
PHYSICAL REVIEW A VOLUME 43, NUMBER 2 15 JANUARY 1991

Columnar growth in oblique incidence ballistic deposition: Faceting, noise reduction,
and mean-field theory
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Several aspects of the columnar structure encountered in vapor deposition at oblique particle in-

cidence are studied through a combination of theoretical analysis and computer simulations. First,
a general macroscopic theory of columnar growth is presented that yields, among other results, an
expression for the columnar growth angle. We then focus on the role of noise in columnar growth,
using two simple square-lattice ballistic deposition models —finite-density deposition and noise-
reduced deposition —in which the amount of fluctuations in the growth process can be tuned by
varying a control parameter. In both models faceting of the column tips stabilizes the columnar
morphology. In the finite-density model, we find a faceting transition related to directed percola-
tion. Some characteristics of columnar growth are retrieved within a mean-field approximation.
Simulations carried out on d-dimensional hypercubic lattices up to d=6 indicate that the deposit
density converges to its mean-field value in the limit d ~~.

I. INTRODUCTI(3N

Random fluctuations play an important part in most
pattern-formation processes, ' both at the onset of the in-
stability and during later stages such as dendritic side-
branching and coarsening. The present paper addresses
the role of

fluctuations

in the context of columnar
growth, which is a ubiquitous phenomenon occurring in a
variety of vapor-deposition processes.

The basic mechanism that leads to unstable growth is
easily accounted for. ' Fluctuations in the deposition
Aux cause parts of the deposit to grow ahead of others.
Under conditions of oblique particle incidence the pro-
truding parts shadow the retarded ones, which conse-
quently stop growing. In the absence of surface
diffusion ' the most unstable wavelength is of the order
of the particle size.

Once columns have formed as a result of amplification
of microscopic Auctuations, they continue to compete for
the incoming Aux through the very same mechanism,
larger columns shadowing smaller ones and thus prevent-
ing them from further growth. Since the range of the
shadowing interaction is not restricted by any additional
length scale (such as, e.g. , the diffusion length in dendritic
growth ), this coarsening process continues indefinitely,
leading eventually to a structure that is statistically scale
invariant from the microscopic to the macroscopic
scale. ' '" Column formation is a consequence of a com-
petitive growth process similar to (though better under-
stood than) diffusion-limited deposition in the limit of
zero particle density, corresponding to the diffusion
length becoming infinite. ' For two-dimensional deposi-
tion onto a line' the column spacing increases with the

deposit thickness h as h ' and the column mass distribu-
tion has a power-law decay with an exponent ~=4/3. In
three dimensions the columns form sheets that extend
perpendicular to the deposition plane. " Their spacing
grows as h ' and the mass-distribution exponent takes
the value ~=—', .

In our previous analysis' "we focused on the limit of
near grazing particle incidence, where the columns can
be assumed to grow independently apart from the sha-
dowing interaction. This assumption breaks down at in-
termediate angles of incidence, leading to a complex
crossover behavior. '" Numerically, a very gradual transi-
tion is observed' "" from the homogeneous porous
structure that forms at normal particle incidence, to
columnar growth, making it impossible to pin down a
"phase" boundary between the two distinct growth mor-
phologies. Here we attempt to clarify this point by inves-
tigating an extension' of the ballistic deposition mod-
el' ' used in our earlier work. ' ""

Let us define then the models of interest. We consider
a two-dimensional square lattice, the sites of which are ei-
ther vacant or occupied by a deposit particle. A row of
occupied sites parallel to the x axis constitutes the sub-
strate. Next a particle is dropped above a randomly
chosen substrate site x. The particle falls down vertically
until it reaches a growth site, i.e., a vacant lattice site
which is the nearest neighbor of an occupied (deposit or
substrate) site. There the particle sticks and becomes
part of the deposit. Denoting by h„(X) the maximum y
coordinate of any occupied site above the substrate site x
after deposition of X particles, the deposition event may
be written as

h„(%+1)=max[h +&(X),h„(K)+1,h, (X)j .
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Deposition at oblique particle incidence is modeled by
choosing an inclined substrate as initial condition,

h„(0)= [x tan8], (1.2)

h +L =h„+ [L tan6], (1.3)

where L is the lateral system size (note that the substrate
length is L/cosO). For the simulations described in this

where 0 is the angle formed by the particle trajectories
with the substrate normal, and [a] denotes the integer
closest to a. We use helical boundary conditions in the
lateral direction,

paper we chose the system size L =2' =262144 lattice
spacings. The deposits typically contained (1 —2)X10
particles.

From the point of view of applications we would like to
know how the deposit structure depends on deposition
conditions such as the substrate temperature and the rate
of deposition. ' The latter efFect can be crudely incor-
porated in our simple lattice model by replacing the
sequential updating (1.1) by a synchronous rule in which
a finite fraction p, 0 (p ( 1, of all growth sites are updat-
ed simultaneously. ' Time proceeds in discrete steps,
t =0, 1,2, . . . , and in one time step, t~t+1, the surface
configuration h (t) evolves according to

ma [xh„+,(t), h„(t)+1,h, (t)] with probability p
h, (r +1)=

h (t) with probability 1 —p . (1.4)

The parameter p controls the rate of deposition. In the
"dilute" limit p ~0 we recover the sequential rule (1.1).

In the context of the present work our interest in the
finite deposition density model (1.4) derives from the fact
that the parameter p allows us to tune the amount of
noise in the growth process. To see this, we note that for
@=1 the growth rule (1.4) becomes deterministic. A cari-
cature of columnar growth survives in the deterministic
limit. ' In particular, for p=1 there is a sharp transition
from layerwise to columnar growth at a critical angle
0, =45'. Quite surprisingly, we find that the transition
remains sharp for infinite noise strength, in a range
p, &p & 1, where p, is the directed site percolation thresh-
old. ' In Sec. III we relate this behavior to a faceting
transition of a type familiar from other synchronous
growth models. ' ' For p )p, and 0) 0, the columns
have faceted tips. Our simulations show that this leads to
scaling properties that are independent of the angle of in-
cidence for 0)0„and that conform to the predictions of
our analysis' for independently growing columns. This
indirectly demonstrates that the observed' ' continuous
variation of scaling properties with 0 in the model (1.1)
can be attributed to fluctuations in the structure of the
column tips that are absent in the faceted phase (p & p, )

of the finite-density model (1.4). Faceted columnar
growth has recently been found in molecular-dynamics
simulations of the epitaxial growth of silicon. We wish
to stress, however, that the faceting transition investigat-
ed here is due to the (somewhat unrealistic) synchronous
updating rule and does not have a clear physical interpre-
tation. Still, our genera1 conclusions concerning the
influence of the tip fiuctuations (or edge fiuctuations in
three dimensions" ) upon the columnar structure are ex-
pected to carry over to real systems.

A diff'erent type of noise reduction has recently been
applied to a variety of growth models. In this algo-
rithm, "counters" are placed on the growth sites, and a
site is filled only after it has been randomly chosen a
prescribed number of times, m. In some cases the limit
m~~ leads to a deterministic growth model. For
noise-reduced oblique-incidence ballistic deposition' it
turns out that the growth rule retains some randomness
even in the limit m ~~. We study the limiting model in

Sec. IV and show that it behaves quite similarly to the
finite-density model (1.4) in the faceted phase. However,
as has been pointed out in the context of the Eden mod-
el, facets appear only at m = ~. There is no faceting
transition at finite m. Consequently, noise reduction with
finite m is not expected ' to change the large-scale sta-
tistical properties of a growth model except for an overall
rescaling of time. In Ref. 13 no significant dependence of
the deposit scaling properties on m was found. A third
way of approaching the deterministic limit employs depo-
sition on finite (narrow) strips with periodic boundary
conditions, thus reducing selectively the long-wavelength
components of the noise. ' Obviously, the large-scale
properties are trivial in this case.

Neglecting fluctuations altogether yields a mean-field
description of the growth process. A nonlinear evolu-
tion equation for the average density profile is derived,
which has traveling wave solutions ' corresponding to
a uniformly growing deposit. In Sec. V we extend a pre-
vious mean-field treatment of ballistic deposition ' to in-
clude oblique particle incidence and synchronous updat-
ing [Eq. (1.4)]. We compute the 8-p phase diagram, de-
posit densities, growth angles, and other properties. As
the mean-field theory is expected ' ' to become increas-
ingly accurate in higher dimensions, we carry out large-
scale simulations on d-dimensional hypercubic lattices up
to d=6. Average properties such as the deposit density
are indeed found to approach their mean-field values (al-
beit slowly) for large d. However, the most characteristic
features of the columnar structure are not reproduced by
the mean-field approach, thus revealing the importance
of a finite amount of fluctuations to initiate and actually
stabilize this growth morphology.

As a prerequisite for the detailed discussion of specific
deposition models, the following section reviews some
general (model independent) macroscopic features' ' of
columnar deposits.

II. MACROSCOPIC THEORY
OF COLUMNAR GROWTH

Looking at a picture of a (real or simulated) columnar
deposit, e.g. , that shown in Fig. 1, several obvious ques-
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tions concerning the macroscopic structure arise. We
would like to know how (i) the deposit density and (ii) the
column orientation depend on the angle of incidence, and
(iii) what determines the shape of clusters grown by uni-
directional deposition onto a point seed ' (see Fig. 2).
Here we show that the answers to all three questions are
simply related to a single quantity, the inclination-
dependent growth velocity.

On a sufficiently coarse-grained level (coarser than the

typical column width) the upper, accessible deposit sur-
face can be described by a single-valued height function.
To simplify notation we consider two-dimensional depos-
its on a one-dimensional substrate. The surface height at
time t, h (x, t), is measured in the direction of the incom-
ing Aux. The basic assumption of the theory is that the
local growth velocity v =Oh/Bt is determined by the lo-
cal surface inclination u =Bh /Bx through a function
U (u), the inclination-dependent growth velocity, which

0=60', p=08 ~ =O.7
s =105

II Igit, I'Ihkk I)I(hk gi
750 LATl ICE UNITS

650 LATTICE UNITS

0 = 87.5', P = 0.99
I

(b) P =0.9
s = 105

(b)

3000 LATTICE UNITS 650 LATTICE UNITS

FIG. 1. Deposits generated using the finite-density ballistic
deposition model on a square lattice. (a) Angle of particle in-
cidence 0=60, deposition flux parameter p=0.9. (b) 0=87.5',
p =0.99.

FIG. 2. Clusters generated by ballistic deposition onto a
point seed, using the finite-density model on a square lattice.
Each cluster contains 10' particles. {a) Deposition flux parame-
ter p=0.7. (b) p=0.9.



43 COLUMNAR GROWTH IN OBLIQUE INCIDENCE BALLISTIC. . . 903

contains the macroscopic information about the growth
process. The equation of motion for h (x, t) is then

h(x, t)=v h(x, t)
a = a
Bt Bx

(2.1)

In principle the function v(u) can be derived, using the
methods of statistical mechanics, from the underlying mi-
croscopic model. Empirically, it is obtained by measur-
ing the velocity of a surface with globa/ inclination u.
For deposition processes the simple relationship

v (u) =Jlp(u) (2.2)

follows from mass conservation. Here J is the deposition
fiux and p(u) is the density of a deposit grown at inclina-
tion u, equivalently at an angle of incidence of
0=arctanu. Oblique incidence deposition generally leads
to an increase in the porosity of the deposit, and hence
p(u) is a decreasing function of u. ' ' In the following
we shall therefore assume that v (u) is a convex function,
v"(u)&0, excluding cases ' ' where v(u) is a constant
or shows a more complicated u dependence.

The local inclination u (x, t) = (8/Bx)h (x, t) evolves un-
der (2.1) as

13 indicate that P(u) approaches its limit with zero slope
at 6=sr/2 (90 ), i.e., n & 1. For small u we expect v (u) to
be quadratic in u, v(u)=vo+(A, /2)u . This yields a
linear increase of the growth angle for small 0,

vo
(2.9)

h (x, r) =tp(x It), (2.10)

where the shape function p is the Legendre transform of
the growth velocity' '

as has been observed numerically. ' In general, convexi-
ty of v (u) implies that P is a monotonously increasing
function of u, g'{u) & 0. The famous "tangent rule" '

tan(0 —P) =—,
' tan(8) corresponds to the growth velocity

v(u)=vo(1+u )'~, which violates the convexity condi-
tion [note that multiplying v(u) by a constant does not
change g(u)]. Indeed, the tangent rule was recently re-
futed on the basis of extensive large-scale simula-
tions.

Ballistic deposition onto a point seed produces fan-
shaped clusters ' (see Fig. 2). For large clusters the
upper cluster surface attains the scaling form

a u(x, t)=v'(u(x, t)) u(x, t) .
ai Bx

(2.3) p(y) = min [v (u )+uy] . (2.11)

g( u ) =arctan [ [v ( u ) /v '( u ) —u ] (2.4)

relative to the h axis. For columnar growth, it is very
natural to identify g(u) with the column orientation at an
angle of incidence of g=arctanu. Through (2.2) we have
then related the angular variation of the columnar orien-
tation to that of the deposit density.

Let us illustrate Eq. (2.4) by some simple examples.
For isotropic growth at normal velocity v, the inclination
dependent growth velocity is v(u)=v(1+u )' . Insert-
ing this into (2.4) we find /=8, as expected. We have
shown previously' that columnar growth leads to a
linear behavior of v (u) at large u,

A piece of slope u translates along the x axis at velocity
—v'(u). After a short time dt its x coordinate has
changed by dx = —v'(u)dt and its h coordinate by
dh = [v (u) —uv'(u)]dt. Hence the local direction of
growth is given by the angle

p(y) —p(vi)-(vi+y)" '"+" (2.12)

close to y =+v~. The cluster surface joins the edges at
infinite inclination, p'(vi ) = 00.

Another point of interest is the internal density distri-
bution of the cluster. It is convenient to introduce po-
lar coordinates (r, P), where the angle P is measured rela-
tive to the vertical. The upper cluster surface is then de-
scribed by a function r(P), which is related to p(y)
through

p(y)=r(P)cosP, y =r(P)si Pn. {2.13)

The linear asymptotics (2.5) of v (u) maps onto the edges
of the fan. The width of the fan is 2v~t at time t, and its
opening angle is 2/0, as would be intuitively expected
Hence the shape function p(y) is defined for —vi ~y ~ vi
and p(+vi)=vi/tango. The behavior near the edges is

related to the corrections to (2.5). For a correction term
O(u ") [Eq. (2.7)] we find

v (u)=vi(u +a), u ~ oo, (2.5)

lim g(u)=go=arctan(1/a) .
Q ~ oo

Including a correction term in (2.5),

v (u) —vi(u +a)-u
for some n & 0, we obtain to leading order

n

(2.6)

(2.7)

(2.8)

at near grazing incidence. The numerical results of Ref.

with positive constants v~ and a. It then follows from
(2.4) that"

Let p(P) denote the radially averaged density at a fixed
angle P. In the limit of infinite cluster size, p(P) =0 for P
outside the opening angle +go of the fan. Obvious
geometric considerations show that p(P) is still given by
the simple expression (2.2), if the local slope p'(y) of the
cluster surface is substituted for u. The asymptotics (2.5)
then implies that p(P) —I /p'(y) close to the edges. From
(2.12) we infer that p'(y) diverges as (vi —y) '~'"+" for

y —+vi, and using (2.13) this translates into

(2.14)

for P —++go. Such power-law behavior has been observed
numerically in simulations of both on- and off-lattice
ballistic deposition. Using a finite-size scaling ansatz,
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Liang and KadanoA estimate 1/n =0.23 for the on-lattice
case, while Joag et al. obtain 1/n =0.33 from oA'-lattice
simulations. This is consistent with our previous con-
clusion that n) 1 in these models. As the definition (2.7)
suggests an integer value for n, the numerical estimates
could be taken to indicate that n=3 or 4. We are not
aware of any argument as to why n should be universal
(model independent), quite in contrast to the power-law
finite-size corrections also studied in Ref. 32, which can
be related to the universality of kinetic roughening.

Summarizing, we have shown that the three basic mac-
roscopic quantities —the deposit density p, the column
orientation g, and the cluster shape p —contain
equivalent information, which can be extracted from any
one of them using simple transformations. In that sense,
they are analogous to the thermodynamic potentials for
equilibrium systems. In fact, the analogy to thermo-
dynamics also extends to morphological transitions,
which show up as singularities in the "potentials" p, g,
and p. One example is the occurrence of linear pieces in
the inclination-dependent growth velocity [Eq. (2.5)],
which rejects the growth of independent, well-separated
columns (cf. Ref. 10 and Sec. III below. ) Another exam-
ple of relevance here is a break in the slope of v (u) at
some uo,

cess. ' Consider a substrate inclined at u=1, h„=x at
t =0. Then at time t the deposit cannot extend beyond
the line

A, =I(x,y)EZ ~y
—x =tI . (3.3)

8.0

1 5-

1.0-

Let B, denote the set of occupied sites on that line. This
set has an autonomous time evolution; i.e., B, depends
only on B, i. A site (x,y) HA, belongs to B, with proba-
bility p, if at least one of its two neighbors (x + l,y) and
(x,y —1) belongs to B, i. This defines a one-dimensional
contact process equivalent to directed site percolation. '

There is a percolation threshold p, (with p, =0.705489
on the square lattice' ) such that for p (p, the set B, is

empty for large t, while for p &p, it always contains a

v(u)=U(uo)+b(u —uo)+c~u —
uo~ . (2.15)

This leads to a jump in the column orientation, and a
facet of size 2c in the scaled cluster shape. 0 5-

III. THE FACETING TRANSITION

A. Macroscopic features
0.0 0.0 1.0 1.5 2.0

In the deterministic limit @=1 of the rule (1.4), growth
proceeds in compact layers for inclinations u 1, while
for u & 1 void formation through shadowing leads to a de-
posit density p(u) (1. The inclination-dependent growth
velocity is'

~ o p=0.99

1, u+1
( )= '„„)1 (3.1)

0.8-

0 6-

p=0.95

+ p=0.90

p=0.80
with a break in slope at u=1. Accordingly, the growth
shape is a fully faceted triangle, from Eq. (2.11)

0 4-
p(y) =1—lyl, —1(y (1 . (3.2)

In Fig. 3(a) we show the numerically determined
inclination-dependent growth velocity for various values
of p & 1. Here time is counted as the number of applica-
tions of the synchronous growth rule (1.4). Since in each
time step a fraction p of all growth sites is filled, the parti-
cle fiux in Eq. (2.2) is J =p, and the deposit density is
p(u)=p/v(u). Clearly for fixed u, v(u) has to be an in-
creasing function of p. The remarkable feature about the
data presented in Fig. 3(a) is that at u= 1 (8=45') the
growth velocity sticks to its maximum (p= 1) value v= 1,
and the break in slope present for @=1persists, for large
enough p.

The reason for this behavior is the existence of a direct-
ed percolation process' embedded in the growth pro-

0 8-

0.0
0.0 0.5

(u-1)
1.0

FIG. 3. Inclination-dependent growth velocity U(u) for the
finite-density model. (a) The values of the flux parameter p for
the different curves are, from top to bottom, p=0.99, 0.95, 0.9,
0.8, and 0.5. Simulations were carried out on a substrate of
width L=1000, and 5000 time steps were performed for each
value of u and p. (b) The data for p )p, and u) 1 rescaled ac-
cording to (3.15).
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finite fraction of the sites in A, . Specifically, the density
o.(t) of occupied sites in A, decays exponentially for—s/g,
p &p„o(t)-e ', with a relaxation time g, diverging
as

(3.4)

p 1.0

for p~p, from below. For p )p„cr(t) has a finite limit
oo= lim, o(t) )0, which vanishes as

0.5-

)
DP~DP (3.5)

for p ~p, from above. At the critical point p =p, the de-

cay of o.(t) is algebraic,

fDP~ ta(t)-t
0.0

0.0 0.5 1.0

Here v, and PDp are critical exponents which govern the
behavior of the "order parameter" o close to the transi-
tion. In two dimensions' v, = 1.733 and PDp-—0.277.

Now the transition in U(u) can be easily understood.
For p )p, the deposit surface sticks to the line A, and
U(l) =1, whereas for p &p, it loses contact and U(l) & 1.
To describe the behavior below p, Kertesz and Wolf in-

troduced the subcritical order parameter V = 1 —v (1)
and showed that

FIG. 4. Simulation results for the deposit density p as a func-

tion of the deposition flux p at an angle of incidence 0=45 .
The dotted line indicates the behavior p=p expected in the
faceted phase p &p„and the dashed line shows the position of
pc.

for p ~p, —.At the critical point V decays as

V-1!t .

(3.7)

(3.8)
y(u) —y(1) —+ lu —1

l

' (3.14)

discontinuity in g(u) at u= 1 and p )p, of a magnitude

proportional to c, and a singularity

p(I ) =p

for p )p, . At p, there is a weak singularity in p(1),

(3.9)

Using the relation (2.2) with J =p this implies that the
deposit density at 45' ( u = 1) is

at p„where the —(+) sign refers to u & 1 ( u ) 1). Note
that, since v, /v, & 2, Eq. (3.14) implies an infinite deriva-
tive of l((u) at p, . This is qualitatively confirmed by the
simulation results for the growth angle ' presented in Fig.
5, although the exponent in (3.14) could not be extracted
from the data.

p(i) —p-(p, —p) ' (3.10)

for p~p, —,in accordance with the numerical results
shown in Fig. 4.

The discussion of inclination-dependent properties re-
quires introducing one further critical exponent. Suppose
we start the directed percolation process from a single
seed site (Bo= IO,OI) rather than from a line of filled

sites. During its lifetime g, (for p &p, ) the set B, then
reaches a typical width g„which diverges as

(3.1 1)

80-

60-

40-

- ———————————-j -~ ————~- ———4

for p~p, —,with v„&v, and v„=1.097 in two dimen-
sions. ' The critical behavior of U(u) can be expressed '

in terms of v, and v„. In particular, for p )p, there is a
break in slope at u = 1, cf. Eq. (2.15), of magnitude

80-

p=0.70549

p=0.9

p=0.99

c —(p —p, )
' (3.12)

0
0

for p~p, +. At criticality (p =p, ) the singularity is
weaker,

U (u) = 1+b'(u —1)+c'lu —1
I

' (3.13)

close to u =1, with positive constants b', c'. The expres-
sion (2.4) for the columnar growth angle then yields a

8 (deg)

FIG. 5. Simulation results for the column orientation l( as a
function of the angle of incidence 0 for various values of the flux

p. The dotted line indicates the critical angle 0, =45 where the
column orientation is expected to jump for p )p, . The dashed

lines show the prediction (3.16}for 0) 0, .
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Upon closer inspection the data depicted in Fig. 3 re-
veal that v(u) is strictly linear in u for u) 1 and p )p, .
We noted already that this is to be expected for large u,
cf. Eq. (2.5). The asymptotic slope vt is easily determined
for the model (1.4). Consider for this purpose the growth
of a fan from a point seed, as shown in Fig. 2. At each
time step the leftmost and the rightmost growth site of
the fan have a probability of p each to become filled.
Hence the fan widens at the rate 2p and v~ =p, leading to
the asymptotic behavior v(u)=p(u +a) for the growth
velocity. The simulation results in the faceted phase
(p )p, ) indicate that this behavior extends all the way to
u= l. Since v(1)=1 in the faceted phase, this also fixes
the constant a in (2.5), whence

v (u) =1+@(u —1), (3.15)

cf. Fig. 3(b). The theory of Sec. II then predicts that the
columnar growth angle t/(u ) is constant for u ) 1,
t/(u) =go with

t/o(p) =arctan
1 p

(3.16)

in agreement with the numerical data shown in Fig. 5.
Hence for p )p, the finite-density model (1.4) shows

the macroscopic characteristics' of columnar
structure —a linear growth velocity v (u) and a constant
growth angle t/(u) —for all inclinations u) 1, indicating
a sharp onset of "ideal" columnar growth at 0=45.
Below we shall reach the same conclusion regarding the
scaling properties of the deposit. The picture of well-
separated columns growing independently (except for the
shadowing) is supported by the visual appearance of the
deposits, cf. Fig. 1. The figure also gives a clue to what
we believe to be the mechanism behind this behavior,
namely the faceted tips of the columns. We noted already
that a break in the slope of v(u) leads, through the
Legendre transform (2.11), to a facet in the corresponding
cluster shape. Here the fact that v(u) is linear for all
u ) 1 implies that the facets extend to the very edges of
the cluster, as can be seen in Fig. 2. It is rather obvious
that a column, provided it survives, grows in the same
manner as the outermost edges of the fan, and thus its ex-
posed part is expected to be faceted for all p )p, . This is
what distinguishes the columnar structure above p, from
that below p„where both v(u) and t/(u) vary smoothly
(nonlinearly) with u. We note that these arguments do
not really explain the occurrence of ideal columnar
growth above p„since the linearity of v ( u ) in turn arises
from the structure itself. Still we feel that a rather satis-
fying understanding has been reached in terms of the gen-
eral notions of Sec. II.

where

h(t)= —g [h (t) —h„(0)]
L

L
(3.18)

denotes the average deposit thickness. In the limit of
large system size (I.—+ oo ), g(t) has a power-law behav-
ior,

g(t)-tf'. (3.19)

P 0.6

0 4-

0 8-

For a locally smooth, one-dimensional surface, the con-
tinuum theory of Kardar, Parisi, and Zhang ' predicts
that /3= —,

' in generic cases. A relevant example of this
class of processes is ballistic deposition at normal particle
incidence. '" ' On the other hand, the limit of near-
grazing incidence can be treated by a simplified model of
independently growing columns which interact only
through shadowing, ' leading to the result /3= —,'. It is
then natural to ask how the exponent behaves between
the two limiting cases. Large-scale simulations of various
models' ' indicate a continuous change in /1, the asymp-
totic behavior of g(t) being consistent with neither /3= —,

'

nor with /3= —,
' at intermediate angles of incidence.

For the finite-density model (1.4) we observe the same
qualitative behavior below the faceting transition, p &p, .
However, in the faceted regime the situation is quite
different (Fig. 6). As explained above, the embedded
directed percolation process forces a surface growing at
0=45 to stick to the line A, if p )p, . This constrains
the surface fiuctuations, and the roughness (3.17) tends to
a finite limit of order unity, i.e. , P=O. Hence the rough
"phases" for 0&45 and 0)45' are separated by a Aat
phase at 0=45'. Extensive simulations at various an-

B. Kinetic roughening

0.0--
0 50

8 (deg)

L
g(r)'= —g [h„(r)—h (0)—h(t)]',

L
(3.17)

The fIuctuations of the upper deposit surface are de-
scribed by the root-mean-square (rms) roughness g(t),
which is defined by

FIG. 6. Effective kinetic roughening exponent P as a function
of the angle of incidence for p &p, (open symbols) and p )p,
(solid symbols). The dashed lines indicate the theoretical pre-
dictions g= —' for continuous growth and P= —' for columnar
growth.
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gles and various values of p (an example is shown in Fig.
7) show that this leads to asymptotic exponents which are
independent of 8 both below 45', where /3= —,', and above
45', where /3= —,

' (Fig. 6). As discussed already, we attri-
bute this behavior to the faceting of the column tips for
p )p, . In the faceted phase, the tip fluctuations which
destabilize the columnar structure' are suppressed, and
our picture of ideal columnar growth' applies without
reservations.

Close to 0=45', the vicinity of the Hat phase leads to a
delay of the kinetic roughening process. The crossover
scaling form follows from a simple mechanism which we
describe here only for 0)45. The case 0(45' is quite
analogous. Consider a substrate of inclination
u =tan9=1+@, e ((1. According to (1.2) the substrate
consists of pieces of length e ' which have unit slope
("facets"), which are separated by double steps where
h +&

—h =2. For p )p„each of the facets grows at
unit velocity, remaining Aat, except for the two sites at
the facet boundaries. By inspection of the growth rule it
is found that the facet boundaries perform random walks
in the transverse direction. Due to shadowing, neighbor-
ing facets cannot coalesce, but facets can disappear if
their two boundaries meet. This happens after a time of
the order e and marks the onset of roughening. Thus
we expect the scaling form

(3.20)

where f (x ~0)=const and f (x ~ Oo ) -x ' . This form
is well supported by the numerical data up to 8=47' (Fig.
8).

A di6'erent scaling form applies at the directed percola-
tion threshold p =p, . For p close to p„ the facet size e
should be compared to the transverse directed percola-
tion length g„, and the time t to the relaxation time g, .
Thus we expect the general form

(3.21)

(3.22)

at p =p„where the scaling function f has the same
asymptotics as f in (3.20). Our simulation results
presented in Fig. 9 confirm this form, with v, /v„=1.58 in
two dimensions.

It remains to consider the critical point u=1, p =p„
which is not covered by the scaling form (3.22). Integrat-
ing the critical decay law (3.8) for the order parameter
V =1—v (1), we see that the distance of the growing sur-
face to the "causality" limit A, increases as lnt. Since the
surface fluctuations have to fit into this gap, it follows
that /3=0 up to logarithms. Numerically, we find (Fig.
10)

(3.23)

with P=0.4. This is consistent with the value f3=0.5 ob-
tained by Kertesz and Wolf for a related model of crys-
tal growth, indicating that the anomalous roughening ex-
ponent P may be universal. No theory for determining /3

is available yet.

C. Scaling properties of the columnar structure

The most striking feature of the deposits shown in Fig.
1 is their scale invariance: The competitive growth pro-
cess generates columns in a range of sizes extending from
the lattice constant to the deposit thickness. We may dis-
tinguish two kinds of scaling properties:

0.0—

-0.5-

Approaching p, from above at fixed t and u, the argu-
ments in (3.21) must combine such that the divergencies
of g„and g, cancel. Using Eqs. (3.4) and (3.11), we con-
clude that

-1.0-

-1.5
0

In (t)

6.5

6.0—
5.5—
50— 0.0

4.0—
3.5—
3.0—
2.5

0
In (t)

-0.5

I I

0 1

In[t (tan (s) 1)]-
FIG. 7. Surface roughness g(t) at an angle of incidence

0=87.5' and a deposition Aux @=0.8. A least-squares fit of the
depicted data yields the estimate P=0.5026+0.0004 for the ki-

netic roughening exponent.

FIG. 8. Numerical verification of the scaling form (3.20)
close to u= l. (a) shows the surface roughness g(t) for p=0.85
and four different angles of incidence, and (b) shows the same
data scaled according to (3.20).



908 JOACHIM KRUG AND PAUL MEAKIN 43
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1.00

0.75

In our previous study we showed' that an array of
well-separated columns which interact only through self-
shadowing is characterized, in two dimensions, by the
scaling exponents

0.50
~—4 ~ —2 ~ —1

II
(3.28)

0.25

0.00
0

I I

2 3

In[t (tan (tt } - t.0}
'

j

FIG. 9. Numerical verification of the scaling form (3.22) for
the surface roughness close to u = 1 at the directed percolation
threshold p =p, =0.705 489.

n (s)-s (3.24)

(ii) The shape of individual columns is characterized by
the scaling of their typical height, h (s), and width, ttt (s),
with the mass s,

(i) The deposit as a whole is characterized by a power-
law size distribution; i.e., the number n (s) of columns of
mass s scales as

In view of the results presented in the preceding sections,
we expect the exponents (3.28) to apply in the whole
faceted columnar phase 0)45, p )p, . This is confirmed
by our extensive large-scale simulations (see Fig. 11 for
an example). Below p, the exponents show a similar con-
tinuous variation with the angle of incidence as was ob-
served' for the sequential model (1.1), and the values
(3.28) are approached only in the limit of near-grazing in-
cidence.

Meakin has pointed out that there is a natural
decomposition of the deposit into "columnar" clusters
even in cases when the deposit appears visually homo-
geneous. At the beginning of a simulation, the substrate
sites are labeled by their coordinates. Then each newly
deposited particle is given the same label as one (possibly
randomly chosen) of the deposit or substrate sites to
which it sticks. Deposit particles belong to one cluster if
they share the same "ancestor" substrate site. For
columnar growth, this definition of columns coincides
with the obvious one. For ballistic deposition at normal

h(s)-s ", tU(s)-s ' . (3.25)

and

+ (d 1)v& 1 (3.26)

Since v~~
) v~, these structures are referred to as self-a%ne

fractals. Simplifications arise from the fact that both
the deposit as a whole and the individual columns have a
finite density. For a d-dimensional deposit, this implies
the scaling relations

12 ~
10

CO

0
-2

leaving one exponent undetermined.

(3.27) -10 I I I I I I I I I I I I I
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FIG. 10. Anomalous roughening at 0=45, p =p, . The
dashed line shows the logarithmic behavior g'(t)-(Int) of the
surface roughness.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ln (s)

FIG. 11. Scaling of the columnar structure at 0=87.5' and
p=0.8. (a) Number n (s) of columns of mass s. A least-squares
fit to the depicted data gives the estimate ~=1.332+0.004 for
the size-distribution exponent. (b) Average height h (s) of
columns of mass s. The depicted data yield the estimate

v~~
=0.674+0.001 for the substructure exponent.
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incidence, we have shown' that the substructure ex-
ponents (3.25) are related to the dynamic surface ex-
ponent z, which describes the dynamic spreading of Auc-
tuations parallel to the surface' ' '" ' through

v~~ /vg —z (3.29)

In two dimensions z =—', , which yields, together with
the relations (3.26) and (3.27), the scaling exponents' '

s&
/f

Y& ~ s
7 v 3 v 2 (3.30)

v, +2(d —1)v„v,
7 = V

v, +(d —1)v„' ii v, +(d —1)v„

vr
vg-

v, +(d —1)v„

(3.31)

In two dimensions' this implies ~=1.388, v~~
-—0.612,

which is consistent with the numerically determined

1.45

e=45'

1 40-

1.35-

1.30
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 12. Effective column size distribution exponent ~ as a
function of p at the critical angle of incidence 0=45 . The
dashed lines indicate the values expected at normal incidence,
~= —,', at p =p„~=1.388, and at near-grazing incidence, ~= 3.
The dotted line marks the transition point p, . The statistical
uncertainties are of the order of the symbol size. They were es-
timated by comparing the data to the exact scaling relation
(3.27).

Here we wish to address the behavior of the substruc-
ture exponents at 0=45'. As explained above, for p )p,
the surface is Aat at this angle, which separates the re-
gions of continuous and columnar growth. In Fig. 12 we
show estimates for the size-distribution exponent ~ ob-
tained from large-scale simulations at 0=45 and various
values ofp. For small p, ~ lies in the crossover regime' '
between the normal-incidence value ~= —', and the near-
grazing-incidence value ~=—', . Slightly below p, the
effective exponent rises toward the normal-incidence
value and then drops rather abruptly to a value close to

3

for p )p, . At p =p, the dynamic surface exponent z can
be shown to be related to the directed percolation ex-
ponents through a relation analogous to (3.29), z =v, /v„.
Combining this result with the scaling relations (3.26),
(3.27), and (3.29), we obtain

values ~=1.378, v~~=0. 623 at p =p, . However, it is clear
from Fig. 12 that the statistical uncertainties in the mea-
sured exponents hardly allow us to resolve the tiny
differences between the two sets of exponents (3.30) and
(3.31).

To understand the behavior of ~ for p )p„ it is useful
first to consider the seemingly trivial case p=1. In each
time step t~t+1, the line A, +& is completely filled.
Every newly added particle has two neighbors on the line
A, . According to the procedure described above, it is
randomly connected to one of them. The array of clus-
ters obtained in this way is identical to Scheidegger s ran-
dom river network, ' which is one of the simplest mod-
els for competitive growth. The individual clusters are
the critical clusters of an exactly solved directed percola-
tion model due to Domany and Kinzel. " In this model
the starting configuration is a single filled site on the line
Ao. Then subsequent configurations are generated using
the following conditional probabilities: A site in A, +&

remains empty if both its backward neighbors in A, are
empty, it is filled if both neighbors are occupied, and it is
filled with probability P if one of the neighbors is occu-
pied. As a consequence, the boundaries of the cluster ex-
ecute random walks in the transverse direction, which are
biased inwards for P & —,

' and outwards for P )—,'. The
Scheideg ger model corresponds to the critical point
P =—'. The walks are then unbiased, and the scaling ex-2'
ponents are easily shown ' to be given by Eq. (3.28).
An alternative derivation which is valid in arbitrary di-
mension is sketched below.

For p, (p & 1 the equivalence to the Scheidegger mod-
el is no longer complete, as holes appear in the set B, of
occupied sites at the maximum level A, . Still, we know
that B, retains a finite density asymptotically. Hence the
deposition events occurring in A, can be thought to gen-
erate the backbone of the substructure pattern, which is
expected to have the same scaling properties as the "un-
diluted" Scheidegger network. We conclude that the ex-
ponents (3.28) describe the whole faceted phase at 0=45',
in good agreement with the simulation results in Fig. 12.
Note that the mechanism' leading to the same set of ex-
ponents (3.28) for 0) 45' is quite different, although in
both cases coalescing random walks enter the play.

The above arguments naturally extend to arbitrary di-
mension. We consider a d-dimensional hypercubic lattice
with a surface growing perpendicular to the (1,1, . . . , 1)
direction. In the faceted phase, the surface sticks to the
hyperplane AI,"I=Ix, +x2+. . .xd =t I. In the corre-
sponding d-dimensional Scheidegger model, for simpli-
city at p = 1, each site in A, +, is connected to a randomly(d)

chosen neighbor in A', ' (there are d such neighbors).
Consider a network grown to a height of h layers. We
pick an arbitrary site in A&"' and follow its connections
downward towards the substrate. Clearly, the path we
follow is a random walk in the d —1 transverse direc-
tions. Occasionally the path coalesces with paths origi-
nating from other sites in A&"'. Hence the number of root
sites on the substrate which are connected to the top
layer —equivalently, the number of clusters surviving up
to height h —is proportional to the density n (h) of a sys-
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tern of coalescing random walks in d —1 dimensions, at
time h. It can be proven that n (h) —h ' for
d —1=1, n(h) —(Inh)/h for d —1=2, and n (h) —1/h
for d —1 ~ 3. The high-dimensionality result follows
from the naive rate equation dn/dh ——n, which im-
plies the "mean-field" assumption that the density of
walkers is homogeneous in space. In that sense, d=3 is
the upper critical dimension of the problem. From the
definitions (3.24) and (3.25) of the substructure exponents—(~—

& )/~
we infer that n (h)-h ~~ in general. Thus for d=2
we recover the results (3.28). For d ) 3 we conclude that
r—1 =

v~~, and using (3.27) we obtain

~= —', , v =
—,
' ford~3,

II
(3.32)

with logarithmic corrections in d=3. Since the walkers
move diffusively, the linear size w of the region in A&"'

that belongs to a single cluster is proportional to h'
With (3.25) this implies v~~ /vi=2, and hence

v~= —,
' for d) 3 . (3.33)

The result (3.32) for r is consistent with numerical simu-
lations of the Scheidegger model in dimensions d = 3 —6.
Note that the scaling relation (3.26) is satisfied by the ex-
ponents (3.32) and (3.33) only in the marginal dimension
d=3. For d ) 3 the individual clusters are no longer
compact, but have a fractal dimension

d 4d

v~i+(d —1)vi d +1 (3.34)

IV. NOISE-REDUCED BALLISTIC DEPOSITION

In Ref. 13 two different noise-reduction algorithms
were applied to the basic square-lattice model (1.1). In
model I a counter is associated with each growth site
(x,g ), where

g, =max(h +„h,+l, h, , ) . (4.1)

The counter is increased by one each time the site is
selected for deposition. After a preassigned number of
selections m the site is filled and the counters correspond-
ing to the newly created growth sites are set to zero. In
model II the counters are associated with the substrate
sites x instead. When deposition has been attempted m

times above a given substrate site x, the current growth
site (x,g„) above x is filled and the counter is reset to
zero. In this section we study the limiting case m ~~ of
models I and II. In particular, we derive the exact
inclination-dependent growth velocity for model I in that
limit, and compare it to the results obtained for the
finite-density model (1.4).

For the square-lattice model on a strip of width L there
are L current growth sites at any time, one for each sub-
strate site x, and therefore L counters. When m is large,
the relative Auctuations in the counter positions become
small. Consider an arbitrary counter which has just
ripened, i.e., its position has just passed the value m
and it has been reset to zero. For large m it is almost cer-
tain that the other L —1 counters ripen before the

counter under consideration reaches m the next time.
Hence in the limit m ~ ~ the counters ripen in genera-
tions, which we may choose as our unit of time. (We as-
sume for the moment that all counters reach maturity,
which is not true for model I, see below. ) Within each
generation the order in which the counters ripen is still
random. The counter associated with the substrate site x
is the kth one to ripen, where k =sr(x) and vr is a ran-
domly chosen permutation of the numbers 1, . . . , L. For
normal-incidence deposition the order in which the sites
ripen is clearly irrelevant, so growth proceeds layerwise
and v(0)=1 in our units of time. However, for a tilted
substrate this is no longer true, as previous depositions at
neighboring sites can shadow or shift the current growth
site. A similar effect occurs in version C of the noise-
reduced Eden model.

Here an important difference arises between models I
and II. For model II the counters are unaffected by pre-
vious deposition events at neighboring sites, but the
height g of the current growth site depends on the
current configuration. Hence the m = ~ limit of model
II is represented by the following two rules:

(i) For each generation, choose at random a permuta-
tion ~ of the numbers 1, . . . , L.

(ii) Update the height at each site x according to (1.1),
in the order given by m, using each time the current
height configuration on the right-hand side of (1.1).

Consequently, L particles are deposited in each genera-
tion, i.e., J= 1 in Eq. (2.2). Numerically we find that the
surface roughens at arbitrarily small tilt u) 0, and the
growth velocity v (u ) ) 1 for u )0 with a break in slope at
u =0. For u )0, v (u) is a smooth function of u. Using
the technique described in Ref. 10, v ( u ) can be computed
for a strip of width L=2 with periodic boundary condi-
tions. The result is

1+u /2, u ( 1/2
—,'+3u/2, u ) 1/2 . (4.2)

Apart from the break in slope at u =
—,', which is an ar-

tifact of the approximation, this result reproduces the
main qualitative features of the large-system limit, i.e.,
the porosity [p(u) =1/v(u) (1] for arbitrarily small u,
the large asymptotic growth angle Po=arctan3 =71.6'
[cf. Eq. (2.6)], and the fact that the transverse growth ve-
locity is larger than unity, vi =—', [cf. Eq. (2.5)]. Numeri-

cally we find vi=1.70 and go=67' for a strip of width
L = 1000.

For model I it may happen, for a tilted substrate, that a
growth site (x,g ) is shadowed by a deposition event at
x+ 1 or x —1 before its associated counter reaches matu-
rity. At that point the counter associated with the newly
created growth site at g

' )g is activated. However, the
new counter belongs to the next generation, and hence in
the current generation no growth takes place above the
substrate site x. This implies that only a (u-dependent)
fraction of the L growth sites is filled in each generation.
Accordingly, for model I the rule (ii) formulated above
for model II is modified into the following:

(ii') Select the substrate sites in the order given by n
For each site x check if the height of the growth site g„



43 COLUMNAR GROWTH IN OBLIQUE INCIDENCE BALLISTIC. . . 911

g„(n)=n —~x~, —x (n)(x (x+(n), (4.3)

where, however, the edge positions x and x+ are ran-
dom. Clearly the fan grows sideways only if the leftmost
or rightmost growth site is 611ed. This occurs with some
probability which we identify as the lateral growth veloci-
ty Ui, i.e., (x+(n)) =(x (n)) =Upon for large n He.nce
the scaled shape function for the fan is given by [cf. Eq.
(2.10)]

(4.4)

has changed as a result of previous depositions within the
current generation. If not, fill it; otherwise, move on to
the next growth site without Ailing the site at x.

Inspection of this rule for substrate inclinations u ~ 1

shows a layermise displacement of the growth sites
g„(n +1)=g„(n)+1 for the nth generation, despite the
porosity due to shadowing. In other words, the particle
current J and the deposit density p in (2.2) adjust such
that v(u)= J(u)/p(u)=1 for all u (1. The function p(u)
is computed below.

To analyze the behavior for u) 1 we turn to the
growth of a fan from a point seed at x =0 under the rules
(i) and (ii ). It is easily seen that the growth sites associat-
ed with the fan at generation n form a regular "hat"
shape (Fig. 13)

Let p denote the probability that the growth site at x is
filled in a given generation n, —x (n)(x (x+(n).
Clearly p =p, so we focus on x )0. We pick a per-
mutation rr of the numbers 0, . . . , M =x+ (n) at random,
such that the kth site to be selected is given by
~(x)=k —1. Due to the simple structure (4.3) of the set
of growth sites, the site at x can be shadowed only by a
previous deposition at x —1. The top site x=0 cannot be
shadowed. The site at x= 1 is shadowed if ~(1))rr(0).
This holds with probability 1 —p] =

—,'. The site at x=2 is

certainly filled if vr(2) (m(l). A second possibility is that
vr(2)) vr(1), but that the site at x=1 was already sha-
dowed when it was selected at k =~( 1)+ 1, i.e.,
vr(2) )~(1))~(0). The probability for this event is
1/31= —,', hence p2= —,'+ —,

'= —', . To compute p, we must

evaluate the joint probability that 7r(3) ) vr(2) and the site
at x=2 is not filled. This implies that vr(3) )vr(2) & ~(1)
and the site at x= 1 is filled, i.e., vr(1)(~(0). Thus the
four numbers m(0), . . . , rr(3)H [O, . . . , M] are to be ar-
ranged such that either ~(0))~(3))~(2) )vr(1) or
vr( 3 ) ) vr(0) ) vr(2 ) )~( 1 ) or vr( 3 ) ) vr(2) )~(0 ) ) m (1).
Each possibility has a weight 1/4!, hence the joint proba-
bility is 3/4! and p3 =

—,'+3/4! =—,'. Proceeding inductive-

ly in this fashion it can be shown that

1, u~1
1+Vi(u —1), u & 1 . (4.5)

Taking the inverse Legendre transform of (4.4) we obtain
the inclination-dependent growth velocity Px=

(x +1)/2

(2j)!
1

px —1

for x odd

for x even .
(4.6)

The lateral growth velocity Uj is computed as follows. The lateral growth velocity is the occupation probability
for the outermost growth site at x+ (n) in the macroscop-
ic limit n ~ ~,

v~ = lim px = 1 —e ' =0.632 1205. . . . (4.7)

This corresponds to a growth angle go=arctan(e —1)
=59.8' [cf. Eqs. (4.5), (2.5), and (2.6)]. We have also
determined Ui numerically. From a small-scale (L=150)
measurement of the growth velocity U(u) we obtain
U~ =0.630+0.005, while the direct evaluation of fan
shapes such as that shown in Fig. 13 yields
Ui =0.637+0.011, both in good agreement with (4.7).

We noted above that the deposit density p(u) for u ( 1

is equal to the fraction J(u) of growth sites which are oc-
cupied in each generation. J(u) is easily obtained from
the probabilities (4.6). Consider first inclinations

u(=l/(l+I), l =0, 1,2, . . . . (4.8)

m=
s = 100282

700 LATTICE UNITS

FIG. 13. Cluster grown by ballistic deposition onto a point
seed, using the I = ao limit of the noise reduced model I. The
cluster contains 100282 particles.

The set of growth sites decomposes into sequences of
length I+ 1, such that I sites sit next to a step
(g„+i—g„=l) and the (rightmost) (1+1)th site sits on
the edge of a "terrace" (g +,=g„) of width 2. The ter-
race site cannot be shadowed, whereas each step site can
be shadowed by deposition onto the site to the right of it.
Hence the occupation probability for the kth site to the
left of the terrace site is pk. This implies a lateral varia-
tion of the deposit density, with wavelength I+1 and
high-density (p = 1) streaks below the terrace sites. The



912 JOACHIM KRUG AND PAUL MEAKIN 43

p 1.0

0, 8-

0.2 .

0, 0 '

0 50
(9 (deg)

FIG. 14. Exact angular dependence of the deposit density for
the m = ~ limit of the noise-reduced model I.

overall occupation fraction is obtained by averaging over
one sequence,

p(u() =J(u) ) = g pt. .(+1 a=o
(4.9)

At intermediate inclinations the density can be shown to
interpolate linearly in u. For u) 1 the exposed parts of
the surface are facets of unit slope. Therefore J(u)
remains constant at J(1)=ui and p(u)=ui/u(u). The
resulting dependence of the deposit density on the angle
of incidence 0=arctanu is depicted in Fig. 14.

For u ) 1 we expect the same kind of ideal columnar
growth as in the faceted phase of the finite-density model
(1.4): The growth velocity (4.5) is strictly linear in u, and
the cusp at u= 1 leads to faceted tips (Fig. 15). Numeri-
cal measurements of the surface roughness g(t) support

this picture; i.e., we find g(t) —t' at long times for all
u) 1. The random-walk arguments presented in Sec.
III B to describe the crossover in g(t) close to u = 1 carry
over without alteration (see Fig. 15 for a visualization of
the diffusing facet boundaries), and the scaling form
(3.20) is well supported by the simulations (Fig. 16). The
main difFerence is that the Aat phase, which was previous-
ly confined to 0=45', now extends to all 0~45', with a
novel kind of "tilt-induced" roughening transition occur-
ring at 0=45. We also note that in the present model,
faceted growth at 0=45' is sustained at an occupation
density (ui) which is below the directed percolation
threshold p, =0.705 489. Clearly this is possible because
rule (ii') leads to a highly correlated occupation process,
e.g. , vacancies are never created at neighboring sites.

Summarizing, we conclude that for model I the limit
m —+ ~ selectively suppresses fluctuations which lead to
kinetic roughening at small angles of incidence (9 (45 ),
while those fluctuations which are necessary for column
formation and competition survive even at m = ~. This
clearly demonstrates that the two types of fluctuations
can be distinguished. In the original model (1.1), as well
as in the m = ~ limit of model II, both types are present
simultaneously. Presumably this is the reason for the

2.5

2.0

1.5

1.0

0.1

0.0

-0.5

50 -1.5
1

In (t)

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
-5 0 1 2

In[t (tan (e) -1) ]

400 LATTICE UNITS

FIG. 15. Deposit generated using the m = ~ limit of model I
for noise-reduced ballistic deposition. The angle of incidence is
0=50'.

FIG. 16. Numerical confirmation of the scaling form (3.20)
for the m = ~ limit of model I for noise-reduced ballistic depo-
sition at angles of incidence near 45'. (a) shows g'(t) at four an-
gles, (b) shows the same data scaled according to (3.20).
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complicated scaling behavior observed' ' at intermedi-
ate angles of incidence.

V. MEAN-FIELD THEORY

The mean-field approach to growth processes ' ' ' is
based on the —rather drastic —assumption that growth
probabilities at neighboring lattice sites are independent.
Such an approximation cannot account for statistical
scaling properties, but it is a useful tool for studying mac-
roscopic features such as growth shapes and morpho-
logical transitions. ' ' Moreover, there is some indica-
tion that the mean-field theory becomes exact in the
limit of infinite spatial dimensionality. In this section we
explore in some detail an extension of the mean-field
theory for ballistic deposition originally proposed by
Bensimon, Shraiman, and Kadanoff. '

A. Basic equations and density profiles

We work on a d-dimensional hypercubic lattice. Parti-
cles move in the negative y direction and the d —1 trans-
verse coordinates are denoted by x. We wish to derive
the mean-field equations for the d-dimensional generali-
zation of the finite-density deposition model (1.4). Let
p, (x,y) be the probability for site (x,y) to be part of the
deposit at time t. Growth occurs with probability p at a
site (x,y) if

(i) the site is a growth site: it is vacant and either site
(x,y —1) or at least one of the 2(d —1) transverse neigh-
bors (x+e,y), where e is a transverse lattice vector, be-
longs to the deposit; and

(ii) the site is not shadowed: all sites (x,y') and
(x+e,y') with y')y are vacant. Within the mean-field
approximation this leads to the evolution equation

p, (x y) 0(»y)—=p 1 —[1—p, (x,y —1)]g [1 0(x+—e,y)] g '[1—P, (x,y') 1 g [1—P, (x+e,y'+1)] '

e e

(5.1)

The infinite product on the right-hand side clearly reAects the nonlocal nature of the deposition process. In the limit
p~0 combined with a rescaling of time (5.1) reduces to the continuous-time equation written down by Bensimon
e~ aI."

We are interested in initial conditions corresponding to a substrate with inclination u =tanO, which we choose as

1, y Cgx)
Po("y)= 0 y)ux (5.2)

The homogeneity of the density in the remaining d —2 transverse directions xz, . . . , xd, is preserved under (5.1).
Hence the solution can be expressed in terms of a one-dimensional density profile,

p, (x,y) =p, (y —ux, ), (5.3)

which satisfies

p, +i(z) —p, (z) =p [I—pi(z)] f 1 —[1—p~(z —»][1—p~(z —»][I—p~(z+»][I —p, (z) 1'" ']

[1—p, (z')]" [1—p, (
' —u)][1—p, ( '+u)],

z'=z+1
(5.4)

with z =y —ux, . In the following we consider only in-

teger values of u, so Eq. (5.4) operates on the lattice of in-

tegers.
In Fig. 17 we show some examples of density profiles

generated by (5.4). Note first that (5.4) is exact in the
deterministic limit @=1: For u ~ 1, the initial profile is
simply shifted at unit velocity, while for u ) 1 a periodic
density profile builds up,

1, z=nu, n =1, . . . , t

0, otherwise (5.5)

as a result of the growth of "needles" perpendicular to
the y axis. ' For p & 1 the density oscillations are
damped, with a decay time which diverges in both the
limits p~1 and u~oo (cf. Fig. 17). The oscillations
reflect, in an average way, the initial stages of columnar
growth: Columns originate at the edges of the substrate
steps. Moving up the y axis, a periodic sequence of high-

and low-density regions is encountered, the nth density
maximum corresponding to a column which originated
from a step n lattice constants away in the positive x&

direction. This implies that the spacing 6 of the maxima
is related to the columnar growth angle g through

h=u +cot/ . (5.6)

For long times, columns originating at different substrate
sites lose their phase coherence, and the density oscilla-
tions are washed out and eventually vanish. To demon-
strate this effect for the full stochastic model (1.1), Fig. 18
shows density profiles obtained from a square-lattice
simulation by laterally averaging the density at sites (x,y)
with y —ux =z. This yields the appropriate quantity for
comparison with the mean-field profile (5.3). The decay
of the density oscillations is much more rapid in the sto-
chastic case, as would be expected.

Despite the simplifications of the mean-fiel approxi-
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mation, solving the full nonlinear difference equation (5.4)
still poses a formidable task. Fortunately, only the
linearized dynamics is needed ' to extract the basic
quantity of interest, the inclination-dependent growth ve-
locity. We first note that asymptotically (at times large
enough for the density oscillations to have decayed) the
solution to (5.4) can be written as a traveling wave,
p, (z) =f (z —ct), where c is the growth velocity we wish
to determine and f satisfies the boundary conditions
f (x ~—~ ) = 1, f (x ~~ ) =0. In the tail of the profile,
we expect an exponential decay as

p 1.0

0 6-

100 800 300 400 500

I9=78.7, p=0.4 FIG. 18. Laterally averaged density profile obtained from a
square-lattice simulation on a strip of width L=1000, an angle
of incidence of 0=84. 3', and a deposition Aux ofp=0.9.

o. e

q (z —ctI (5.7)

0, 0
0 100 800 300 400

i

500

for some q) 0. Inserting this ansatz into (5.4) and linear-
izing the right-hand side we obtain a dispersion relation
between c and q,

c (q) =—ln [ 1+p [eq+2 cosh(qu ) +2d —4] ] .
1

0 5.

8=78.7', p=0.8

Quite surprisingly, the ansatz (5.7) does not fix the front
velocity. There exist traveling wave solutions for any
c )c *, where c * is the minimal value of (5.8). For a
large class of partial differential and difference equa-
tions similar to (5.4) it can be shown that the actual front
velocity is determined by the asymptotic decay of the ini-
tial condition po(z) at large z. Localized initial condi-
tions, such as the step profile (5.2), travel at the minimal
speed c *. Hence the inclination-dependent growth veloc-
ity v (u) is obtained by minimizing (5.8) relative to q,

v(u)=c*= mine(q) .
q)0

(5.9)

0.0
0 100 800 300 400

1.0
(c)

8=84.8', p=0.4

0 5.

, », », ili, [ t &Ill&&III h

0 100 800 300 400 500 p, (z)=po+ A /z, 1((z«ct, (5.10)

with po =p /c * and

Clearly from now on the inclination u can be regarded as
a continuous variable.

Before turning to the evaluation of (5.9) in specific
cases of interest, we demonstrate the validity of the above
analysis by comparing the predictions of the variational
formula (5.9) to the direct numerical iteration of the
difference equation (5.4). This check is important, since
the selection of the minimal speed is known to break
down for certain mean-field growth models.

The theory leading to (5.9) also predicts that the front
velocity converges to its asymptotic value c * from below,
with a leading correction term proportional to 1/t. Us-
ing the general relation (2.2) with J =@, this result im-
plies a 1/z-decay of the frozen density profile,

FIG. 17. Density profiles p, (z) generated by the mean-field
equation (5.4).

3po
(5.1 1)
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. 538-
p =0.4

o (t + 1)=p(1 —[1—cr(t)] ) . (5.12)

Within the mean-field approximation, o (t) =p, (t) From
(5.4) we infer the autonomous time evolution '

.530-

. 588-

. 5

1/z
1.0 1.5 2.0x10 '

FIG. 19. Mean-field density profile p, (z) obtained by iterat-
ing the difference equation (5.4) up to t=5000, with @=0.4. The
convergence to the asymptotic density is linear in 1/z.

Here q* denotes the value of q at which the minimum in
(5.9) is attained.

We have iterated (5.4) for normal-incidence deposition
(u=0) at various values of p, and analyzed the frozen
density profile up to z=1000. Figure 19 confirms the ex-
pected asymptotic 1/z decay, and Table I compares the
results for po and 3, obtained from a least-squares fit of
the density profile to (5.10), to the predicted values. The
agreement is excellent for po, and the correction ampli-
tude A is proportional to po/q" as predicted. However,
the coeKcient of proportionality turns out to be
1.384+0.007 rather than the simple fraction —,'in (5.11).

B. The phase diagram

TABLE I. Asymptotic deposit density po and amplitude A of
the leading 1/z correction for the mean-field theory of ballistic
deposition. We compare the asymptotic density po" obtained by
iterating the difference equation (5.4) to the prediction po

' of
the variational formula (5.9). The last column shows that A is
proportional to po/q*, cf. Eq. (5.11).

The mean-field theory of faceting and directed percola-
tion has been presented in detail elsewhere. Here we
briefly review the main results of interest in the present
context. As the mean-field critical behavior is indepen-
dent of dimension, we restrict ourselves to d=2.

It was pointed out in Sec. III that the emergence of
faceted growth at u=1 is related to an asymptotically
finite density o (t) of occupied sites on the line y —x, =t.

/=1/q* . (5.13)

For u = 1 and p &p, =
—,
' we have seen that p, (t) =oo) 0

for t~~. On the other hand, it is an immediate conse-
quence of (5.4) that p, (z)—:0 for z ) t. Thus for u = 1 and

p &p, the profile is discontinuous at z =t and the ex-
ponential tail in (5.7) does not exist. Within our mean-
field theory, faceting is therefore related to the divergence
of q, i.e., the vanishing of g, on approaching the line
u= 1, p )p, . This becomes evident by expanding (5.8)
for large q. We obtain

1+q 'ln(p), u (1
c(q)= 1+q 'ln(2p), u =1

u+q 'ln(p), u )1 .

(5.14)

For u (1 and u & 1 the asymptotic (q~ ~ ) value of c is
approached from below, hence a finite minimum q* & (x)

must exist. For u=1 this is true only for p &p, =
—,'. A

more careful analysis yields the following critical be-
havior of g:

—1/ln(p, —p), u =1, p~p,
~u

—1~, p )p„u~1 . (5.15)

For p (p, =
—,
' the fixed point o. =0 is stable,—f /g',o(t)=(2p)'o(0)-e ' with g, = —1/ln(2p). Thus the

mean-Geld value' of the correlation length exponent v,
[cf. Eq. (3.4)] is v, = 1. For p )p, a nontrivial fixed point
o.o-p —p, appears, leading to the value PDp= 1 for the
order-parameter exponent' [Eq. (3.5)]. A detailed
analysis of the inclination-dependent growth velocity
(5.9) shows that a break in slope at u= 1 appears for
p )p„with a magnitude proportional to (p —p, )'~2.

Comparison with (3.12) then implies that v„=—,
' in the

mean-field approximation. Similarly, the growth-shape
singularities discussed in Sec. IIIA can be computed
and shown to be consistent with the general scaling
theory ' in the limit d ~ co.

Since the solutions to (5.4) are of the traveling-wave
form (5.7), the width of the surface is asymptotically
finite, and kinetic roughening does not occur. A distinc-
tion between "rough" and "Aat" growth morphologies
can still be made using the inverse of the decay constant q
in (5.7) as a measure of the surface roughness g. Asymp-
totically, the selected value of q is the position q

* of the
minimum of (5.8), hence we write

0.1

0.2
0.3
0.4
0.5
0.6
0.7

(l)
po

0.304 858
0.378 593
0.452 722
0.527 429
0.602 807
0.678 981
0.756 306

(2)
po

0.304 865
0.378 5?5
0.452 726
0.527 423
0.602 799
0.679 017
0.756 294

0.240
0.253
0.267
0.275
0.280
0.285
0.277

q A /po

1.391
1.379
1.385
1.381
1.380
1.395
1.374

It might seem reasonable to conclude that the mean-
field phase diagram is quite similar to that of the full sto-
chastic model (Sec. III): For p )p, there is a fiat phase
(/=0) at u=l, sandwiched between two rough phases
(g) 0) for u (1 and u) 1. However, there is an impor-
tant dissimilarity regarding the symmetry of the phase di-
agram with respect to u=1. For the stochastic model we
showed that the two rough phases, the continuous
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growth phase (u(1) and the columnar growth phase
(u ) 1), are very different with regard to both macroscop-
ic properties and scaling behavior. In contrast, the
mean-field approximation gives rather similar results on
both sides of u=1. As an example, Fig. 20 shows the
columnar-growth angle f(8) calculated from the mean-
field growth velocity (5.9) and the general formula (2.4).
For p )p, the growth angle is discontinuous, correspond-
ing to the cusp in U(u). However, for 8)45' g(8) is not
constant, as would be expected for columnar growth (cf.
Fig. 5). In fact, the figure looks rather symmetric with
respect to 0=45'. A similar conclusion can be drawn in
the case p=O, where it is seen [Fig. 20(b)] that g(8)
reaches its grazing incidence value Po at a finite slope,
rather than showing a plateau' for large 0. In terms of
the theory of Sec. II this indicates that the correction ex-
ponent in Eq. (2.7) is n= 1 for the mean-field approxima-

„( )

tion, as will be explicitly shown below. These observa-
tions can be summed up in the statement that columnar
growth cannot be accounted for by the mean-field theory,
the reason being that some amount of noise is needed to
initiate and maintain the competitive columnar-growth
process.

Before turning to the high-dimensionality behavior we
briefiy comment on a striking feature of Fig. 20(a), viz.
the fiatness of the function g(8) close to the discontinuity
at 8=45 . It follows from the general expression (2.4)
that this regime is related to the cluster shape close to the
facet, equivalently to the next to leading term in v(u)
close to the cusp at u = 1 [cf. Eq. (2.15)]. In d dimensions
the next to leading term can be shown ' to be proportion-
al to (1—u) for u ( 1, where pd is the kinetic
roughening exponent for a continuous (d —1)-
dimensional surface, P, =

—,', and Pz= —,', cf. Sec. III B.
The growth angle then approaches the discontinuity as

—l((u)- ~u
—1~

" ', where g =lim„, oil'j(u).
We noted above that p=O in the mean-field theory, and
therefore the next to leading term in U (u) is exponential
in 1/(1 —u). This implies an essential singularity in
l(( u ) as well,

60-

p=0.6 /l((» —l(+/ - /~ —I /-'e -' "-'
where ltj+=lim„, +os(u) and a =a (p)) 0.

C. High-dimensionality behavior

(5.16)

40-

80-

0
0

60-

(b)

50
8 (deg)

Experience from equilibrium statistical mechanics
leads us to expect that an approximation of mean-field
type would become more accurate in high spatial dimen-
sionality. For example, it has been shown that the
mean-field approach reproduces the exact large d asymp-
totics for the growth velocity of the Eden model. Here
we present a comparison of the mean-field predictions
with simulation results for the dimensionality dependence
of two basic macroscopic quantities in ballistic deposi-
tion, the deposit density at normal particle incidence and
the opening angle of clusters grown from a seed (cf. Sec.
II).

For simplicity we discuss only the sequential lattice
model (1.1), corresponding to the dilute limit p~O of
model (1.4) in d spatial dimensions. In the limit p~O,
combined with a rescaling c —+c/p, the dispersion rela-
tion (5.8) becomes

40-
1c (q) =—[e~+2 cosh(qu)+2d —4],
q

(5.17)

80-

which must be minimized relative to q [cf. Eq. (5.9)]. Set-
ting u =0 in (5.17) and taking the derivative with respect
to q we find that the deposit density at normal incidence,
p = 1/U(0), satisfies

0
0 50

6 (deg)

lnp+ (2d —2 )p+ 1 =0 .

For large d the solution behaves as

(5.18)

FICr. 20. Column orientation itj as a function of the angle of
incidence 0 computed in the mean-field approximation. (a)
p=0.6, (b) p=o.

ln(2d —1) ln[ln(2d —1)]pd= 1—
2d —1 ln(2d —1)

+0 1/lnd

(5.19)
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The porosity increases in high dimensions. In Table II
we compare the solution of (5.18) to numerical results ob-
tained from large-scale simulations in dimensions
d =2—6. We used lattices of various transverse sizes L
up to L=2048 (d=2), L= 1024 (d=3), L= 128 (d=4),
L = 32 (d= 5), and L = 16 (d =6). For each value of L,
deposits containing up to 6X 10 particles were generat-
ed. The results were extrapolated to L = ~ using the
finite-size scaling relation

Uicot1/Jp= 1 (5.26)

= 2d
Vi (5.27)

and accordingly i/~~90' for d ~ ~. We note that (5.27)

Inserting (5.25) into (5.23) one obtains the large-d asymp-
totic behavior

p(L) —p( &n )-L (5.20)

where the universal scaling exponent o,
~~

can be related
to the kinetic roughening exponent /3 [cf. Eq. (3.19)], 3d BALLISTIC "FAN" CUBIC LATTICE MODEL (a)

2(1 —P) (5.21)

In d=2, a~~= 1 exactly. Numerical estimates for /3 in di-
mensions d = 3 —6 have recently been presented by
Renz. The resulting data for p( oo ) shown in Table II
demonstrate that the mean-field approximation strongly
underestimates the deposit density. However, the pre-
dicted decrease of the density for increasing dimensional-
ity is confirmed by the simulations and the density ap-
pears to slowly converge toward the mean-field predic-
tion in the limit d —+ ~.

As explained in Sec. II, the opening angle ga of clusters
grown from a seed can be computed from the asymptot-
ics of the inclination-dependent growth velocity U (u) for
u~oo. Finding the minimum of (5.17) simplifies for
large u by noting that the position q of the minimum
moves to infinity as

2000—

1800—

1600—
Ih.

1400—
E

1200 —~~ -——

1000

800

600—
400—

200—

2800 LATTICE UNITS

q* =A. /u,
where k is the solution of

A, sinhk —cosh', =d ——', .

(5.22)

(5.23) (b)

The asymptotic behavior of the growth velocity is then
given by

U (u) =2u sinhA. + 1+A, /2u +0 (1/u ) . (5.24)

This shows that n= 1 in the expansion (2.7) and leads to
the identification [cf. Eq. (2.5)]

u~ =2 sinhA.

and [cf. Eq. (2.6)]

(5.25)

TABLE II. Deposit density p extrapolated to the infinite-
systern limit and mean field prediction p "for normal-incidence
ballistic deposition on d-dimensional hypercubic lattices.

240 LATTICE UNITS

0.4673
0.3000
0.2224
0.1784
0.1506

PMF

0.231 52
0.17945
0.149 77
0.13001
0.115 68

P/'PMF

2.018
1.672
1.485
1.372
1.302

FIG. 21. Clusters grown by deposition onto a point seed us-
ing the sequential ballistic deposition model on d-dimensional
hypercubic lattices. (a) Cut through a three-dimensional clus-
ter. (b) Projection of a four-dimensional cluster onto a plane
which contains the direction of particle incidence.
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is the exact asymptotics for the growth velocity of the
Eden model. This is not surprising, since transverse
growth in d-dimensional ballistic deposition can be de-
scribed by a d —1-dimensional Eden growth process. "

In two and three dimensions, the mean-field theory
grossly overestimates the growth angle
go(d =2)=75.2' and Po(d =3)=78.9, as compared to
the simulation results' ""' ttto(d =2)=32.0' and
go(d =3)=50'. To check the Predicted increase of lbo

with increasing dimensionality we have grown clusters on
three- and four-dimensional lattices, which are displayed
in Fig. 21.

Note added in proof. In the infinite noise reduction
limit model I discussed in Sec. IV becomes equivalent to
a one-dimensional random sequential filling problem with
one-sided blocking. Our result (4.7) for the asymptotic
filling fraction has been previously derived by Gonzalez,
Hemmer, and H@ye. We thank V. Privman for bring-
ing this class of problems to our attention.
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