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This work deals with the global instability mechanism of solidification from melt. It leads to a
wave theory for solving long-standing problems—the pattern formation of dendritic growth and the
selection of the tip velocity. One of the most important results drawn from the present work is that
the selection condition of the dendrite’s tip velocity can be found even in the absence of the anisot-
ropy of surface tension. Two distinct sets of unstable global modes for the system are obtained: (1)
the global trapped wave (GTW) modes, which describe the characteristics of waves trapped in the
region between the tip point and the turning point; (2) modes that display a mechanism involving
wave emission at the turning point and signal reflections between the turning point and the leading
edge of the tip, abbreviated as WEASR. Uniformly valid asymptotic expansions for the GTW
modes and the quantum conditions of corresponding eigenvalues are derived. The requirement that
the total perturbed interfacial energy must be finite eventually rules out all the WEASR modes. The
presence of the self-sustaining GTW mode in the system, however, very well explains the origin and
persistence of the pattern formation in dendrite growth. A unique global neutral stable state is
found, which gives the tip velocity at the later stage of growth. The present theory shows good
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agreement with the available experimental data for a nearly isotropic material.

I. INTRODUCTION

Dendritic growth is a common phenomenon in phase
transition and crystal growth. Experimental observations
show that at the later stage of growth, a dendrite has a
smooth tip moving with a constant velocity. It emits a
stationary wave train, propagating along the interface to-
wards the root. The essence and origin of this nonlinear
interfacial phenomenon have been a fundamental subject
in the field of condensed-matter physics and material sci-
ence for a long period of time.! “?° The understanding of
this problem has great significance for a much broader
area, e.g., fluid dynamics, chemical engineering, biologi-
cal science, etc., where similar pattern-formation phe-
nomena occur.

In the past several decades, most researchers thought
that the dendrite-tip region was steady and monotonic, so
that it could be approximately described by a steady state
of the system, whereas the dendrite-stem region was un-
steady and oscillatory, and formed a so-called side-
branching structure. Therefore, in studying the
phenomenon of dendrite growth, the researchers normal-
ly treated the problem as two separate topics: (1) steady
dendritic growth; it was anticipated that the steady-state
solution could yield the characteristics of dendritic
growth in the tip region, and (2) the formation of a side
branching structure. The first problem was solved early
in 1947 by Ivantsov for the zero-surface tension case.l?
The Ivantsov solution, however, does not provide
sufficient information on the dendrite-tip region, as it
cannot fully determine the tip velocity. As a conse-
quence, the Ivantsov solution raised a new question as to
what is the mechanism which determines the tip velocity.
This selection problem of the tip velocity was understood
as the selection problem of the steady state of the system
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for many years; a theory which predicts the tip speed of
the steady state is the microscopic solvability condition
(MSC) theory of Langer et al.® In order to determine the
tip speed, however, it is necessary for the MSC theory
that the system has a small amount of anisotropy of sur-
face tension. Without the anisotropy of surface tension,
according to the MSC theory, the system has no dendritic
growth type of solutions. The theory presented here is an
alternative to that theory and proceeds from a quite
different physical description.

To study the global stability mechanisms of the system,
one can, starting from linear instability theory, investi-
gate the evolution of infinitesimal perturbations around
the Ivantsov solution. In fluid dynamics, there are two
approaches that have been used in the study of the evolu-
tion of perturbations. The first approach is to solve an
initial-value problem: assume an given initial disturbance
is introduced into the system, then consider the evolution
of the initial disturbance by solving the initial value prob-
lem. The second approach is normal-mode analysis: as-
sume the perturbations are in the form of quasistationary
waves, and then investigate the evolution of such pertur-
bations by solving a eigenvalue problem under a certain
set of boundary conditions. The approach utilized in this
work is very similar to that Lin used in developing his
density wave theory for the spiral structure of galaxies in
1970s (see Ref. 21); it is also similar to what is used for es-
tablishing the critical-layer instability theory in fluid dy-
namics.”?> A major aim herein is to derive global-mode
solutions. The eigenvalue corresponding to a global
mode gives both the growth rate of the amplitude of per-
turbation and the frequency of the oscillation. It was first
found by Xu (see Ref. 23) that in the dendritic system
there exists a special simple turning point in the complex
plane; in order to obtain the global-mode solutions of
dendritic growth, one must apply the radiation condition
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in the far field and the smooth condition at the tip of den-
drite. This special turning point was missed in the
analysis by Bensimon et al.!> The discovery of this turn-
ing point is very crucial for the understanding of the dy-
namics of dendritic growth. Due to the existence of this
turning point, in order to find global-mode solutions, one
must divide the whole complex plane into three regions:
the outer region, the turning point region, and the tip
inner region. By using the multiple variable expansion
(MVE) method, the outer solution in the outer region is
found first. The local instability mechanism of the system
is derived. The zeroth-order approximation results in a
local dispersion relation for the normal-mode solutions,
while the first-order approximation yields the amplitude
functions of the solutions. It is the solution of the first-
order approximation that gives a proof of the existence of
a special simple turning point in the system. Near the
turning point and the leading edge of the dendrite tip, the
MVE fails; the solution has different asymptotic expan-
sions. In the vicinity of the turning point, the system is
reduced to the Airy equation with complex coefficients.
Uniformly valid solutions in the neighborhood of the
turning point are found. In the tip region, the tip inner
solution is obtained; this tip solution satisfies the tip
smoothness condition as a boundary condition. From the
physical point of view, the tip smoothness condition pro-
duces a signal feedback process. Finally, all solutions are
matched in the intermediate region; the global-mode
solutions and a quantum condition for the eigenvalues are
obtained. Two remarkable global instability mechanisms
[the global trapped-wave (GTW) mechanism and the
wave emission and signal reflection (WEASR) mecha-
nism] for the system are then exploited, which results in
two discrete sets of global modes: GTW modes and
WEASR modes, respectively (see Refs. 24 and 25). A de-
tailed investigation of the behavior of the modes in the
far field eventually ruled out all the WEASR modes; it is
concluded that only the GTW modes are physically
meaningful. The presence of the self-sustaining GTW
mode explains the origin and persistence of the pattern
formation in the solidification process. At the same time,
the global neutral stability (GNS) condition for the GTW
mode yields a solution to the selection problem of the tip
velocity.

The results obtained in this paper show that the selec-
tion of the tip velocity and the formation of the dendritic
pattern are problems that cannot be separated; the actu-
ally selected solution for a realistic dendrite growth is not
the stable, steady state of the system near the similarity
solution as many investigators thought, but the time-
dependent, global-neutrally-stable state of the system; the
selection condition for the tip speed can be found even in
the absence of anisotropy of surface tension.

The basic results of this work have been published in
part in its first version.?> 27 In the present paper, we in-
tend to give a more systematic description. Some typos
and errors in mathematical details were found in Ref. 23,
which are corrected in the present paper. This paper is
arranged as follows. Section II presents the mathemati-
cal formulation; Sec. III gives the basic state and the
linear perturbed system. The problem of dendritic

growth is formulated as a linear eigenvalue problem; Sec.
IV shows the normal-mode solution in the outer region;
Sec. V gives the uniformly valid solution near the turning
point; Sec. VI gives the tip solution; Sec. VII shows the
global trapped wave modes and the quantum conditions
for the eigenvalues; Sec. VIII shows another type of glo-
bal modes— WEASR modes; Sec. IX demonstrates the
essence and origin of the pattern formation in
solidification, and gives the selection condition for the tip
velocity; finally, in Sec. X, we summarize the results.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

Consider a single dendrite growing in an undercooled
pure melt in the negative z direction with a constant aver-
age velocity U (see Fig. 1). For simplicity, we assume the
mass density p, the thermal diffusivity «p, the specific
heat c,, and other thermal characteristic constants of the
solid state are the same as that of the liquid state, gravity
is negligible and the surface tension is isotropic. We uti-
lize the thermal length /;=k;/U as the length scale,
AH /cp as the scale of the temperature, where AH is the
latent heat per unit volume of the solid, and adopt the
paraboloidal coordinate system (&,7) defined, through
the cylindrical coordinate system (r,z), as follows (see
Fig. 2):

r/mg=En; z/me=3(E—n").

(2.1)
T(&,m,t), Tg(&,m,t) are used to represent the tempera-
ture fields in the melt and solid state, respectively, while
n,(&,t) represents the interface shape. Thus, a general
unsteady state is described by the following equation:

8T  &T 19T 13T
g2 9n* £ 095 m I
_ Ll.eT AT 42 2T
=n} e —n= |+ +) - . 2
0 PY; nan nolE°+7°) 3 (2.2)

The boundary conditions and regularity conditions are

(1) Asp—o, T—T, . 2.3)

FIG. 1. A typical growing dendrite.
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T .o . K e e . .
(2) As 7—0, a,,; L0; Tg=0(1) . 2.4) (ii) the Gibbs-Thompson condition applies
(3) On the interface n=17,(£,1) r=—Lgld 4 (2.6)
s (2) d§ dé_z s
(i) the thermodynamic equilibrium condition applies:
T=Ts, (2.5) where the curvature operator
J
Kld 4 1 o 1 7y (2 +2£%) — &, -
dé- d§2 Ns= (é—2+,’7§)1/2 (1+n;2)3/2 "7s(1+77;2)1/2 §(§2+,’7§)(1+n;2)1/2 ’
[
(iii) and the heat balance condition applies: B ~ - an e
a TB“TB(T])—"T —e EI Py
**U"ZQ) mSEUHan) 2 2
Tspg=Tg(1)
+n3(Em, ) +ni(£2 *=0. (2.8 -1 3.1)
N8 ’
In the above, the prime represents the derivative with 3 7 2 /5 ,70
respect to &; the surface-tension parameter I' is defined as T,+— 5 € E, 2 =0,
_ . ch TMO . .
r=1./lp; I.= W , (2.9)  where the subscripts B and S refer to the basic state and

where ¥ is the surface tension, T, is the melting temper-
ature of flat interface, and [, is the capillary length. A
special type of time-dependent problem will be con-
sidered, as is described later.

III. BASIC STATE AND LINEAR
PERTURBED SYSTEM

For the case of zero surface tension (I'=0), the well-
known steady similarity solution exists for arbitrary un-
dercooling. The shape of its interface is a paraboloid.
This solution will be used as the basic state for our prob-
lem. Without losing generality, one can adjust the pa-
rameter 7, in (2.1) such that the basic state of the system
is expressed as follows:

—

- .
—

— k

3

FIG. 2. The paraboloidal coordinate system used in the
present paper.

the solid phase, respectively; E,(x) is the exponential in-
tegral (see Ref. 27). The constant 7, in (2.1) then can be
expressed as a function of the undercooling T . The ra-
dius of curvature of the paraboloid /, at the tip £=0 is
found to be

Ly=m3lr . (3.2)

But dendrite growth with nonzero surface tension is in-
trinsically an unsteady process. In the present paper, we
assume that at the later stage of growth, this unsteady
process can be described by a time-periodic solution near
the above Ivantsov similarity solution. Therefore, we
separate the general unsteady state into two parts: the
basic state (3.1) and the perturbation {4, T, T},

T(En,0)=Tp+T(n,1),
TS(g’n’t)ITSB+TS(§’nyt) ’
773:"73'*"7(5,1)/77(2) .

Due to the smallness of the parameter I', the perturba-
tion part in (3.3) has small amplitude in any finite region

(3.3)

around the tip, compared with the basic state. Thus,
define a surface-tension stability parameter
VT
€=— (3.4)
U

To study the behavior of the perturbation part, one can
introduce a set of fast variables {£,,1,,7, }:
—£ =1—1
+ € ’

N+= s Iy

=L (3.5)
€ €

and use multiple-variable asymptotic expansion for the
solution near the similarity solution. It is easily shown
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that the basic system for the perturbation is inhomogene-
ous and the perturbation part can be expressed in the
asymptotic form:

g=€q0(&m g, (Em+ -+ ]
@& mE s Heq (£, E )+ -0 ],
(3.6)

where the notation g represents the all perturbation quan-
tities in (3.3). This implies that the solution for the per-
turbation part in (3.3) contains two components:

(1) The steady perturbation component {§,,q;, - - .},
which is a particular solution of the above-mentioned
basic inhomogeneous system. This component is the
steady regular perturbation expansion around the similar-
ity solution in small surface tension €2. This component
only contains the slow variables (£,7); it was solved in
Ref. 13.

(2) The unsteady perturbation component
{@0,4,, - . .}, which contains the multiple variables and is
defined by an associated homogeneous system. This com-
ponent is the time-dependent singular perturbation ex-
pansion. One may only consider the unsteady perturba-
tion component, as the unsteady perturbation component
is decoupled from and dominates the steady perturbation
component.

In terms of the fast variables, the perturbed system is
expressed in the following form:

32 3 |~ 4 ]
T=¢c |nd&+n?)—
& o’ I T
a 2
+7]2 —_—
0 §8§+ ’761”
1 9 1 9
— T,; (3.7)
§ 35, n 0N,
the boundary conditions are
(1) Asyp,—ow, T—0. (3.8)
(2) Asn,——ow, Tg—0. (3.9)
(3) On the interface 7, =0, n=1,
(i) T=Ts+kh+0(e), (3.10)

vy A 1 *h | e(1+28%) ok e -
(ii) To= — 2
5S(8) |88y gSAE) L S
+0(eY), (3.11)
(iii) —a—(T—TS)+n5s2(§> o
+ oy
oh 217 2
+& +e2+n3)A+0(e2)=0, (3.12)
9
where
S(E)=(&24+1)172 . (3.13)

It shall be shown below how to find the global-mode
solutions for the system (3.7)-(3.12). These solutions
must be uniformly valid in the whole physical region
(0= £ < «); moreover, these solutions must satisfy cer-
tain boundary conditions at the tip and in the far field.
Based on experimental investigations (see Fig. 1) and
physical considerations, the following conditions are im-
posed:

(4) the tip smoothness condition:

as £E0%, h(0)<ow; A'(0)=0,
and

(5) a radiation condition in the far field: as £— oo, the
solution describes an outgoing wave. Namely,

(3.14)

~ ot i ré
R(&)~exp en(2)+ef0k0(§1)d§1 ,

(3.15)

where 0 =0y —iw is an eigenvalue with »>0, while
k(&) is a wave-number function to be determined by the
local dispersion relation of the system [see (4.14)]. In ad-
dition, it is also required that the total perturbed surface
energy must be finite, so that the amplitude of the outgo-
ing wave must decay as £— . In the following sections,
we will find the solution for this problem.

IV. OUTER EXPANSION SOLUTION

In order to derive the outer solution for the perturbed
state in the outer region, we have to utilize a new set of
fast variables (§, ., +,¢ 4+ ), such that

déy =k(§e)dEL, ny =k(&emy, to =t /5,

(4.1)
and make the following asymptotic expansion:
T=[To(§’77,§++”7++)
+6T1(§,77,§++’77++)+ T ]eot++ >
R=[hy(&E, Fer (66, )+ 1", (42

k=ko+ek,+ek,+ -+ .

According to the multiple variable expansion (MVE)
method (Ref. 28), the fast and slow variables
(&,m,E4+ +»sM4+ 4.t 4 ) in the solutions are treated formal-
ly as independent variables. Hence, the derivatives in the
system (3.7)—(3.12) must be replaced by

0 d d
—=k——+e——,
o, 044 08

d 0 0

= +e—,
4 94 4 an
2 4.3)

& _ [ , 8
9% 94+ o |’

) 2
82 = |k 9 -+~ei
ans 94+ an

The system for the perturbation part with the multiple
variables is listed in the Appendix. By substituting (4.2)
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into the system (A1)-(A6), one can successively derive
each order approximation in the outer region (&>>¢€).
The results are listed as below.

A. 0(€°)

As the zeroth-order approximation, one can derive the
following system, which describes quasisteady heat con-
duction:

2 2
2 az T,=o0,
9%+ Omi 4
2 2 4.4)
2 + 82 Ts=0.
9%+ Omi.
The boundary conditions are
(1) Asppi—o0, To—0; (4.5)
(2) Asny,——wo, Tgqp—0; “s
(3) On the interface 7, .=0, =1,
(i) To=Tso+ho (4.7)
- ki dhg
i) Tgo=——7 , (4.8)
() Tso=50e) 22,
0 = A
(iil) kg (Ty—Tyo)
974+
+0SUEy+koE =0. (4.9)
94+

This system has the following normal-mode solutions:
To=Ao(&mexpli& sy —n44)
Tso=Bo(&mlexpli&, v +m44),
ho=Doexp{i& .} .

The coefficient 50 in the zeroth-order approximation is
set as a constant without loss of generality, because the
complex wave function k(§) contains the varying com-
ponent of the amplitude of the solution %,. By setting

(4.10)

Ag(E)=Ay(E,1), By(E)=By(&,1), 4.11)
from (4.7)—(4.9), we derive that
Ao(&)= |1=— |Do , 4.12)

Im(k)

0.8

€=oo

\ ) ké}/ém
(=0
£=0 /

—08 ' o.o/) 0.8 Re(k)

-0.4
N

0.8

7 (=
FIG. 3. The curves of wave-number functions
{k§V, kP, k) for a set of the eigenvalues o.
Bo(§)=——s' 0> (4.13)

where D, is an arbitrary constant; the wave-number
function k(&) is subject to the local dispersion formula

ko 2k}

o=3(5,ko)=5 [1- 5" —i;%ko. (4.14)

The local dispersion formula (4.14) is a generalization of
the Mullins-Sekerka dispersion relation for a plane inter-
face. To show this, we use the arc length I along the
Ivantsov paraboloid as an independent variable and
rewrite the normal mode solution (4.10) in the form

fi~DBoexp | —= [at—f—ifk*dl] , (4.15)
€70
where
K, =X (4.16)
s

and dl =n3Sd&. Accordingly, the local dispersion formu-
la (4.14) is transformed into the form

o=k, (|V,|—2k2)—i|V |k, . (4.17)
Here
=1 £
Vi=g Vs 5 (4.18)

are the normal and tangent components of the local
growth rate of the interface at £&. For V_=0, the formula
(4.17) reduces to the Mullins-Sekerka dispersion relation.

For any given constant o, one can find three roots
from (4.14) (see Fig. 3), namely

(4.19)

kP (E)=M(&)cos écos”l Nfg) (short-wave branch) ,
_ 2
k& (&)=M(&)cos | Lcos™! NT§) +55
kG (E)=M(&)cos |Leos™! Nfg) +4T7T (long-wave branch) ,
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where
s |17 M)
M= 1—i&)?2, N(E)=-— 1—i&) . 4.20
(&) 3 (1—ig) (&) 332(5)( i£) (4.20)

In order for the temperature T, to satisfy the boundary condition (4.5), one must have Re{k,} > 0; consequently, only
k{P(E), kP (£) in (4.19) are meaningful. Thus, the general solution in the outer region is

h=D{Vexp D exp

at+++§f0§(k§,”+ekg”+ g,

Ut+++€f0g(kf)3)+ek(l3)+--~)d§1 oL @20

B. O(e€)

In the first-order approximation, one can determine the amplitude functions 4(&,n) and B(§,7) and the function
k(&). The following equations are derived:

2 2 . _ 2 2 _ i
k3|2 O \Ty=ape ™ k3 az S | T =boe o+ e 4.22)
9%+ Omiy 9%+ oMy
where

394, 04 ko ik, ok

ag=2k, an"—i ago + 4, ong(§2+n2>+k0ngug+ng)+7"——§—°—ia—§° (4.23)
dB, OB ko ik, 9k

bo=—2k, —a—niﬂ—ég—" +B, an§<§2+n2)+kong<i§—n5>—7"—?"—1'—550— ) (4.24)

To ensure the uniform validity of the expansions as £— o, one must eliminate the secular term in the right-hand side of
Egs. (4.22), or say, set

ay=by=0 . (4.25)
From the conditions (4.25), it follows that
%—ia% InW(E,7)=0, (4.26)
i+z— In®(&,7)=0, (4.27)
9
where
W(E,m)= Ao(&mko?E 20! 2F(&,m) , 428
‘P(§,77)=Bo(§,n)ké/zé”zan(g,17)
F(§m)=exp %%(nz—s“z)Jrano +i ff—gl—d& } , (4.29)
2 § §1
G(&m=exp | —(n*—E)+ong é};ﬂ o 2kg 41
In terms of the boundary conditions (4.11), one can obtain the solutions
V(g m=Ao(EkE (GG PF (&, 1), &M =Bo(5)ke? (662G (63 1) (4.30)
with the notations
§i=&+iln—1); §H=E—i(n—1). @.31)
Thus, the amplitude functions 4,(£,71) and By(£,7) are determined. from (4.23)—(4.25), it is also seen that
2
Q0=—a%(A0—BO) . aag (Ao+Bo)—(A+B,) | 25HE)+ 2 gng—é dlzzk" -I—Jrzﬂ (A,—B,) .

(4.32)
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This formula is needed later to find k(§). In terms of
the conditions (4.25), one obtains the first-order approxi-
mate solution:

T)=A,(&mexpli&—niy) s

Ts1=B(&mexpli&y 4 +14 1), (4.33)
hy :ﬁlexP(i§++) .

Setting
A(&)=4,&1), B(&)=B,(&1), (4.34)

from (A4)-(A6), one can derive the first-order approxi-
mate interface boundary conditions. Then, it is found

that
B1=——S~D1+I s (4.35)
4,=B,+D,, (4.36)
ﬁo dko 1 _i
I=— |i——+i = — , 4.37
S ldé‘ ik §+32 2kok, (4.37)
and
2 2
3, M i 6kg
= —_ +_ —_—
k= , (4.38)
e 6K
i& 5
where
__.dInk, | Tk}
2
2 2/ 1) 2 i 2
—(1— — S+ = . .

Notice that from the dispersion formula (4.14), it is de-
rived that

2
2| 8% |_,_.. Sko
S ok, 1—i 5 (4.40)
Thus, one can also write
R, (&) ]
o _ RO i , (4.41)
g3 |22 28
dk,

where the function R () is regular in the complex &
plane. From (4.41), it is seen that the system in hand has
four singular points, where the outer solution (4.21) be-
comes invalid, namely:

(i) The tip of the dendrite, £=0. The appearance of
this singular point is caused by our asymptotic treatment,
which fails for |£] <<e. As £E—0, due to

i
k, 2 (4.42)

one has

Dy 3
VE exp [ifokgl)d§+ ]

Dg)}) €
VE exp [ifokf)3)d§+ ]+ e

ﬁ:

gt
++
e .

+

(4.43)

(ii) The critical points £=£, which are the roots of
the equation:

02(&,ko) _
ok,

Combining (4.14) and (4.44), one finds that g,
(i=1,2,3) are the three roots of the equation

1/2 1—i§c 372 1/2 l—igc 3/4
S 1+i&, '

(4.44)

2
27

2
o= <

27

§=¢,

(4.45)

These critical points are related to the eigenvalue o. It
will be shown later that these critical points are simple
turning points of the system in the complex £ plane and
one of these critical points, £\" emanates a Stokes line
L, which intersects with the positive part of the real £
axis at the point £,. The presence of this turning point is
essential to the characteristics of unsteady dendritic
growth, which was missed in the analysis by Bensimon
et al.’’ The existence and significance of this critical
point £, was identified by Xu; see Ref. 23.

(iii) £==i. The presence of these two singular points is
due to the factor S (&) in the curvature operator. These
singular points are irrelevant to the eigenvalue o. These
singular points are not important for the unsteady state
solution, because no Stokes line, intersecting with the
positive part of the real £ axis, emanates from these
points. For the sake of simplicity, therefore they are not
taken into account in the present paper.

In view of the above, the whole complex £ plane is di-
vided into three different regions (I), (II) and (III) (see
Fig. 4). In each region, the solution will have a different
asymptotic expansion. The asymptotic solution obtained
in this section is valid only in the outer region (I), which

b 1m(e)

Ly

\ @
N\

@

Re(£)

FIG. 4. Sketch of three different asymptotic expansion re-
gions (I), (I), and (IID) in the complex & plane.
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represents two types of traveling waves. These traveling
waves will interact to each other at the critical point &,
and the tip point £=0. The Stokes lines emanating from
&. divide the outer region (I) into several sectors. In par-
ticular, the Stokes line L, emanating from £ intersects
with the real axis of £ plane at £, and divides the real axis
into two subintervals. According to the well-known
Stokes phenomenon, a Wentzel-Kramers-Brillouin
(WKB) type solution (4.21) will not be uniformly valid in
the whole physical space (0 <& < o). In different subin-
tervals on the real axis, or different sectors, the coefficient
pair (D{",D§) will be different; their values are deter-
mined by the matching condition of the outer solution
(4.21) with the inner solutions in the regions (II) and (IIT).

In the next section, we shall study a general type of
perturbed solution, particularly the inner solution in the
region (II). The singularity of turning point type at &,
will be explored from another approach again.

V. INNER-EXPANSION SOLUTION
IN THE TURNING POINT REGION (II)

The results obtained in the preceding section indicate
the existence of the critical points £, in the system. In
the vicinity of the point &, in the complex £ plane, the
outer solution (4.2) or (4.21) is invalid. It implies that the
solutions in the vicinity of £, no longer have multiple
scale structure. To describe such more general solutions
one may use either the slow variables or the fast vari-
ables. For convenience, we utilize the fast variables
(£4+,m4). In doing so, the slow variables (£,7) in the sys-
tem (3.7)—(3.12) must be changed to the fast variables
through the relationship (3.5). In the following, we at-
tempt to derive a governing equation for general per-
turbed interface in the limit é—0. The analysis present-
ed below is completely independent from the normal
analysis performed in Sec. IV. However, it will be seen
that the results obtained through these two approaches
are consistent with each other.

From (3.6), the following are derived.

1. In the liquid-state domain,

; d d ; d + d
9+ Oy de, 074
where the linear operator P{T} represents all the terms

inside the bracket on the right-hand side of (3.7).
2. In the solid-state domain,

—1
P{T}, (5.1

T=

d 9 s d 2 ~
—+ Tg=€|lim—/F/—— P{Tg} . (5.2)
B Tany |7 aer Ty | U
3. On the interface: 7, =0,
O (F—T5)=i=2(T+T5)+0(e) . (5.3)
an a&
From the boundary conditions (3.8)—(3.12), one can get
2 |d*h e dh
T+T —h+ +—= +0(e) ; (5.4)
s dgy  £d&y

furthermore, from (3.12) and (5.3) one derives

25
h +§
3§ + § +
Finally from (5.4) and (5.5), letting €—0, as a leading
approximation we obtain the following equation for gen-
eral interface perturbations:

=0(e) . (5.5)

dh, _
126 8710 L ey )—§ +S%0h,=0,

s g (5.6)

where
§1=8—¢&,
R(EN=[Ro(&)+ el (E)+ - e

\ (5.7)
ot /ng

The basic governing equation (5.6) for general interface
perturbations has a great significance. From here, one
may regain the local dispersion formula (4.14), by seeking
for WKB types of solutions for this third-order ordinary
differential equation in the outer region. To solve the
general interface equation (5.6) in the vicinity of the criti-
cal point &, we introduce a transformed variable

Fro=WI(E, Jexp éf;kc(gl e, |, (5.8)

where the reference wave-number function k.(£) is to be
determined. Moreover, we define a differential operator

d ik,
d& €

D _
D¢

(5.9)

It is easy to verify that
D"h _ d"W

DE de” exp

(5.10)

L §
ifgckc(gl)dgl] .

Thus, one can derive that

—e W o iSo—3(k,,E)]W=0, (.11

(=S?)

ok} k

3%(xS?)

5.12)
ok2 ‘

A(=S?)

4= 1ok,

ko=k, S

For any given &, one may properly choose k, such that

3(ZS?)

ok, =0. (5.13)

ko=k,

This leads to
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172 & 1/
=—" = 5.20
k(&)= %(1—1-5)] [Re(k,)>0] . (5.14) §+= 00 GolO=€ T, (520
. the solution W (&) can be expanded in the form
Accordingly,

) 172 i 3/2 W(E,.,€)=qole)Wy(&E)+g(e)W (E )+ -+ . (5.21)

2k, E)=2.(8)= 27 S (5.15) " Here, one should note that [through the transformation

(5.8)] the long branch wave of 4 in (4.10) will correspond

In terms of (5.13), Eq. (5.11) is then reduced into to the incoming wave of W, while the short wave of A,

AW AW will correspond to the outgoing wave of W,. Now, it is

EQy—— +i€’Q,—— +iS o —2 (£)]W=0. (5.16) not difficult to prove that in the vicinity of £, the leading

d§ d§ approximation W(§,) can be found from the Airy equa-

It is seen that for any given o, as £=£%, i=(1,2,3),

o—3.(£)=0. (5.17)

Hence, the critical points £, (i =1,2,3) are actually sim-
ple turning points of the system. For any given
o=|ole’®, from the equation (5.17) or (4.45) one can
solve:

a3, is0s3_ 27
lal / el4 /3_~<
(1) : 9
§ =i
c . 22/3 ’
|o_|4/3el46/3+_
9
A 2273
|0_14/36,t(40/3+i‘l‘rr/3)_’_T
(2) — ;
& =i ] 5273 | (5.18)
|o,|4/3e1(49/3+81T/3)__‘_T
22/3
I I4/3 i(46/3+167/3) __ <«
g e
§(3):i 9
c ) 22/3
|0_|4/3e1(49/3+1617'/3)+__.9.._

As 0—0, these three critical points collapse into the
point £= —i; as o is on the semicircle ¥ in the complex o
plane as shown in Fig. 5, these three critical points are all
on the real axis (— o <&, < ). As the eigenvalue o be-
longs to the domain Z,, the three critical points are all in
the upper-half part of the complex & plane. In this case,
the system has no physically acceptable, continuous solu-
tion. Thus, as a necessary condition, the eigenvalue o
must be inside the semicircle ¥. This condition is called
the “pattern formation condition” in Ref. 23. When the
eigenvalue o belongs to the domains 2 , and 25, the crit-
ical point £ is in the lower-half part of the complex &
plane. This is the case of the most interest. The Stokes
line in the complex £ plane is defined as

Im [f;(kg“—kg”)dgl =0. (5.19)

It is verified that as o belongs to the domain 2 , +2p,
the only one Stokes line, L intersecting with the positive
part of the real £ axis emanates from £!. Evidently, for
the system under consideration the critical point &\
plays the vital role. Hereafter, for simplicity, £ is writ-
ten as &,.

In the vicinity of £, if we let

tion:

W,

Y 2
T +AEWy,=0, (5.22)

*

where
4 172
=—i 1&+i —1<arg(A)<0 .
6| S £=¢, 2
(5.23)

One can define a complex wave-number function k, as

k,=AEV?. (5.24)

0.4

FIG. 5. As the eigenvalue o belongs to the domain 2, in the
complex o plane, the corresponding turning points &, are all in
the upper-half part of the complex £ plane; while the eigenval-
ues o belongs to the domain 3¥,, the corresponding turning
points £, are all in the lower-half part of the complex & plane.
When the eigenvalue o is on the curve ¥, the corresponding
turning points &, are all on the real & axis.
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The branch cut line in the complex £ plane and the
Stokes lines emanating from the turning point are shown
in Fig. 4. To ensure the continuity of the solution, the
branch cut line should not cross the real axis of §&. Thus,
it is, once more, deduced that as a necessary condition for
pattern formation, the turning point &, must be located
in the lower half £ plane; accordingly, the eigenvalue o
must be inside the semicircle domain 2, in the complex o
plane (see Fig. 5).

The general solution of the Airy equation (5.22) (refer
to Ref. 27) can be written

Wo(§,)=CEPH S (3 AE/)+DESH (3 AE7)
(5.25)

When the radiation condition (3.15) in the far field is ap-
plied, one may specify the wave-number function
ko=k{’. It implies that in the far field, the solution
h(&,t) represents an outgoing long-wave branch; accord-
ingly, in the sector S, the solution W,(£,) represents an
incoming wave. Consequently, one must set C =0, but

D=0 in the general solution (5.25). It follows that
WoE,)=DEV?H (2 A7) . (5.26)

As Re(£,)— + oo,
|

F~D,e "™ exp ot+++if§§(kf)3)(§1)+ co)dE |+

WO(é_*)NDl W(T—.)(g*)

- —im/3
—Dle

—ifj*k*dg]

(Ey— T+ ).

1 exp
ko

(5.27)

When Re(§, ) <0, the solution (5.26) can be expressed as
WoE)=D (W (E)—e ™ WETEN];  (5.28)

as £, — — oo, we have

wit(g, )~ L exp [ifg*k dé‘] (outgoing wave)
0 * \/-k_* o * ’
1 £, (5.29)
wiE )~ \/k_* exp[—ifo k*d§] (incoming wave),
Re(k,)>0.

In the formulas (5.27) and (5.28), D, is an arbitrary
constant. By matching the above turning point solution
(5.26) with the outer solution, it is derived that in the sec-
tor Sy, as £, <& < oo, where £, is the intersection point of
the Stokes line L, with the real axis of &, the outer solu-
tion is

. (5.30)

The radiation condition in the far field is evidently satisfied. On the other hand, the coefficient pair (D{!,D{») of the
outer solution (4.21) in the sector S, is derived by matching the turning point solution (5.28) with the outer solution in

the sector S,. The result is as follows:
DE):” iXe

by ¢

where

3
Xo=(2n —%)w+%f (kD —kP)dE (n=0,41,42,%3,...) .
0

To obtain the global-mode solution in the whole physi-
cal region (0<£< ), one must also satisfy the tip
smoothness condition. For this purpose, one must find
the inner solution in the tip region (III) where £=0 (¢€)
and match it with the outer solution in the intermediate
region. This matching condition will result in a quantum
condition for the eigenvalues o of each mode.

VI. INNER-EXPANSION SOLUTION
IN THE TIP REGION (III)

As £—0, the MVE (4.2) is no longer valid, because the
two terms

*T e 3T
o&% £ 954

in the governing equation (3.7) are the same order of
magnitude. In order to find the inner solution in the tip

(6.1)

(5.31)

(5.32)

[

region (III), one has to use a single length scale and the
following system:

9* 9’ 1 3 |~
+ — T
&% o9nh &4+ 964
1 3T | 4,2, o, 0T
=€ |—— +yo(&°+n7 ) —
n ons Mo(&"+ 7 o,
oT aT
42 | — (6.2)
Mo §a§+ Uan+

The boundary conditions (3.8)—(3.12) are still valid, ex-
cept the condition (3.11) must be replaced by the follow-
ing:



940 JIAN-JUN XU 43

- 1 %h |, 1 dh €€ ok e -

Te= —_— —_
STUS(E) |9 E4 L S%AE) L S¥AE)

(6.3)
Keep in mind that in the above system,
E=ef,; nm=1+en, . (6.4)

To derive the tip solution, one needs to use the tip fast
variables in the form (not to be confused with the fast
variables £, , and 7, ; in the outer region)

§++=i€§+ ’
7)++=7<\77+ ’ (6.5)
top=ty/mg

Consider the following inner-expansion solution:

~ ~ _ oty /12
T=[pyle)Ty+u,(e)T+ - e ’
= T h ~ o 2
Ts=[uoe)Tsotu(e)Tg+ - e ty /My o
== i ~ o 2 .
};’ [“0(6)h0+.“'1(€)h1+ .. ]e ty /1]0 ,

E=E0+61/(\1+62i€2+ .

By substituting the above expansions into the equation
(6.2) and the corresponding boundary conditions, one can
find each order approximate solution, successively. The
results for the zeroth-order approximation [O(ug(€))] are
as follows:

3T, 3T, 1 9T, —0
EF,+  mhy B4+ 9544 ’
2 . - (6.7)
3Ty 9Ty 1 9Ty =0
aé'%H— a*rﬁ,,+ Er+ 0544 ’
the boundary conditions at 17, =0 are
(1) To=Tg+hy , (6.8)
- azi{o l aﬁo
(2) Tgo=k} , (6.9)
oo 8% . b4+ 064
(3) IQOL(TO—TSO)-FO’EO:O . (6.10)
/-
The general solution of (6.7) is
To__-‘lolrlré)'.)(§'++)e_n+1L ’
(6.11)

Tso=asoHY (£, e (i=1,2)

where a, and ag, are arbitrary constants, Hi""? (£, )
are the Hankel functions of first and second kind. It is
seen from matching condition with the outer solution
that, one can only choose HY (£, )=H{ (£, ).

Furthermore, setting
Ro=d H(£,4), (6.12)

from the boundary conditions (6.8)—(6.10), it is obtained

that
ap=(1—k2)d, ,
~2 (6.13)
aso=—kody ,
where k o satisfies the dispersion relationship
o=ko(1—2k3) . (6.14)

From the equation (6.14), one can find three roots. By
comparing (6.14) with the local dispersion formula (4.14),
these roots can be written as

ko =k§(0),
kP =k (0), (6.15)
kG =k (0).

The root k' is ruled out due to Re(k{?’) <0. Therefore,

the general solution of % in the tip region (III) is
Ro=d"HM (KM e )+dPHD(EPEL) . (6.16)

To satisfy the tip smoothness condition (2.23), one must
set

dV+d»=0. 6.17)
Thus, the tip solution in region (III) is derived as
Ro=dy[H (K e )—HP(EPEN] . (6.18)
As £, . — o, the tip solution behaves as
ﬁzdoem** 1 eikg”(0)5+
[kiD(0)E, 1172
ik (3)
- [ké?’(ol>§+]”2 S B

One may apply the transformation (5.8) to the tip solu-
tion or (6.19). Then (6.19) can be rewritten in the form

h=dyexplot, , +k (0)E,]

(1) 1/2 (3) 172
Aky WE)+’— Ak 8_)
k§(0) k$(0) ’
(6.20)
where
(+) — 1 inkgVE
0 (Akz)l)§+)l/2e )
_ 1 ink e
(=) —
Wo _(Ak{)3)§+)‘/ze T
(6.21)

Ak =k (0)—k (0) ,
Ak =k (0)—k(0) .

The formula (6.20) gives a physical interpretation to the
tip solution. As an incoming wave W’ reaches the
leading edge of the tip, it is reflected, and transformed to
an outgoing wave W as shown in Fig. 6. We call this
process the signal feed-back mechanism.
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FIG. 6. Sketch of the signal feedback process near the lead-
ing edge of the tip.

VII. GLOBAL TRAPPED WAVE MODE
AND ITS QUANTUM CONDITION

We can match the tip solution (6.19) [or (6.20)] with
the outer solution (4.43) in the intermediate region in sec-

tor S,. This will end at the desired uniformly valid
global-mode solutions. The matching condition leads to
pole)=e" 172 (7.1)
and
DBUZL
(kz)l)(o))l/2 4
7.2
dy (7.2)
Dy == i
(ky'(0))
so that
Dgl) k3 (0) 172
- | Tm (7.3)
Dy ko '(0)

From (7.3) and (5.31), it is seen that as far as the global
mode is concerned, in order for the outer solution in the
sector S, to match with both the turning point solution
(5.26) and the tip solution (6.19) [or (6.20)], the phase
condition

kg“(O) 172

k& (0)

Xy

e M= — (7.4)

must be satisfied. This leads to the quantum condition of
the mode

6o
2
n=(0,+1,+2,43,...),

I P
%fo (kD —k)deg=(2n +1+2+ )W——;-lnao,

(7.5)

where

WO
(+)
o]

ANy NN\

—
~

qJ\M( ) PravavaN
o

——

o
o~
oy

FIG. 7. The wave diagram of the GTW mode.

e =k§1(0)/k§(0) .

For any given small parameter €, the above quantum
condition determines a discrete set of the complex eigen-
values {o,} (n=0,1,2,...) and the corresponding glo-
bal modes. Only a finite number of growing unstable
modes is possible. Table I lists the eigenvalues of the first
four modes for €e=0.1. As €—0, the eigenvalue of the
fastest growing mode corresponding to n =0, apparently
tends to the limit o =(0.2722,0.0), which corresponds to
the maximum growth rate of the Mullins-Sekerka insta-
bility.

The global-mode solutions that are obtained in the
present section have, we believe, an important physical
significance. A wave diagram for these global modes is
sketched in Fig. 7. It is seen that an incident outgoing
wave WE)“ from the tip collides with an incoming wave
from the far field at the point &, on the Stokes line L;
the collision generates an incoming wave W{~) towards
to the tip region. This incoming wave W{~) is then
reflected at the tip region, and becomes an outgoing wave
W) again. The waves appears trapped in the sector S,
between the tip point and the point .. No wave escapes
outside the Stokes line L. For this reason, we call these
global modes global trapped wave (GTW) modes. In the
far field the solution 4 (&,t) describes a long outgoing
wave.

ag (7.6)

VIII. GLOBAL WEASR MODES AND PERTURBED
INTERFACIAL ENERGY CONDITION

The global trapped wave mode obtained in the previ-
ous section is not the only type of global mode that the
system may have. One may also set the wave number
function k in the radiation condition (3.15) be the wave
number ké)“. This implies that in the far field, the solu-
tion 4 (&,t) represents a short outgoing wave instead of a
long outgoing wave, the solution W represents an outgo-
ing wave. Details of this solution will not be presented
here. Figure 8 indicates the pattern of these waves. We

TABLE I. GTW mode; €=0.1

n &, o

0 (0.1147 X 10, —0.4944) (0.4246X 107!, —0.1959)

1 (0.2053 X 10, —0.5835) (—0.3292%X 1071, —0.2296)
2 (0.2823X 10, —0.6196) (—0.7145X 107!, —0.2357)
3 (0.4155X 10, —0.6498) (—0.9450%x 10!, —0.2356)
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call this process, the WEASR (wave emission at the turn-
ing point and signal reflections between the turning point
and the tip) mechanism.

Table II lists the eigenvalues of the first four WEASR
modes for €=0.1. Figure 9 shows the variation of
growth rate of GTW mode (n =0) and WEASR mode
(n =0) with the parameter €, while Fig. 10 shows the
variation of the frequency of these modes with €. It is
clearly seen that the surface tension suppresses the global
instabilities, as expected. Note that in the far field, the
outer solution (5.30) can be expressed in the form

o~ A(E,t)e?ED7e (8.1)
where
o(£,0= [ ‘Re(kgde—2L (8.2)
& Mo
B Ort ——_l_ &
A (&, 1)=exp i fgCIm(kO)dg (8.3)

As £— oo, for any fixed eigenvalue o, the wave functions
kY. (i =1,2,3) have the asymptotic expansion

(i)

kP (E)~af §+a(1’)+?+ S (8.4)
The phase velocity of the wave along the interface =1 is
—_ | 9% / AP | _ o1+EH? (8.5)
2 ot o/ Re[ky(£)] '
in the far field
)
V ~—— . 8.6
P Relaq) (6= c0) ®.6
Moreover, one can define the function
P)=["| A&, |dE, , 8.7
(= [ "4, 0Pdg, (8.7)

which measures the total perturbed interfacial energy.
From physical consideration, the total perturbed interfa-
cial energy function P(¢) must be finite. It is seen that
the total perturbed interfacial energy function P(¢) for
WEASR modes is infinite because Im(a,) <0 for all e>0
(see Fig. 12). Therefore, WEASR modes are not physi-
cally meaningful for the free dendrite growth problem. It
can also be seen that the phase velocity of wave along the
interface is
(1) for the GTW modes,

Vpl0)=~1.0;

Wo |
(+)

W :
NV Y A |

( ) :-vvv\> -

W.

DRGSR : T
Wo N
T

0 ¢ ¢

I

FIG. 8. The wave diagram of the WEASR mode.
(2) for the WEASR modes,

V,(0)~0.05—0.5 (8.9)

(see Fig. 11). The result (8.8) shows that in the far field,
the phase velocity of wave V, of GTW modes in a coordi-
nate system moving with the dendrite tip approximately
equals to the tip velocity in the laboratory frame. This
result agrees well with experimental observations.

IX. PATTERN FORMATION
AND SELECTION OF TIP VELOCITY

The existence of growing GTW modes explains the ori-
gin and essence of the dendritic structure in the solidify-
ing system. Any initial perturbation in the growth pro-
cess will stimulate a spectrum of the above global modes.
As t — o0, all decaying modes will vanish, while the am-
plitudes of the growing modes exponentially increase.
Eventually, the GTW mode with the largest growth rate
dominates the feature of the microstructure of dendrite.
From the GTW mechanism, one can see that to form a
pattern in solidification, the conditions both at the tip
and at the root are important. In linear instability
theory, the amplitude of a growing mode exponentially
increases as the time passes. In the real system, however,
one can anticipate that when the amplitude becomes
large, its further increase would be suppressed by non-
linearity and other dissipative effects that may be in-
volved. Eventually, it appears that with GTW mode the
head of dendrite persistently emits a long interfacial wave
train propagating along the interface toward the far field
with a phase velocity of nearly unity. This forms the fan-
tastic pattern that was observed in experiments (see Fig.
1).
A significant question is thus raised: Among all the
GTW modes, which one is naturally selected in a realistic
dendrite? Our answer to this question is that the selected
GTW mode is near the neutral point of linear stability.
The reason is that the realistic dendrite at the later
growth stage should be in a nonlinear neutrally stable

TABLE II. WEASR mode; €=0.1

&

o

(0.6860, —0.4078)

(0.1697 X 10, —0.5571)
(0.2514X10,—0.6077)
(0.3235X10,—0.6319)

W =0 | X

(0.9997E X 107!, —0.1504)
(—0.8260X 1072, —0.2217)
(—0.5800X 107!, —0.2344)
(—0.8614X 1072, —0.2360)
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FIG. 9. The variation of growth rate of GTW and WEASR modes vs €.

state. The nonlinear neutrally stable perturbed state is
determined by nonlinear bifurcation theory. This state,
however, in linear stability must be a weakly growing
mode. It is near the neutral point of linear stability. This
important conclusion is verified by experimental evi-
dence, since one sees that in the frame moving with the
tip, the whole dendritic growth process at the later stage,
is indeed in a nonlinear neutrally stable state. The ampli-
tude of oscillation at any point on the interface is ap-
parently time independent. It is the entire interface that
is neutrally stable, not just the dendrite tip. We call the

0,25

GTW modes

8,15 8,20

0, 61

0. 05

above-mentioned neutrally stable state for the entire in-
terface the global neutrally stable (GNS) state. This GNS
state is determined by the condition for the GTW mode
(n=0):

or(€,)=0. 9.1)

The eigenfunction /(&) of the global neutrally stable
state for the case T, =—0.068 44, 17,=0.2 is shown in
Fig. 13, while the corresponding interface shape of the
dendrite is shown in Fig. 14. The value of €, is found to
be

WEASR modes

PQDO

00 0.10 0.20

FIG. 10. The variation of frequency of GTW and WEASR modes vs €.
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FIG. 11. The variation of phase velocity ¥, of GTW and WEASR modes in the far field vs €.

172

INS
< T 1 =0.1470. (9.2)

Ui}

€.~

From this value we can calculate the velocity of the den-
drite tip. We call the condition (9.1) the global neutral
stability (GNS) condition for the selection of growth ve-
locity. In the literature, some authors used Langer’s sta-
bility parameter o,. The relation between the parameter
€, and o, is

The phase velocity of the above selected GTW mode in
the far field is found to be

V,~1.02 (as §— ). (9.4

Experimental data for succinonitrile with the anisotropy
€,=0.005 show that (see Ref. 29)

(€4)exp=0.099 . 9.5)

It is seen that the GNS condition (9.1) is in a reasonably

172 good agreement with the available experimental data.
€. = O« 9.3) The difference between the theoretical value and the ex-
* 2 ' perimental data in €, is about a factor V'2. It is also seen
Im(ao) :J
GTW modes
c';o o o1 0.2 . o4 o's
€
N WEASR modes

FIG. 12. The variation of the coefficient of amplitude function in the far field, Im(a,) vs €.
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FIG. 13. The eigenfunction /(&) of the global neutral stable
state for the case e=¢€, n =0, T, = —0.068 44, 17,=0.2.

from Fig. 14 and the result (9.4) that the predictions of
the present theory to the interface shape of a growing
dendrite and the phase velocity V), are qualitatively in
good agreement with the experimental observations. The
zeros of the GNS mode solution #y(£) for the case
T, =—0.06844 in the outer region (£.=2.36<£< )
are computed. If one uses the arc length / starting from
£=0 along the paraboloid =1 as the independent vari-
able, then at the zeros

I
[—I'—I- ]=3.32;4.03;4.62;5. 14;5.62;6.05;6.47; ... . (9.6)
b

From these numbers, one can easily calculate the arc

FIG. 14. The interface shape of dendrite in the global neu-
trally stable state for the case n =0, T, = —0.068 44, 7,=0.2.

length {A,} between the two adjacent zeros along the
paraboloid n=1, which may represent the half-wave
lengths of the GNS mode along the paraboloid =1 and
measured by the tip radius /,. We obtain that

{A,}=0.71;0.59;0.48;0.43;0.42; . . . . 9.7)

The precise, experimental measurements for these quanti-
ties, however, have not been seen yet.

The discrepancy between the present theory and the
experimental data can be explained as that besides the
surface tension, the system also has some other stabiliz-
ing effects neglected by the present theory. These stabil-
izing effects may be considered to come from two main
sources: (1) the effect of higher-order nonlinearity, since
the present linear theory is only concerned with the lead-
ing approximation. (2) the effects of the physical parame-
ters neglected by this theory, such as the anisotropy of
surface tension, the fluid motion due to the density
change during the phase transition, the difference of the
thermodynamical constants between the liquid and the
solid state, etc.

The influence of these effects on the value of the pa-
rameter €, and the global stability of the system is a
significant problem which can be studied by extending
the method developed in this work. Finally, it should be
pointed out that the global instability mechanism for
another important pattern formation problem—the
viscous fingering in Hele-Shaw cell—can be also explored
by following the same idea addressed in the present pa-
per. This widely concerned subject is currently under our
investigation. The results will be published elsewhere (see
Ref. 30).

X. SUMMARY

The present work deals with the global instability
mechanism in solidification. It interprets the origin and
essence of the dendritic structure of a growing needle
crystal with arbitrary undercooling and gives a solution
to the selection of tip velocity. The dendrite growth pro-
cess is formulated as a linear eigenvalue problem. The
major conclusions drawn are summarized as follows.

1. The dendrite growth is intrinsically a time-
dependent wave phenomenon for the case of nonzero sur-
face tension. The solution for a realistic dendrite growth
is not the stable, steady state near the Ivantsov solution,
but it is the time-dependent global neutrally stable state
near the Ivantsov solution.

2. Anisotropy of surface tension is not a necessary
condition for dendrite growth. A selection condition of
the tip velocity is found even in the isotropic case.

3. The normal-mode perturbations are subject to a lo-
cal dispersion relation (3.15). This formula is a generali-
zation of the Mullins-Sekerka dispersion formula to a
more general solidification system, whose local growth
velocity of the interface not only has a normal com-
ponent but also a tangential component.

4. A higher-order approximation to the normal-mode
solution proves the existence of a special simple turning
point £., which is related to the eigenvalue o of the un-
steady solution. The location of this turning point £, in
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the complex & plane must be below the real axis; or say,
the eigenvalue o must belong to the domain 3, in the
complex o plane, as shown in Fig. 5. This necessary con-
dition is called the “pattern formation condition.”??

5. The presence of the above-mentioned special simple
turning point &, plays a vital role for the pattern forma-
tion and the selection of tip velocity. In order to obtain
the global-mode solutions for dendritic growth, one must
impose the radiation condition in the far field and the
smooth condition at the tip of dendrite.

6. The global instability mechanism of the dendrite
growth system is an entirely new instability mechanism
generated by the turning point £.. It is determined by
the wave interactions at the turning point and the leading
edge of the tip. We have found two types of global insta-
bility mechanisms in the system: the GTW mechanism
and the WEASR mechanism, which generate two
different discrete sets of global wave modes. In the far
field, the amplitude of the growing GTW mode vanishes
and its phase speed is nearly the unity; also in the far
field, the amplitude of the WEASR mode exponentially
increases, and its phase speed is rather small. The physi-
cal requirement that the total perturbed interfacial ener-
gy must be finite rules out all the WEASR modes. The
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presence of self-sustaining GTW modes connects to the
dynamics of dendritic pattern formation on a growing
needle crystal.

7. The system allows a unique global neutral stable
GTW mode, and satisfies the requirement that the total
perturbed energy of the system is finite. It is proposed
that at the later stage, the dendrite growth is in the global
neutrally stable state, so that the global neutral stability
condition selects the tip velocity of the dendrite. This
condition determines the value of the stability parameter
€,=0.1470, which is in reasonably good agreement with
experimental data.
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APPENDIX

The system for the perturbed state with the multiple variables is listed as follows:

d? 9? = oT 9 d |4 9 |
k? + T=enj(&+7%) +enié |k +e~ |T—engm |k —|T
Rl K R Tl L TR T L
€ d d |~ € d 9 |~
- ‘+e— |T—— |k +e— |T
§ 94+ 9& n 9+ an
3? 9? dk d ~ 5| 9 3? |~
—€ |2k +2k - T—e |—+— |T (A1)
983 4 4 omdn4, 4 0§ 35, e An?
The boundary conditions are the following:
(1) Asni—w, T—0; (A2)
(2) Asn,,.—0, TS—>O; (A3)
(3) On the interface n, . =0, n=1,
(i) The thermodynamic equilibrium condition applies:
T=Ts+h+0(e) . (A4)
(ii) The Gibbs-Thomson condition applies:
= 1 9? 3? ok 9 9?
T= k? +2ek +e— €—
S(&) &% (I3 o 35, 4 3&?
§ d &) € 7 3
+e|—+ k +e— |— h+0(e’) . (A5)
& Sx§) 4s O | SHE
(iii) The heat balance condition applies:
0 d = A oh d 0 | ~
k tet | [T =Ts | +526) 52—+ |k 2 —+ear |R+e+mhi+0(H=0. (A6)
on.s  Con S A TR TR T o
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