; these proper-
ties do not seem to have been stated or investigated ex-
plicitly in the mathematical literature concerned with the
diffraction problem.

We note first that if we combine Eq. (32) with Eq. (35),
and Eq. (34) with Eq. (36), we find that the operator prod-
ucts Vk U& and 8'& Vk must be symmetric operators.

Suppose now that 0 is bounded and nonempty. The
operators U& and Vk

—I& each have as null space the
0 0

linear span of the functions (Bu /Bn )(ra —
) corresponding

to solutions u(r) to the interior homogeneous Dirichlet
boundary value problem for the scalar Helmholtz equa-
tion (Ref. 11, Theorems 3.30 and 3.22), while Vk +Ia

0
and 8k have as null spaces the linear span of solution

0

functions U(ra —) corresponding to solutions U(r) of the
interior homogeneous Neumann boundary-value problem
(Ref. 11, Theorems 3.32 and 3.17). If Im(ko) ~0, these
null spaces are trivial, i.e., comprise just the zero function
on BA, except at countable, isolated sets of real kp values.
But as a result of Ref. 11, Theorem 3.13, Z& and Z &

'
0 0

will exist whenever Im(ko) ~0, in particular, at the ex-
ceptional values of kp. Hence, when kp tends to an ei-
genvalue of the interior homogeneous Dirichlet or interi-
or homogeneous Neumann problem, the operator expres-
sions of Eq. (32) and those of Eq. (34) represent operator
quotients, the limits of which exist in a suitable sense and
are the operator Z& or Z &

' for the exceptional wave
0 0

number. A further mathematical property of the opera-
tor kpZk is derived in the Appendix to this paper.

0

The third observation stems from scrutiny of an itera-
tive process suggested by Born, and mentioned by Strat-
ton and Chu, for the improvement of an approximate
solution to a boundary-value problem for the scalar
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Helmholtz equation. This process converges in one itera-
tion, generally to an incorrect source distribution, and
does not afford a means for the systematic improvement
of an initial approximate solution, as was noted by
Franz25 and Schelkunoff. This property of Born's pro-
cess can be analyzed into the present operator language.
In fact, consider two-row vectors Q such that the first
and second rows consists of, respectively, any singlet lay-
er of sources and any doublet layer of sources on BA.
Operators in this "direct sum" space are two-by-two ma-
trices, each of the four elements being an operator of the
type encountered in Secs. IIIA and IIIB. One such
operator is the identity —let us call it I&&BI&—which has
I& for its two diagonal elements and the zero operator for
its oF-diagonal elements. Another operator of this type
we shall call P, which is defined as follows:

p

kp

—,'(Vg +Is) (42)

If we define the operator X as

0
(43)

It is straightforward to show, with the aid of Eqs. (32)
and (34)—(36), that the operator P is an idempotent pro-
jection operator, that is,

P =P or P(I&eI& P)=0 . — (45)

Moreover, as is easily verified, the "unit space" of P, that
is, vectors such that PQ=Q, consists of vectors Q such
that the resulting superposition of singlet- and doublet-
layer acoustic potentials, calculated according to Eqs.
(22) and (23) and added, is identically zero in 0, while a
vector in the "null space" of P gives rise to an acoustic
potential that is identically zero in Q". In view of Eq.
(44), there is a simple relationship between the unit space
and the null space of P, and the null space and the unit
space of P, respectively.

We note that the "method of Neumann, " as described
by Hadamard, for the solution of an exterior Neumann
problem for the Laplace equation by means of the solu-
tion of an interior Dirichlet problem, is conveniently for-
mulated in terms of these properties of the corresponding
operator P.

D. Citation of previous work involving ZI, , Z zp p

or their analogs

Following is a sketch of previous (in some cases impli-
cit) appearances of operators akin to ZI, to Z i,

' that
p p

were found in a search of the relevant literature.
A certain approximation scheme for the numerical

treatment of diffraction theory problems makes implicit
use of the operators Z& or Z I,

'. This method, which
p p

then there is a simple relation between P and its adjoint
(using an obvious definition) P':

(44)

presumes that ko ~
X (obstacle dimensions) is of the order

of, or less than, 1, and which makes direct numerical use
of explicit discrete sets of basis functions on the obstacle's
boundary, is originally due to Waterman, and is some-
times known as the T-matrix method ' see also Ref.
11, pp. 104—106, and Refs. 30 and 31 for more theory and
applications. (Analogous to the imprecise occasional
usage in quantum scattering theory, the T matrix referred
to here denotes a complete set of only fully on the wave-
number shell matrix elements of the T operator. ) Al-
though Waterman's T-matrix method can be subsumed
within the general T-operator formalism, we shall not ex-
plore this thoeretical relationship in detail. We remark
only, first, that Waterman's method, in the form of Eqs.
(3.92) and (3.93) of Ref. 11, is closely allied to the
mathematical task of finding a finite-rank kernel, as
defined in Ref. 33, to approximate the operator Z I,

' or
p

Z& of Sec. III B herein; second, that the unique solvabili-
p

ty of the null-field equations (as formulated in Ref. 11,
Theorem 3.45) derives from the existence of the operators
Z I,

' and Z& for all ko such that Im(ko) ~0; and third,
p 0

that both in principle and in practice [see paper II], reali-
zations of the T-operator approach have the capability of
treating short-wavelength, as well as moderate-to-long-
wavelength, diffraction phenomena.

We note that a least-squares method for treating poten-
tial theory problems that is similar to Waterman's
method was proposed earlier by Davis and Rabi-
nowitz, ' and was implemented in acoustic radiation
problems by Schenck. The operator ZI, , which apart

p

from simple factors maps the surface normal velocity dis-
tribution into the surface pressure field on an acoustic ra-
diator, is defined implicitly in Eq. (11) of Ref. 36. A finite
matrix approximation to the kernel Z& (r», rs2) for sur-

faces that are spheres deformed only along radial lines
(called star-shaped surfaces) is obtained in Eq. (20) of Ref.
37.

The "method of Neumann" described by Hadamard
and a procedure described by Hormander entail the
solution of an integral equation derived from potential
theory that amounts to a particular application of Eq.
(35) for Zo and Z 0 ', respectively. Taylor defines, and
studies the properties of, a "Neumann operator" N,
which in the present context corresponds to the full spec-
trum of operators Z &

', —~ (ko& ~, transformed to
p

the time domain.
In the context of boundary-value problems associated

with I.aplace's equation in E, Kang [Ref. 40, Eq. (9), and
the unnumbered equation on line 9 of p. 1446] states the
analog of Eqs. (41) and (38), respectively. Kang attri-
butes the second result to Hilbert, ' and attributes to
Birkhoff the definition of a generalized analog to Z&

p

which Birkhoff called the "albedo function" [Ref. 42,
$12]. Birkhoff also in effect defines the operator analo-
gous to Z i,

' in a special case (cf. Problem II' on p. 174 of
p

Ref. 42), and states (Ref. 42, p. 175) that this operator is
unbounded and that its kernel is nonintegrable. We shall
analyze the dominant singular behavior of Z& and of

p

Z I,
' for smooth BO in paper II.

p
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Levy [cf. Ref. 43, p. 117, Eq. (15)] in effect states an
analog of Eq. (41) as a means of obtaining an immediate
solution to the Dirichlet boundary-value problem for
Laplace's equation in E . In related work Levi (work-

ing in E ), Cisotti (in E ), and Levy ' 7 (in E2 and E3)
studied the behavior of either G&p(ri, ra2) or
( 8G22p/Bn „)(r, ; ra2 ) when r, is close to ra2 (see also paper
II).

Several comparatively recent papers ' ' ' have
dealt explicitly with the task of obtaining and verifying
approximate forms of Z k

' or its analogs, in some cases
in the time domain. One subset of papers ' ' inves-
tigated nonlocal approximations that were intended to
realize Z k directly as a kernel of finite rank, the appli-

0

cation being to enforce outgoing-wave boundary condi-
tions (also called radiation, absorbing, or nonretlecting
boundary conditions) on an artificial outer boundary. In
another subset, a local condition, usually involving
differential operations, was sought to approximate the
effects of Z k ', where the BQ was either an artificial outer
boundary, ' or a generic boundary, or the bound-
ary of the scattering obstacle itself; the latter are
called "on-surface radiation conditions, " or the like, in
Refs. 58—63.

IV. STRUCTURE OF THE T OPERATORS

In this section, we shall use the mathematical results of
Secs. III A and III 8 to obtain an expression, of the type
of Eq. (1), for the Green's function Gz& defined by Eqs.

0

(15)—(17).
Let us now consider, for any fixed r2, the wave function

in r&

GRk (rl r2) Gk (rl r2)6n (r2) (46)

(r»+;r2) . (47)

In view of Eqs. (16) and (17), this wave function is a
source-free solution to the scalar Helmholtz equation for
r& HQ'", which satisfies outgoing-wave boundary condi-
tions at infinity, and which is identically zero if rzE. Q.
The boundary values and normal derivatives of this exte-
rior solution must satisfy Eq. (28), that is,

G~& ( ra 1 +;r2 )
—G„+ ( ra 1 +;r2 )6n, „(r2 )

(rai+;r2) = — [Z k '( A +BZ k
') ' AZk ]anl

aG+
k«x z —'G+ —Iko k«

nl

X(ra, +;r2)6,„(r2) . (49)

We note that the factors 6,„(r2) on the right-hand
sides of Eqs. (48) and (49) are redundant: if
r2&A, Gk (r1,'r2) is (in ri) an outgoing-wave solution
with no sources in 0,'", so that its boundary values and
normal derivatives satisfy Eq. (28), and accordingly,

BG+
(r„+;r,)=0, if r2+0 . (50)

k
Z 'Gk+ —Ik« k«

1

Reciprocity for Gk+ and Eq. (30) now imply that
0

aG+
k«

Ia (r„ra2+)=0, if r, EQ .G+z -'—
k« k« (51)

Having obtained the exterior limiting values and nor-
mal gradients on BA of Gz& with respect to its left-hand

0

argument, we can use Eq. (37) to reconstruct the entire
exterior solution. Before stating the intermediate result,
we define a quantity that will appear in the solution of the
Robin boundary-value problem:

[Gk+,Jgk G/,+, ](ri', r2)

G+Z —1

k« k«

BGk+

Ia [(3+BZ k
') 'AZk ]Bn,

BG+
0k

X Z 'G+ —Ia
nl

(ri, r, ) . (52)

G/ik„(r1;r2) =Gk (ri', r2)6,„(r2)

BGk+
+Zk Z k Gk I~

Bn, « ' 0nl
(r„r2)

We combine Eqs. (37), (48), (49), and (52); after some
algebra, we obtain

[Gk', ~~k, Gk+, l(ri;r2) (53)
The exterior limiting values and normal gradients on BQ
of G/ik also satisfy Eq. (15), so that we now have two

0

functional equations for two unknown functions. Follow-
ing some algebra, we find that

The right-hand side of Eq. (53) is not yet in the precise
form of Eq. (1) needed to abstract the T operator by "re-
moving" the Gk 's. In order to achieve the desired form,
we first obtain, by replacing G~& with Gk+ in Eq. (37),

0 0

aG+
k«

X Z k Gk —Ig0 0 anl
(ra, +;r2)

G~q (ra, +;r2) = [ —
( 3 +BZ k

') ' AZk +Zk ] 0=[6,„(r,) —6,„(r2)]Gk+ (r, ;r2)

aG,+ aG+
+ I~6k+ —Gk I~Bn, o o 8nl

(r, ;r2) . (54)

X6,„(r2), (48)
It is also convenient first to make the following
definitions:
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BG+
k0

(r, ;r2) .
aGk+

[Gk+,FsnG»+ ](ri r2)=—
2

IsG»+, +Gk+Is ~„

[6»+Ho» Gk+ ](ri,'r2)= —
—,
' I d r2[[(V„+ko)G»+(ri'r3)]G», (r2', r2)+Gk+(ri'r2)[(~i+ko)G» (r3,'r2)]I

(56)

(57)

0 0+ Zk (r,
Bn, 0 Bnr

—[Gk+,~z», G»+, ](ri,'r2) . (58)

The specializations to the N and D cases are obtained,
respectively, by setting the operators A =0 and B=0 in
Eq. (58), with the results

GNk (rl r2) Gk (rl r2)+ I. Gk Hnk Gk ](rl r2)

[G„+F,„G„'—](r,;r, )

BG+ BG+
k0 k0+ Zk (r„'r2),

Bn o 8nI

GD» (r, ;r2) =Gk+ (r„r2)+ [Gk+Hnk Gk+ ](ri, r2)

(59)

+ [Gk+,FBDG» ](ri', r2)

—[Gk+Z k 'GI,+ ](r„'r2) . (60)

It is now straightforward to infer from Eqs. (58)—(60)
expressions for matrix elements of the T operators with
respect to pairs of functions in P(E ), as in Eq. (6); we
shall not do so here, however. A discussion in the Ap-
pendix deals with the subject of imposing restrictions on
the operators 2 and B so that the existence of the opera-
tor ( A +BZ „') ', which appears in Eqs. (48), (49), (52),
and (58), can be guaranteed. The Appendix also specifies
conditions on 2 and B so that the T~+& operator is sym-

0

metric, which implies in turn that the associated com-
plete Green s function satisfies the principle of reciproci-
ty, Eq. (4).

In Eqs. (58)—(60) we have achieved the principal aim of
this paper, that is, we have found expressions, in terms of

The term "operator" is used herein to describe certain
entities, as the Jzk in Eq. (52) and the Fan in Eq. (57),

0

which differentiate functions standing on both sides of a
matrix element expression. The name operator needs
qualification therefore, insofar as the result of an opera-
tion on a function in V(E ) is not another function either
in V(E ) or V(BQ), and such "operators" generally can-
not be multiplied. These entities can be characterized as
distributions on the product space 9'(E ) P(F- ).

Let us now multiply both sides of Eq. (54) by the factor
—,', and add corresponding sides of the resulting equation
to Eq. (53). Following the use of Eqs. (8) and (55)—(57),
the desired expression for G&+k is obtained:

0

Gi+, k (r, ;r2)=G»+(r, ;r2)+[Gk+Hnk Gk+ ](r„r2)

known operators, and of formally simple operators whose
existence is at least plausible, such that Eq. (1) is satisfied.
The only operators of the latter type that appear are
( A +BZ k

') A, Zk, Z k ', or a product of these.
0 0 0

Scalar-wave diffraction theory in the frequency domain,
for given obstacle geometry and surface boundary condi-
tions, thus reduces to finding suitable approximations for
certain operators of this class for each frequency of in-
terest, and quadratures.

APPENDIX: MATHEMATICS
OF THE IMPEDANCE

BOUNDARY-VALUE PROBLEM
In this appendix we shall establish conditions on the

operators A and B of Eq. (15) such that the existence,
uniqueness, and reciprocity of the Green's function
Gz+k (r, ;r2) are guaranteed. We will assume in this ap-

0

pendix that Im(ko) )0 and that, unless otherwise stated,
k0%0.

We sometimes use Dirac bra-ket notation for
complex-valued functions on BQ: the value of a function
l P ) at rs E BQ is denoted & rs l P ) and its complex conju-
gate is &Plrs). We define the sesquilinear (i.e., Hermi-
tian) inner product for an ordered pair of such functions
by

&pl&&—= I d&&glrs&&rslp&=&pl&&'. (Al)

An operator Y that maps this space of functions into it-
self has the "matrix element" &pl Ylg); the Hermitian
adjoint Y of Y is that operator which yields, for all
choices of lP) and lP),

(A2)

If Y = Y, the operator Y is called Hermitian.
Let 4k (r) be an outgoing-wave solution in Q'" to the

scalar Helmholtz equation, such that &rslOk ) and
0

&rslB„V» ) are its limiting values and limiting normal
0

derivatives, respectively, on BQ. Equation (28) implies
that

(A3)

Theorem 3.12 of Ref. 11 now reads as follows. With
lB„+k ) as above, if Im(&B„%'k lkoZ» lB„+k ) ))0, then

necessarily the corresponding function 4k (r)—=0 in all
0

Q'", and accordingly &rsl%'k ):—0 and &rslB„'Pk ) —=0
everywhere on BQ. But, since &rslB„%'k ) can be any

0
reasonable function, this is just the statement that the
skew-Hermitian part $(koZ» ) of the operator koZ»,

0 0
defined for any operator Y as

eV(Y)—:(2i) '(Y —Y ), (A4)
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(A+BZ g ')P=Q (AS)

has a unique solution /&V(BQ) for every choice of
PE V(BQ). In order to encompass a wide range of possi-
ble applications, it is desirable that these restrictions be
reasonably general and natural in form, and not involve
relatively inacessible operators as Z & and Z& . As in

0 0
the case of the theory of the Fredholm alternative (Ref.
11, Theorem 1.30), the analysis is conveniently divided
into the establishment of uniqueness criteria and of gen-
eral existence criteria for the solution of Eq. (A5). Let
0&n(rs) be the function in V(BA, ) which has the value zero
for all r&EBB. In order to prove that there is at most
one solution to Eq. (A5), we want to restrict A and B so
that the only solution function P(rs) to the homogeneous
equation

( A +BZ k
'

)(h =Own (A6)

is itself 0&&. Concerning the existence part of the argu-
ment, the right-hand side of the functional equation [say,
for G~& (r&&+;r2)] derived from Eqs. (15) and (47) ap-

0

pears to have no usable restrictions to a linear subspace
of V(MI). Accordingly, we want Eq. (AS) to have at least
one solution for every PE V(BQ), and therefore we need
to restrict A and B so that the operator 2 +BZ &

' maps
0

P(BQ) onto itself; equivalently, we require that the homo-
geneous adjoint equation

is a negative-definite operator. Similarly, we can prove
that S(koZ k

'
) is negative definite. This property of

0

koZk implies that, if ko is real, the integral over BQ of
0

the normal component of the time-averaged acoustic en-

ergy flux [Ref. 65, following Eq. (3)] is always positive for
nonzero outgoing-wave solutions.

We shall now turn to the question of the invertibility of
the operator 3 +BZ &

', or, equivalently, of the operator
0

AZ& +B; this property has been taken for granted in
0

Eqs. (48), (49), (52), and (S8). The unqualified statement
that an operator X is invertible means that there is a
unique operator X that is both a right and a left in-
verse operator for X.

We want to impose restrictions on the operators 3 and
B which guarantee that the functional equation

(A'+Z k 'B')X=Osn (A7)

has only the trivial solution g=0&z.
In what follows, a certain unified, and Z&-

0

independent, set of restrictions on 2 and B is proposed.
The conditions Eqs. (All) and (A12) are shown to be
sufficient for the uniqueness of a solution to Eq. (A5), if
the solution exists; we shall then prove that a solution to
Eq. (A5) necessarily exists if A and B are also required to
satisfy the conditions Eq. (A8) and (A16).

We note that, given the invertibility of 3 +BZ &, the
0

operator expression (A+BZ I,
') 'AZi appearing in

Eqs. (52) and (58) should be symmetric in order that the
Green's function satisfy Eq. (4). Accordingly, we restrict
ourselves to operators 3 and B such that BA is sym-
metric, that is,

BA'=(BA')'= AB' (A8)

(Z „-'+B-'A )y=q e V(an) .

In the latter case, the impedance boundary-value problem
reduces to a nonlocal version of the problem formulated
in Ref. 11, Eq. (3.67); moreover, the operator
Z I,

'+B 'A is symmetric by Eqs. (30) and (A8), so that
in this case the establishment of general existence and
uniqueness of solutions to Eq. (A9) can be addressed
simultaneously.

We shall, similar to the proof of Theorem 3.37 of Ref.
11, use the result that $(koZk ) is negative definite to es-

0
tablish uniqueness criteria for the generalized impedance
boundary-value problem of Eq. (15). Let N be a Hermi-
tian operator in V(BQ) and let p and v be real numbers so
that p/v has the physical dimension of length. It is
straightforward to establish the operator identity

Second, the impedance boundary conditions Eq. (15) are
homogeneous; that is, if X is any invertible linear opera-
tor mapping P(Bfl) onto itself, then the simultaneous
substitutions 3 ~XA and B~XB will yield a physically
equivalent boundary-value problem. [Note that Eq. (58)
is invariant under this transformation. ] In particular, if
B is invertible we choose X=B ', so that Eq. (A5) be-
comes

S[(v koZ k B pkoA )N(AZ—k +B)]+4[(p A NA+v B NB)koZk ]

pS(koB NA )—+v. Z k $(koB NA )Zk
0 0

(A 10)

The latter result suggests the following: we further restrict 3 and B to have the properties that there exist Hermitian X
and real p, v such that

p 2 XA+vB KB=I&, (A 1 1)

and such that the operator

g(koB NA) is positive semideflillfe .

Suppose now that +I+, is an outgoing-wave solution in 0" such that its limits on BQ satisfy the homogeneous im-
0

pedance boundary conditions Eq. (15), that is,
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&r, l
Ale„+ &+&r,lBla„e„+ ) =&r, l(Az„+8)la„e,+ &=0,„(r,) . (A13)

(A14)

If we take the (B„+i+, l, lB„+i+, ) matrix element of both sides of Eq. (A10), the first term on the left-hand side vanishes

because of Eq. (A13), and we infer that, using Eqs. (A3) and (All),

(B„%'i+, lS(k Zi, )l8„%'„+ ) =p (B„+i+, lS(k*B 1vA )l~3„%„+)+v (4„+ lS(k*B XA )l'0„+ ) .
0

both A y=O&„and B'y=O&~ implies g=O&~ . (A15)

Equivalently, we presume that there exists at least one
real number p with the physical dimension of /ength such
that the Hermitian operator

p AA +BB is positive definite . (A16)

We will now prove that a solution to Eq. (A5) always
exists, given that A and 8 satisfy Eqs. (AS), (Al 1), (A12),
and (A15) or (A16), and given the geometrical property
that every open ball with bounding radius a )0 and cen-
tered at r& E BA contains a nonempty intersection with A
as well as O'". In fact, we suppose to the contrary that
there is a solution y&0sn to Eq. (A7), and will arrive at a
contradiction. Let &bi+, (r) be defined in terms of a certain
superposition of single- and double-layer potentials, as
follows:

C'a {r)=—
I
6~+A y](r)—

BG+
k0 8'y (r) .

Bn,
(A17)

The wave function @i+, (r) satisfies the Helmholtz equa-
0

tion for all rH fl U 0'", and satisfies outgoing-wave con-
ditions as r~~. Let us compute the interior limiting
values and derivatives of @i+, (r) as roars. We find, with

0
the aid of Table I and Eqs. (35) and (36), that

If we imagine that there is a ( rale„%'i, ) that is not iden-
0

ticaliy zero and that satisfies Eq. (A13), we have an im-
mediate contradiction, since the left-hand side of Eq.
(A14) must be negative, while Eq. (A12) implies that the
right-hand side of Eq. (A14) is non-negative. Thus the
only (rs 8„'Pi+, ) mapped into the zero function on BO as

per Eq. (A13) is itself the zero function on BQ. Hence
there are no nontrivial outgoing-wave solutions to the
specified homogeneous exterior impedance boundary-
value problem, that is, if the Green's function Gzk exists,
it is unique.

It remains to prove a solution to Eq. (A5) always exists,
given suitable restrictions on A and B, by showing that
Eq. (A7) has only the trivial solution. If either A is inver-
tible or B is invertible, the problem reduces to one involv-
ing symmetric operators, as in Eq. {A9), given that Eq.
(A8) holds. An example of a physical problem for which
neither of the corresponding operators 2 or B has an in-
verse occurs when the complete Green's function obeys
sound-hard conditions on a part of BQ and sound-soft
conditions on the remainder of BQ; note, however, that
this problem belongs to the class for which yH V(BA)
such that

(rs —)= —,'[(Vi,' Is)(—A'+Z i, '8')g)(rz) . (A19)

Since y satisfies Eq. (A7), the right-hand side of both Eqs.
(A18) and (A19) is Osn(rs). With the aid of the jump con-
ditions Eqs. (24)—(27), we find now that

@~ (ra+)=IB'Xl(rs» (A20)

oe+
k0

(rz+ ) = —[ A 'g](rs) .
Bn

(A21)

= [( AB'—BA ')y](rs) =Own(ra), (A22)

according to Eqs. (A20), (A21), and {AS). But we proved
earlier that any outgoing-wave solution with exterior lim-
iting values and normal derivatives satisfying Eq. (A13)
must be identically zero in 0" if, as we have presumed,
Eqs. (Al 1) and (A12) are satisfied. Accordingly, we have
from Eqs. (A20) and (A21) that the function y satisfies
both

3 y=O~~ and B'y=O~~, (A23)

so Eq. (A15) implies that y=Osn, contrary to our hy-
pothesis. Hence, given our assumptions on 3 and B, Eqs.
(A6) and (A7) both have only the trivial solution, that is,
the operator A +BZ i,

' maps V(M) onto itself in a one-
0

to-one manner, and Eq. (A5) always has exactly one solu-
tion /&V(BA) for any QHV(BA). By definition, there-
fore, there is a unique operator ( A +BZ z ') ' that acts
as both a left and right inverse to 3 +BZ k

'.
0

The proof in the last paragraph used the presumed
geometry of the obstacle in an essential way: if, for exam-
ple, the obstacle had been at least in part a thin plate, or
a thin screen with apertures, Eqs. (A18) and (A19) would
have been meaningless for a part of BQ. We shall not at-
tempt here to establish existence theorems for such
geometries.

We remark that the special impedance boundary con-
ditions analyzed in Ref. 11, Chap. 3.7, are of the type
that all the above restrictions on 3 and B can be satisfied.
In fact, we take A =A, (rs)Is and 8 =I&, with
Im[k0 k(rs) ] ~ 0 for all rs H BQ. Then the choices
p = any real length, v= 1,p=O, and

Thus the exterior limiting values and normal derivatives
of &i+, (r) satisfy the homogeneous impedance boundary

conditions Eq. (A13):
P

ae+
[A@i, ](rs+)+ 8 (rz+)

Bn

e„+(rs—)=—,'[Vi (A'+Z „'8 )y](ra) (A18) X= [p'lz(r&) I'+1]-'I, (A24)
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yield Eqs. (A8), (Al 1), (A12), and (A16).
If ko&0 is real, the conditions Eqs. (A8), (All), and

(A12), together with Eq. (15) and an identity like Eq.
(A10), can be manipulated to show that the integral over
BA of the normal component of the time-averaged total
acoustic energy Aux derived from 6„+k is never positive;

0

that is, the obstacle can only absorb or reAect, and cannot
amplify, any acoustic signal of frequency koc that im-

pinges upon it. In this connection, no absorption of
acoustic energy takes place for the case of X-type or D-
type boundary conditions on BA. Correspondingly, it can
be verified by explicit computations that each of the
operators T&& and TDk, which can be inferred from Eqs.

0 0

(59) and (60), satisfies the formal operator identity known
as the (generalized) optical theorem —see Ref. 1, p. 90,
Eq. (5.29). We shall not attempt here to relate these re-
sults to the unitarity properties of corresponding S opera-
tors for acoustic signal scattering in the time domain,
since, as noted in Ref. 7, acoustic-wave propagation takes
place according to the wave equation, while the time-
dependent theory of Ref. 1 was developed for the

8 XA+ 3 XB is negative semidefinite (A25)

is suScient for uniqueness. A special case of this result is
that obtained by adapting Theorem V on p. 214 of Ref.
66 to be a valid uniqueness condition for the correspond-
ing exterior problem. Once uniqueness is guaranteed, the
restrictions Eq. (A15) or (A16) on A and B are sufficient
for the existence of a complete Green's function, provid-
ed that Eqs. (A18) and (A19) are geometrically meaning-
ful for all of BO except on those possible isolated points
or curves where BA is not smooth.

Schrodinger equation.
We note that if ko =0, Theorem 3.12 of Ref. 11 breaks

down, and other methods, such as those of Kellogg [Ref.
66, Chap. VIII, Sec. I], can be used to establish some
sufhcient conditions for uniqueness of solutions to Eq.
(A5). We state the following conditions without proving
them: let ko =0, with 2 and 8 such that Eq. (Al 1) can be
satisfied with some Hermitian X and real p, v. Then Eq.
(A8) is needed for reciprocity, and the condition that the
Hermitian operator
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