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Nonlocal theory of rf suppression of current-driven ion cyclotron waves in a Q machine
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The suppression of current-driven ion cyclotron waves is studied in finite geometry. The mode
structure equation for the interacting waves, which includes the nonlinear correction terms due to
ponderomotive effects, is solved using the perturbation technique. From the resultant dispersion re-
lation, expressions for real and imaginary parts of the frequency are obtained. It is found that the
lower-hybrid pump causes a downward shift in the frequency of the cyclotron wave and enhances
the ion cyclotron damping, thereby stabilizing it.

I. INTRODUCTION turbation is written as

Large-amplitude ion-cyclotron modes have been ob-
served in many experiments during the past decade. '

A general formalism for studying the dispersion charac-
teristic of an electrostatic ion-cyclotron wave in a nonuni-
form plasma has been studied by Sperling and Perkins.
Many workers have shown that the lower-hybrid pump
wave is e6'ective in suppressing the drift waves, ion-
cyclotron waves, and ion-acoustic waves. ' In a Q
machine electrostatic ion-cyclotron waves driven unsta-
ble by parallel currents are seen to be parametrically
inAuenced by the presence of a radio frequency field.

In this paper, we study the nonlinear coupling of
current-driven ion-cyclotron and lower-hybrid modes in a
cylindrical plasma column by considering a realistic
pump of finite wave number. The coupling between the
waves is via the ponderomotive force exerted by the
high-frequency wave. The frequency shift induced by the
presence of lower-hybrid waves is negative, shifting the
frequency toward the cyclotron frequency and thus in-
creasing the cyclotron damping.

In Sec. II the dispersion relation is derived for the
current-driven ion-cyclotron waves. In Sec. III the non-
linear coupling of ion-cyclotron waves with lower-hybrid
waves is studied, and the results are discussed in Sec. IV.

II. LINEAR THEORY

Consider an inhomogeneous plasma, embedded in a
uniform magnetic field B oriented along the z direction of
a cylindrical system in which particle density varies as
no(r) =noexp( —r Iro ). Current flowing in the direction
of the magnetic field is given by
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k~, k„v,h, v,h;, and cu„are parallel, perpendicular wave
numbers, electron, ion thermal velocities, and ion-
cyclotron frequency, respectively. Io(b, ) is the modified
Bessel function of order 0, argument b, .

By substituting Eq. (3) in Eq. (1), and Eq. (4) in Eq. (2),
n, and n; can be written as follows:

j=n, evd Xz,
where vd is the drift velocity. When vd is greater than
the parallel phase velocity v &&, the ion-cyclotron waves

P=(b(r)exp[ i (tot —l8 —k, z)]—
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are excited, which perturbs the plasma equilibrium. The
adiabatic response of electrons and ions due to this per-

By quasineutrality condition, the mode structure equa-
tion can be obtained as
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III. NONLINEAR COUPLING

where

2 T 1
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2(co co«. )

and c, is the ion-acoustic speed. Equation (5) is a Bessel
equation with well-known solutions

ltd= AJl(k~r) .

A high-amplitude lower-hybrid pump wave

exp[ —i(coo —ko, z —lo8)] couples with a low-frequency
ion-cyclotron mode P exp[ i—(tot —k,z —l8)] and two
lower-hybrid sidebands P, 2 exp[ i—(co, 2t —k, z, z
—l, 29)]. The phase matching conditions demand

CO& 2=CO+COp k1 2z =kz +kp and I, 2
=l + lp. The mOde

structure equation of the sideband waves are similar to
that of the pump. The response of electrons to the high-
frequency waves can be given by

At the boundary of the plasma r =r p we impose the me-
tallic boundary condition, i.e., P vanishes,

(kiro)=0 .
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The dispersion relation can be modified by substituting P
in Eq. (6), and also by employing co=to+i y one obtains
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From the low-frequency ponderomotive force, arising
due to the high-frequency field, the ponderomotive poten-
tial pl, can be obtained. Only the parallel component of
this force is eff'ective (since co (k, v,„,ol «co, ),
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The dispersion relation for lower-hybrid waves
(coo «coLH) in this plasma column is given by

By including the ponderomotive potential (t p in Eq. (1),
the mode structure equation of the low-frequency wave is
modified as
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The mode structure equation can be written as
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By approximating the density profile as
co~ =co o(1 r lro ), the mode stru—cture equation (10) can
be modified

The high-frequency nonlinear response can be obtained
as
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By introducing a new variable g=r (cozoko, /cooro)', the
mode structure Eq. (11) reduces to NL
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with solutions Po=BL„' (g) and the eigenvalues

(13)

where M is the ionic mass.
By substituting Eqs. (18) and (19) into the Poisson

equation the mode structure equation of sideband waves
is modified as
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Similarly by Eq. (21)
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In the absence of coupling, the solution of Eq. (21) is
written as
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Similarly using Eq. (17), multiplying by Ji(k)r)rdr, and
integrating over r,
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and the eigenvalue is
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In the presence of nonlinear coupling, P, may be expand-
ed as'
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Substituting Eq. (22) in Eq. (20), multiplying the resultant
equation by II„'"I rdr, and integrating over r, one obtains

1' 1

Substituting Eq. (16) in Eq. (25)
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If lo =0, then l, = l2. Also, by setting n, =n2, Eq. (26) becomes
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FIG. 2. Variation of growth rate (y/co„) with pump frequen-
cy coo/co~; for the amplitude go=5 X 10 esu.

FIG. 1. Variation of growth rate (y/cu, ) with the amplitude
Po for the pump frequency coo/co;=9. 0.

From Eq. (27) we get
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IV. RESULTS AND DISCUSSIONS

Computations were made for the following set of pa-
rameters, typical of a Q machine: n = 10 cm, B = 1.8

kG, T, =T; =0.2 eV, the density scale length ro=1 cm,
the axial extent of the plasma column (L It ) =70 cm, and
the electron drift velocity U„=0.15U,„. From the first
zero of the Bessel function, kz, is found to be 3.85 cm
The parallel wave number k, is taken as 5/L». The
effect of the pump wave amplitude (Po) on the growth
rate of the ion-cyclotron instability was studied for a
range of values of coo/co;=6. 58 to 16.33 and for the radi-
al mode number n =5. The pump was assumed to be az-
imuthally symmetric (l&&=0). For both the ion-cyclotron
wave and the sideband, the l = 1 mode was considered.

Figure 1 shows the variation of y/co„with Po for
coo/co, =9. The minimum value of Po required to
suppress the ion-cyclotron instability is 0.05 esu. The
variation of co/co„with coo/co, for go=0. 05 esu is shown
in Fig. 2. It may be noted that the instability is
suppressed over a wide range of pump frequencies.

As ro~ ~ our results do not converge to those of local
theory. As in a bounded plasma the radial modes are
standing waves, whereas in an unbounded plasma these
are the traveling waves. Furthermore, as ro~ ~ the fre-
quency separation between diAerent eigenmodes is small
and the assumption of a single mode number fails. Nev-
ertheless, if one assumes the mode structures of all in-
teracting waves to be uniform, the growth rate turns out
to be the same as that obtained by local theory, where the
plasma is large and homogeneous. It is concluded that
the current-driven ion-cyclotron waves can be suppressed
by a radio frequency pump field of moderate strength.
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