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Several recent theories involve a modification of the Schrodinger equation, which dynamically
suppresses coherent superpositions of macroscopically different states and so avoids Schrodinger’s
cat paradox. It is shown that these theories violate energy conservation and are incompatible with
the existence of equilibrium and steady states. The reasons for these troubles are pointed out.

I. INTRODUCTION

It is a characteristic feature of quantum mechanics
that the theory not only permits, but in certain situations
demands, coherent superpositions of macroscopically dis-
tinct states. This was first pointed out in Schrodinger’s
cat paradox.! A more realistic example occurs in the
theory of measurement, where the measurement of some
quantum-mechanical variable usually leads to a final state
of the total system (object plus apparatus) that is a
coherent superposition of macroscopically distinct
pointer positions of the measuring instrument.?3 Such
superpositions, although a natural consequence of the
quantum formalism, are nevertheless difficult to accept
intuitively, and several responses to them have been pro-
posed.

The earliest response was to introduce to the theory an
additional ad hoc assumption, the projection postulate,
according to which the coherent superposition state is
somehow reduced into a more intuitive state. This ad hoc
postulate is rather unsatisfactory because it conflicts with
the Schrodinger equation of motion,* and it does not al-
ways yield correct results.’

A second approach is to adopt an interpretation of the
quantum state concept that does not find macroscopic
coherent superpositions to be embarassing.>3%7 In this
view the state vector is not an attribute of an individual
system, but only a device from which probabilities can be
calculated. This view is often distinguished from the old-
er view by the assertion that the state function describes
an ensemble of similarly prepared systems, rather than
being a complete description of an individual system.
For the purposes of this paper, the question of an indivi-
dual versus an ensemble interpretation is relevant only to
the extent that the former requires a process state reduc-
tion, while the latter does not.

A third approach, which is the subject of this paper, is
to modify the Schrodinger equation of motion to include
a mechanism for spontaneous state reduction. It would
cause long-range coherence to decay, and would make
pure states spontaneously evolve into mixed states.
Several theories of this type have been proposed. Ghirar-
di, Rimini, and Weber® (GRW) postulate that the wave
function undergoes a sequence of spontaneous random
jumps that tend to localize it. The basic postulate of this
theory and the choice of values for its parameters are
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rather speculative and arbitrary. Diosi>!® considers the
alternative possibility that quantum mechanics might be
modified by gravitational effects. Averaging over an as-
sumed universal fluctuation in the gravitational field (of a
magnitude suggested by the Bohr-Rosenfeld analysis of
the limits on field measurements) leads to the replace-
ment of the Schrodinger by a nonunitary master equa-
tion. Joos and Zeh!' (JZ) make no radical assumptions,
but rather attempt to derive a master equation for the
statistical operator of a system that interacts with an
external environment.

These theories all lead to similar equations for the sta-
tistical operator (or density matrix), and hence they can
be judged on the basis of their results, regardless of the
considerable differences in their physical postulates and
philosophies.'> The fact that such different starting
points have led to essentially the same equation of motion
is interesting, and makes that equation worthy of study in
its own right. Unfortunately our conclusion is
negative—that these theories are not satisfactory.

II. ENERGY NONCONSERVATION

The simplest generalization of the Schrodinger equa-
tion that has been proposed has the form

dp _ —1 _r
i 7 Hhpl= IR Rp]] (1)
for a one-particle system. Here p is the statistical opera-
tor and H is the Hamiltonian. The first term on the
right-hand side yields the usual quantum-mechanical evo-
lution of the state, while the last term is responsible for
spontaneous state reduction. In the R representation this
term takes the form —(y/4)(r—r')rlplr’), which
clearly leads to a spontaneous decay of the nondiagonal
elements of the density matrix r|p|r’), provided the pa-
rameter ¥ is positive. Thus coherent superpositions of
different R values will be suppressed. In the theory of
(JZ) (Ref. 11) the state-reducing operator R is the posi-
tion operator; in the theory of Diosi®!? it is the mass den-
sity. Both choices lead to the spontaneous destruction of
coherent superpositions of macroscopically distinct
states. But in addition to this intended effect, there are
other consequences.

It is easy to show from (1) that the normalization
Trp=1 is preserved. However, the average energy
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(H)=Tr(Hp) is not conserved. Using the formal identi-
ty Tr(A[B,C])=Tr([ A,B]C) we obtain d{H)/dt
=Tr(Hdp/dt)=—(y/4)Tr([H,R][R,p]). It is apparent
that if the reduction operator R does not commute with
the Hamiltonian, then there will be states for which (H )
is not conserved, and indeed this nonconservation was
pointed out by GRW.8

Specializing to a free particle in one dimension with
H =P?/2m, where P is the momentum operator, and R
is taken to be the position operator Q, we obtain

v #
4 m’

Thus the system steadily gains energy at a constant rate,
independent of the state. This result is also obtained in
three dimensions, and is unaltered by the inclusion of
vector and scalar potentials.

Other theories of this type lead to the following equa-
tion for the density matrix in coordinate representation,
which we write only for the simplest case of a free parti-
cle in one dimension:

d _
dt(H)— ()

3 AN A ,
atp(x,x 0= o —8x2 2 p(x,x',1)
—Af (x —x")p(x,x',t) . (3)

The qualitative form of the function f(x —x’), which
governs the damping of coherence, is shown in Fig. 1. In

the theory of GRW (Ref. 8) it 1is equal to
forw(x —x")=1—exp[ —(a/4)(x —x')*]. In the limit
a—0, A—ow, with aA=y fixed, this yields

Af (x —x')—(y /4)(x —x')?, which is equivalent to Eq.
(1) with R replaced by the position operator. However,
our results do not depend on that specific form, but only
on the properties: f(0)=0, f'(0)=0, f"(0)>0. The
rate of change of the average energy is now given by

d P’ dp
L AHY=Tr | Z—
AR s
2 2
:% i—zf(x —x")p(x,x’,1) xr:xdx , 4)
the only nonvanishing contribution being given

by the last term of (3). Now (3/3x)*f(x —x')p

f(x-x")

X=X’

FIG. 1. The coherence damping function, introduced in Eq.
(3).

=f"(x —x")p+2f'(x —x")dp/dx+f(x —x')d*p/dx>
The second and third terms vanish for x'=x, hence Eq.
(4) yields

d _7
dt<H>_ ™ Af"(0) (5)

which, after appropriate identification of parameters, is
identical with the result (2).

Using the value y=aA=10""7 cm %s™! suggested by
GRW, the predicted rate of energy gain is about 104 W
per particle, which is insignificant, even on astronomical
time scales. However the physical origin of the reduction
term [the last term in (3)] is unspecified in their theory,
and so the value of y is arbitrary. Their suggested value
was deliberately chosen with an eye to avoid a contradic-
tion of observations.

In the theory of Diosi*!° the state-reduction mecha-
nism is related to gravity, and so, unlike GRW, he does
not have an arbitrary coupling constant. In Diosi’s
theory the reduction operator R in Eq. (1) is essentially
the mass density. Assuming the particle to be a uniform
sphere of radius a, Diosi obtains Eq. (3) with

AMfpx —x)=#"'[U(|]x —x'])—U(0)], 6)
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where U (r) is the gravitational pair interaction energy of
two (interpenetrating) spheres of mass m and radius a.
Equation (6) also has the qualitative form shown in Fig.
1. From the classical expression for the gravitational in-
teraction of two spheres U(r)==—(Gm2/a)[%—%(r/a)2]
for r <a; U(r)=—Gm?/a for r >a, we obtain from (5) a
rate of energy gain of the form (2) with y =2Gm?/#a’,
where G is the Newtonian gravitational constant. Taking
m to be the proton mass, and the proton radius to be
a=10"" cm, we obtain a rate of energy gain of about
1072 W per particle, or 107> W per mole. This is too
large a value to have escaped notice in low-temperature
experiments. '3

The state-reduction mechanism in the JZ (Ref. 11)
theory is taken to be the ordinary interactions between
the system and its environment. There is no universal
formula for ¥ in this theory; the expressions given by JZ
depending on temperature, scattering cross sections, and
various approximations. However, the magnitude of the
energy gain in their theory should be detectable, at least
for some range of the various parameters. 1

It is apparent from Eq. (5) that if f''(0)=0 then the
average energy ( H) would be constant. This could be
achieved, for example, by taking f(x—x')=1
—exp[ —a*(x —x')*]. Note that the energy of the system
would not be strictly conserved ({ P?) would be constant
but (P*) would not), but at least the energy would be
conserved on the average. However, we shall show in
Sec. IIT that even with such a modification the theory
remains unsatisfactory. (It has been suggested that
modifications of this sort may also jeopardize the nonneg-
ative character of the density matrix.)

III. NONEXISTENCE OF EQUILIBRIUM

The theories that we have discussed are incompatible
with the establishment of equilibrium or steady state,
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since d ( H ) /dt >0 in those theories. We shall now show
that even if the function f(x —x') is modified to yield
d{H) /dt =0, the theories will still possess no steady
states.

We seek the time-independent solutions of (3). With
the substitutions y =x —x’ and z=x +x’, Eq. (3) be-
comes

2
MJriAf(y)p(y,z):O , (7)
dyoz
where we have introduced A=Am /2#. This equation
can be solved by a separation of variables. We substitute
p(y,z)=Y(y)Z(z) and obtain

’Y‘I E’
Y(y) Z(z)

Since the right-hand side is independent of z, so must be
the left-hand side. Hence Z'/Z must be a constant,
which we write as ik. Thus we obtain Z(z)=e** with k
being arbitrary. We must take k to be real, since an ex-
ponentially diverging solution is not physically accept-
able. With ZE'/EZE=ik the solution of (8) becomes
InY(p)=—(A/k) [ f(p)dy, and hence Y(p)
=exp[ —(A/k)F ()], where F(y)= [ f(y)dy. Now f(y)
approaches a positive limit as |y|— o (see Fig. 1), so
F(y) becomes asymptotically proportional to y as
y—>* . Therefore, regardless of the sign of k, Y(y)
diverges exponentially in one direction. Thus there are
no physically acceptable steady-state solutions to Eq. (3).
This conclusion depends only upon f(y) not going to
zero as y =x —x'—> . Since this is the condition need-
ed to ensure the destruction of coherence over large dis-
tances, this condition cannot be abandoned without des-
troying raison d’etre of the theory.

The absence of physically acceptable steady-state solu-
tions of (3) is surprising. The familiar spreading of a
wave packet, induced by the first term on the right-hand
side of (3) and leading to long-range coherence, is coun-
tered by the spontaneous localization caused by the last
term. It may be thought that an equilibrium would occur
when the two effects balance, and indeed one can easily
estimate a characteristic “coherence length” by equating
the orders of magnitude of the two terms.® Such an argu-
ment is misleading since there is, in general, no persistent
structure on such a length scale. [See JZ (Refs. 11 and
12) for an example illustrating the detailed time depen-
dence of a solution.]

=—iAf(y). (8)

IV. DISCUSSION

We have examined a class of theories of spontaneous
state reduction, and have shown that they are incompati-
ble with the attainment of equilibrium, since they imply
that the system must continually gain energy. To assess
the significance of this result, we need to briefly examine
the aims of the various theories and the assumptions on
which they are based.

The most radical theory is that of Ghirardi, Rimini,
and Weber,® who sought to create a new fundamental
theory that would replace the Schrodinger equation for
an isolated system. The nonconservation of energy is a

very unattractive feature in a fundamental theory, even if
its magnitude is so small as to be impractical to detect.

The theories of Diosi®'® and of Joos and Zeh!' do not
treat the system as isolated, and so its energy need not be
conserved. However energy should be gained in some
states and lost in others, depending upon the relative
temperatures of the system and its environment, whereas
these theories predict an inexorable energy gain, indepen-
dent of the state.

The JZ theory does not introduce any new physical
postulates. JZ treat the ordinary interactions between a
system and its environment by means of ordinary quan-
tum mechanics, and they attempt to derive a master
equation for the density matrix of the system. This ap-
proach is familiar in nonequilibrium statistical mechan-
ics, where the effect of the environment (usually charac-
terized as a thermal reservoir) is to provide damping and
to ensure the approach of the system to equilibrium. But
according to the JZ theory, instead of providing damp-
ing, the environment would act as an inexhaustible ener-
gy source, making equilibrium impossible.

A clue to the origin of the trouble can be found in a re-
cent paper by Unruh and Zurek!® (UZ). They consider a
harmonic oscillator coupled to a massless scalar field,
which acts as an environment for the oscillator. From
the exact solution of this model, they deduce a master
equation for the density matrix of the oscillator. Their
master equation [UZ, Eq. (3.20)] contains more terms
than does (3), and it has time-dependent coefficients
which reach steady limiting values after a short transient.
In the high-temperature limit their master equation
simplifies to a form [UZ, Eq. (4.7)] closer to (3), but con-
taining an  additional term of the form
—1eX(x —x')(dp/dx —dp/dx’), and with the parameter
A in (3) being proportional to the temperature, A=¢>T.
Here € is the strength of the coupling between the oscilla-
tor and its environment, the scalar field. This additional
term causes energy loss, which can balance the energy
gain produced by the last term of (3), and hence can lead
to equilibrium of the system.

If we now take the limit 7T-—»>o, €—0, with
€*T = \const, we will obtain Eq. (3). The continuous en-
ergy gain predicted by Eq. (3) can now be understood as
due to the environment being so much hotter than the
system. Presumably the theory of JZ (Ref. 11) is valid
only in such a limit, although the details of their approxi-
mations are not transparent.

UZ also show that treating the environmental fluctua-
tions as pure white noise is equivalent to a high-
temperature approximation. In effect, it treats the
influence of the environment on the system but neglects
the effect of the system on the environment. Diosi®!° ex-
plicitly assumed a white-noise spectrum, which is evi-
dently the reason for the energy gain in his theory.

Finally we remark that the quest to obtain state reduc-
tion as a real dynamical process is not a fundamental
problem of quantum mechanics, but rather is only a
problem that arises within one interpretation of quantum
mechanics. There is the alternative of adopting an inter-
pretation of quantum mechanics in which the notion of
state reduction is not needed.’
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