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We develop a novel approach to dynamical particle correlations in a classical one-component
plasma system. A self-consistent integral equation is obtained for the dynamical local field to be
determined. We show that this dynamical local field possesses the following properties: (i) it simul-
taneously satisfies the conservation and compressibility sum rules; (ii) it has the requisite constant
values depending on frequency for large wave numbers; and (iii) it develops an algebraic tail in the

high-frequency limit for small wave numbers.

We have been witnessing surging activity in the study
of strongly coupled Coulomb systems.! A simple model
of such systems, where the effect of strong correlations
may be studied in a detailed manner, is the classical one-
component plasma (OCP) system, where charged parti-
cles interact with each other in a neutralizing back-
ground. The OCP system is of interest in its own right as
a representation of ions dispersed in a background of a
neutralizing sea of degenerate electrons, or, even though
classical, as a paradigm for the behavior of a degenerate
electron gas at metallic densities. The strength of the in-
teraction can be characterized by the plasma parameter
y =e%k/kT =«>/4mn, the inverse of the electron number
in the Debye sphere, or by T'=e?/akT
[k=(4me’n /kT)!/? is the Debye wave number, and a is
the interparticle distance or Wigner-Seitz radius.] In the
weak-coupling limit ¢ and in the strong-coupling limit "
can be identified as the ratio of the average potential en-
ergy to the average kinetic energy of the particles. Re-
placement of kT by Ze. (Fermi energy) in the case of the
zero-temperature degenerate electron gas provides the
correspondence between the conventionally used
r{(=a/ag.,) and T’ by I'>1.36r,. [A different scaling
results from establishing a correspondence between the r
and I" values where the crystallization of the unpolarized
electron gas (r,"=80) and the crystallization of the classi-
cal OCP (I'""=178) occurs: this yields I'—2.23r,.]

Central to the description of the properties of a corre-
lated Coulomb system is the frequency and wave-
number-dependent dielectric response function e(kw).
Various nonperturbative approximation schemes have
been proposed for the calculation of e(kw) both in the
case of the electron gas®™* and of the classical OCP.>¢
All these approximations can be classified in terms of
their treatment of the so-called local-field factor G (kw)
(to be discussed below) which, in turn, defines an
“effective potential” ¢(k)[1— )] [¢(k)=4me?/k? is
the bare Coulomb potential]. For static properties parti-
cle correlations seem to be described quite accurately by
a dielectric function with a static local field
G (kw)=G (k). Yet, at the dynamic level, they are less
satisfactorily explained through this kind of approxima-
tion. The failure can be remedied by restoring the
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dynamical nature of the local field. In this article, we
present an alternative scheme for determining the
dynamical local field self-consistently. This scheme is
based on the recognition of the importance of the quadra-
tic response function in the kinetic description of the sys-
tem.”> Although, in this respect, the philosophy of the
present work parallels that of Ref. 5, it deviates funda-
mentally from it in its architecture. Reference 5 uses the
velocity average approximation to relate the quadratic
response function to the linear one: Here this is accom-
plished through the moment equation of motion method.
Reference 5 approximates the quadratic response func-
tion through the “dynamical superposition approxima-
tion”: here only a “reducible” structure [Eq. (7b)] is as-
sumed for the quadratic response function. More impor-
tantly, the alternative approach seems to be able to pro-
vide results and meet consistency requirements in areas
where the earlier approximation® was lacking.

Our starting point is the first equation of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy for the distribution function F(v;r?) integrated
over velocities’ and differentiated with respect to time.
The resulting equation for the density pis
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valid to the first order of the external field ®. (The super-
scripts refer to first-order perturbed quantities; p (1 is the
first-order density response of the system, ¢ pp> is the
first-order two-point density-density correlation
response.) After Fourier transformation, Eq. (1) becomes
(w, is the plasma frequency)
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where the linear density, linear kinetic, and double-
density response functions are defined as®

x(ko)®(ko)=pV(ko) ,
Mko)d(ko)= [ (k-vPFV(vika)d , (3)
E(k—q,q,0)P(ko)=(py_¢pa) V(@)

The double-density response function® Z may be replaced
by the quadratic-density response function y(k,w,;k,w,)
through the quadratic fluctuation dissipation theorem>°
(FDT)

E(k—q,q,w)=_72 fd,u S_(uw)x(k—qu;qw—pu)

+x(k—qo—pu;qu)] 4)

in the classical limit.

In the random-phase approximation (RPA), which is
the simplest mean-field approximation, the linear density,
kinetic, and quadratic response functions have the struc-
ture

_ Xolko)
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Xrpalkio;k0,)=

k=k,+k,, 0o=0,%w,, (5c)

where

Xo(k—qu;qu—p)

_ 3 k-vF(v)
Xo(ko)=p [dv—="""0 (62)
fd3 (k-v)*F(v)
o—k-v+io
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and
e(ko)=1—¢(k)xo ko) . (6d)

In the various more sophisticated mean-field approxi-
mations,””* one assumes that the particle correlations
still can be described by a single effective mean field and
the particles move freely in such a mean field. Thus the
structure of the linear-response functions is the same as
that given by Eq. (5), except this time the screening is
provided by the screening function A(kw) augmented by
the dynamical local field G,

Alko)=1—¢(k)[1—G (ko) ]xo ko) , (7a)

rather than by the dielectric function e(kw).
vein, the quadratic response function can be assume
to have the structure (5c¢) with appropriate substitution
e(kw)— Q(kw)

In a similar
le, 11
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This latter observation combined with Eq. (4) provides
the basis for the present approximation.

Substituting the modified Eq. (5) and Eq. (4) into Eq.
(2), we obtain the relationship for the dynamical local
field:

k—qo—py;
Xolk—qo—p;qu) ®)

G(ka)))(o(ka))=

fda

q (#50) q

Ak —qu)A(qw—p)
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Equations (8) and (7) constitute a self-consistent integral equation for the determination of dynamical local field. This
integral equation is four-dimensional and highly nonlinear so that its solution is certainly not an easy matter and has to
be sought numerically. However, with some further assumptions, it can be simplified considerably. By using the expli-
cit representation (6c) of X, in Eq. (8), the integration over the frequency can be carried out!® with the aid of the Cauchy
contour technique. The resulting expression contains contributions both from individual particle excitations (originat-
ing from Y,) and from plasmon excitations (originating from the zeros of the A denominators). We argue'® that these
latter are negligible both for w—0 and w—> o (as is obvious from the satisfaction of the low-frequency and high-
frequency sum rules, as discussed below). For intermediate frequencies, especially in the vicinity of the plasma frequen-
cy, the plasmon pole contribution (physically corresponding to mode-mode interaction) may not be insignificant; it can,

however, always be added to the expression derived below, without affecting its principal features. With this
qualification, we obtain a relatively simple expression for the dynamical local field:
-q)? 1 1 - 1
G(kw)=——i S (k-q) 1 — 1 kq 1 ©)
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This expression has a number of interesting features that
we now proceed to list.

(i) In the static (w=0) limit, the application of the FDT
shows that 1/A(k0)=S(k), the static form factor. Then,
in this limit, Eq. (9) can be expressed as

1 k-
GkO)=—+ 3 =1s5(k—q)S(q), (10)
q(+0) 94

which can be identified as the Totsuji-Ichimaru (TI) ex-
pression!? for the static mean field. Since the TI theory is
known to provide a reasonably good description for the
OCP, this is a satisfactory result. Moreover, the TI
theory satisfies the compressibility sum rule for low cou-
pling, which then ensures that the present theory enjoys
the same property.
(ii) For high frequencies, Eq. (9) reduces to

1

RV
> ka) e k—q—-s(q)], a1

G (koo )=—
q (0) kzqz

as required by the high-frequency o~ * (third frequency
moment) sum rule.!> To the best of our knowledge, this
is the first time a dynamical theory has been able to satis-
fy the leading sum rules both at high and low frequencies.

(iii) At large wave number, carrying out the integration
over the solid angle, we may show that the dynamical lo-
cal field is given by

2 1
lim G(ko)=——=— —1
am Gke==35 2| a0 ]
1 -
3N o) | Alqw)
B 2[1—g(0)], o—
“ l1-g(0), w0 (12)

where g(0)=g(r =0) represents the probability of
finding two electrons at the same place. These results are
in agreement with exact requirements derived by Niklas-
son and Shaw in the appropriate limits.'*

(iv) The iterative solution of the integral equation based
on the RPA input G=0 leads to the first iteration which
for k —0 exhibits the algebraic tail

172
_2¢k* | m —x2/2
Im[G (k) =G (keo)]=Z | = [ dx xe
2 172
_rkZ |2 (13)
Sw |

in the high-frequency limit. We may show that this alge-
braic tail prevails to any order of iteration and indeed is a
feature of the self-consistent solution of Eq. (9). We note
that the presence of the algebraic tail in ImG leads to an
algebraic tail (k*/°) in the imaginary part of the density
response function, in agreement with the previously ob-
tained results of the perturbation calculations.!®> The im-
mediate consequence of such a behavior is that any fre-
quency moment higher than the third is divergent; this is
corroborated again by the appearance of anomalous
powers (o] > in the high-frequency expansion of the
perturbative expression.!>!

(v) The relationship (9) ensures that the plus-function
characters both of G(w) and A Yw) are consistently
maintained.

The integral equation (9) possesses the unique feature
that in view of Eq. (10) it allows an iterative procedure,
based on the exact static solution (obtained from HNC or
Monte Carlo calculations) and leading to a frequency-
dependent dynamical G(kw). This avenue for the actual
calculation of G (kw) seems to be especially suitable for
strong coupling.

In summary, we have developed a new approach to the
dynamical correlations in Coulomb systems. An integral
equation is established for the dynamical local field to be
determined self-consistently. We find that our dynamical
local field can simultaneously satisfy the conservation and
compressibility sum rules. For large wave numbers, we
show that the dynamical local field approaches the re-
quisite constant values depending on frequency. For
small wave numbers, we further show that the dynamical
local field possesses an algebraic tail in the high-
frequency limit.
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