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Accurate nonrelativistic calculations of ionization energies and hyperfine structures for the 3s and
the 3p states, and of the dipole transition 3s-3p, are presented for Na, using wave functions obtained
in the coupled-cluster approach including single and double excitations (CCSD). Agreement with
experimental results is at the percent level, corresponding to an error in the correlation contribution
of approximately 5%. Certain three-body cluster contributions to the 3s ionization energy and the
3s hyperfine structure are evaluated and are found to account for the main part of the discrepancies
between the values obtained from CCSD calculations and the experimental results.

I. INTRODUCTION

During the last two decades atomic many-body theory
has proved to be successful in calculating atomic proper-
ties such as ionization energies and hyperfine structures.
In 1975 Garpman et al.' performed the first complete
third-order calculation of the hyperfine structure, using
an effective-operator form of perturbation theory. Since
then many sodium hyperfine calculations have been
presented (see, e.g., Lindgren, Lindgren, and
Martensson,? Grundevik et al.,® Lindgren,* and Johnson,
Idrees, and Sapirstein®). Ionization energies and dipole
oscillator strengths for the sodium atom have recently
been calculated in the multiconfiguration Hartree-Fock
(MCHF) approach by Froese-Fischer,® and by Johnson,
Idrees, and Sapirstein,’ using relativistic many-body per-
turbation theory.

The coupled-cluster approach to the many-body prob-
lem has shown to be a very fruitful method, and in a re-
cent paper by Martensson-Pendrill and Ynnerman’ a gen-
eral approach to the evaluation of matrix elements in the
coupled-cluster theory is presented and applied to the
lithium atom, using coupled-cluster singles and doubles
(CCSD) wave functions obtained from the ‘“pair pro-
gram” by Salomonson and Oster.® The hyperfine struc-
ture has for a long period of time been the natural testing
ground for atomic many-body theory, and not many cal-
culations have included other external perturbations than
the hyperfine operator. However, it is now easy, using a
computer code based on the above-mentioned general
formalism of Martensson-Pendrill and Ynnerman,” to
treat other types of one-particle perturbations, such as
the dipole operator and the field shift operator.’

Sodium calculations are natural extensions of previous
calculations on lithium, and provide good tests for the
new formalism and computer code. In this paper we
present calculations of the hyperfine structure of the 3s
and 3p states and the 3s-3p dipole transition. Also the
ionization energy of the 3s state is calculated. A class of
three-particle effects that are not included in the CCSD
approximation is evaluated for this state, to yield a
deeper understanding of the importance of such effects in
the alkali-metal atoms.

II. WAVE FUNCTIONS AND MATRIX
ELEMENTS IN THE COUPLED-CLUSTER
SINGLE- AND DOUBLE-EXCITATION
APPROXIMATION

In the coupled-cluster approach the exact wave func-
tion |¥) is written in terms of a zeroth-order wave func-
tion |¥°) as

(W)= {exp(S)}|¥°) , (1)

where the curly brackets denote normal ordering and S
the cluster operator, which can be divided into one-,
two-, . . . , n-particle excitations:

S=S,+5,+5;+ . 2

An introduction to the coupled-cluster theory was given,
e.g., by Bishop and Kiimmel.!° In this section a complete
treatment of single and double excitations, using inter-
mediate normalization (IN), as described by Lindgren
and Morrison,!! Salomonson and Oster,? or Lindgren and
Salomonson'? is used. In Fig. 1 the graphical representa-
tion of the cluster operator, truncated after double excita-
tions, is shown.
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FIG. 1. Diagrammatic representation of the cluster operator
limited to single and double excitations. Down- (up-) going
lines denote core {(excited) orbitals and double arrows denote
valence orbitals. The horizontal double lines indicate that
several perturbation interactions are included in the self-
consistent solution of the cluster equations.

88 ©1991 The American Physical Society



43 COUPLED-CLUSTER CALCULATIONS OF MATRIX ELEMENTS . . . 89

The effect of the single-particle clusters can be treated
as corrections to the occupied orbitals

[6a)=3 Silr), (3)

and the double excitations are treated by the use of pair
functions as described by Martensson'? and Lindgren and
Morrison.!! The pair functions are written in terms of
the cluster operator and the product functions of the ex-
cited orbitals as

J

(W9 {exp(S])} O {exp(S;)} W)

U ?=3 SElrs) . 4)

The orbital corrections |8a ) as well as the pair functions
|U,,) describing double excitations were obtained as
sums over a discretized numerical basis set using the
methods described by Salomonson and Oster. '

In order to evaluate the matrix elements of a one-
particle operator

(W9 {exp(S])} {exp(S,)} W9 )1 /2(W0| {exp(S;)} {exp(S;)

the procedure described by MaArtensson-Pendrill and
Ynnerman’ is followed. The graphical equivalents of the
leading terms of Eq. (5) are shown in Fig. 2.

The unperturbed wave functions for the valence orbit-
als were obtained in the Hartree-Fock potential of the
Na™ core. Single excitations then enter first in second or-
der and describe modifications of the orbitals to approxi-
mate Brueckner orbitals, through central-field effects and
polarization. The core is thus made aware of the valence
electron, and thereby the valence orbital is caused to con-
tract. The correction of the valence orbital was found to
give one of the major contributions to the {r %)
hyperfine parameters.

The diagrams in Figs. 3(c) and 3(d) are evaluated
through repeated use of the two-particle cluster and
iterated until self-consistency is reached. The well-
known ‘“‘random-phase approximation” (see, e.g., Amusia
and Cherepkov'®) is then to be considered as a well-
defined subset of Fig. 2(d).

The diagrams in Figs. 2(e) and 2(f) are obtained by
evaluating the matrix element of the external perturba-
tion between two core-valence pair excitations, where the
interaction occurs on an excited (core) line, respectively.
In Figs. 2(g) and 2(h) both pair excitations involve two
core electrons, and overlaps between these pair functions

FIG. 2. Diagrammatic representation, using the definitions
in Fig. 3, of the leading terms of the numerator in Eq. (5). The
dotted horizontal line with the open triangle denotes the exter-
nal perturbation. Exchange variants and Hermitian conjugate
diagrams are not shown.

}|\l,?>1/2 ’

[
and the modified valence orbital from Fig. 3(a) are used in
the evaluation.

In the next section we investigate the addition of the
S contributions to the cluster operator.

II1. THREE-PARTICLE EFFECTS

When using the coupled-cluster formalism based on in-
termediate normalization, the Sy cluster contributes al-
ready in third order for the ionization energies. Some
typical diagrams of this kind are shown in Fig. 4.

Within this group of diagrams there are large cancella-
tions. For example, in the diagram in Fig. 4(a) the
valence electron can interact with either a core or a virtu-
al electron line giving contributions of opposite sign,
which would cancel exactly if the valence electron were
completely outside the core. The diagrams in Figs. 4(b)
and 4(c) show the asymmetry of the formulation based on
IN, since their Hermitian conjugates are already included
in the CCSD approximation. In a Hermitian formula-
tion'® the diagrams in Fig. 4 are all included together
with their Hermitian conjugates in the CCSD scheme.
Diagrams of the type in Fig. 4 have been evaluated, and
found to give very small contributions for Na, by Blun-

dell et al."” and are in their work denoted by E(3) '8

NN D
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FIG. 3. Graphical definitions of the symbols used in Fig. 2.
On the right-hand sides of (b), (¢), and (d) the Hermitian conju-
gates of the left-hand side of (c) and (d) are used.
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(a) (b) ©)

FIG. 4. Typical third-order diagrams based on the S; cluster
in intermediate normalization. In a Hermitian formulation
these diagrams are already accounted for by the S, and S, clus-
ters.

Genuine three-particle effects that cannot be included
in the Hermitian formulation of the coupled-cluster equa-
tions are thus likely to account for the missing part of the
correlation energy for Na. These diagrams occur first in
fourth order. We have evaluated a certain class of these
diagrams, shown in Fig. 5. The diagrams in Figs.
5(a)-5(c) originate from the second-order direct correla-
tion energy diagram by the insertion of a Brueckner-like
correction on the internal lines, and the diagrams in Figs.
5(d)-5(f) from the insertion of a screened Coulomb in-
teraction, which is also known to be important.

IV. THE HYPERFINE-STRUCTURE OPERATORS

The magnetic hyperfine structure arises from an in-
teraction between the magnetic multipole fields caused by
the electrons and the magnetic moments of the nucleus
with nonzero spin. In the relativistic case, the dipole in-
teraction has a relatively simple form (see, e.g.,
Armstrong'® or Lindgren and Rosén?®). Using SI units it
is

Mo Hp 1

mhfs — 1

—2i— alC')u, , (6
h 47 aay, rz( "H )
where the nuclear magnetic moment is p,=g,I,

8;=1.47749 for »*Na, and p, p, and a are the permea-
J

—V10(sC2)(r 3y, +s(r™

Hottp -
2—[l<r 3)01 3>10]'”'1 4

FIG. 5. Three-particle diagrams evaluated for the 3s state in

Na. These diagrams cannot be included in a CCSD approxima-
tion even if a Hermitian formulation is used.

bility of vacuum, the Bohr magneton, and the fine-
structure constant, respectively [In Hartree atomic units
the constant in Eq. (6) is —2ia/2.] The components of
the C* tensor are related to the spherical harmonics as
Cr=Var/2k+1) Y}, a is related to the Pauli spin ma-
trlces as

0 o

a=lg 0

and 1 denotes the orbital angular momentum. The nonre-
lativistic equivalent operator to Eq. (6) is

Mol p
27

1 V10(sCc?)!

r’ r3 3 r

2s &(r)
2

ST (7

In the central-field approximation only the valence
electrons contribute to the hyperfine interaction. The
effect of correlation can be included by the use of an
effective operator acting only on the valence electrons.
For a single valence electron, this effective operator can
be written in an exact way as

(8)

using three different {7 ~*),, parameters, where k and k denote the rank in spin and orbital space, respectively. These
parameters are obtained directly in a nonrelativistic calculation. Results of experimental hyperfine-structure measure-
ments are usually given in terms of A4 factors. For a single electron outside a closed shell, the expressions2!2

A(j<)=Cg1ﬁ (20+2)(r3) g+ ;;—”L%<r“3>12—<r‘3>10], (9a)
P )= 1 -3 21 -3 -3

A(]Q—Cg,m 20<r )01—2l+3(r Yt <r™H o6l (9b)

A o,js)=Cg (o =3r ) = (r 7)) (9¢)

21+1
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relate the A factors (in MHz) to the (r %) parameters
(in Hartree atomic units), with C=95.52132
=a*(2cR ,, )(m, /M, )1, /pp), where the factor (u, /pp)
accounts for the anomalous magnetic moment of the elec-
tron. The finite nuclear mass which changes the (r 3)
parameters by a factor of (1—m /M )* was found to give
negligible corrections for Na.

If both the electron and the nucleus have a total angu-
lar momentum =1 then also the electric quadrupole
fields may contribute through the interaction
e’C?-Q/8meyr?, where Q is the nuclear electric quadru-
pole moment. Experimental results are traditionally
quoted in terms of B factors (in MHz) related to the
quadrupole parameter (in atomic units) as

2j—1
2j+2
where the conversion factor is D =234.9647=2cR
X107 28m? /a3, and Q is given in barn. Knowledge of an

experimental B factor thus makes it possible to extract a
value for Q, if a theoretical {r ~%) parameter is available.

B;=D (r 3,0, (10)

V. THE ELECTRIC DIPOLE OPERATOR

The oscillator strength between an initial state i and a
final state f is determined by the matrix element of the
electric dipole operator. The dipole operator, given in
Hartree atomic units, is??

N N
Pj=3 ri)=3 rCiMi) . (1n

The weighted oscillator strength gf is then obtained from
the expressions

gf=AE)S , (12)
S=KAIP )i, (13)

where AE is the energy difference between the initial and
the final states. Assuming that S is evaluated using un-
coupled Is functions, for an s-p transition, thereby impli-
citly summing over all possible j values, the oscillator
strengths for s, , —p,,, and s, ,, —p; , transitions are ob-
tained as

S o=p1p)=58f(s—p), (14)
S p=p3p)=3%8f(s—p). (15)

VI. RESULTS AND DISCUSSION

The orbital corrections as well as the individual pair
functions, which were expanded in partial waves, each as-
sociated with a function of the radii for the two electrons,
were obtained from the pair program by Salomonson and
Oster®'* as sums over a discretized numerical basis set.
In this work, logarithmic grids with » =exp(x)/Z were
used with equal spacing in x. Here Z denotes the nuclear
charge. Two different grids with 81 and 91 points in the
range exp(—8)/Z —exp(6)/Z were used. The results
from the two grids were extrapolated to account for the
finite number of grid points used. In practice it was

TABLE 1. Ionization energies for the Na 3s state in mi-
crohartrees (1 phartree = 107 % a.u.).

Dirac-Fock 182033

Correlation
CCSD 6428
Relativistic correlation® 30
EGla" 69
Fig. 5(a) 306
Fig. 5(b) 107
Fig. 5(c) 68
Fig. 5(d) —129
Fig. 5(e) 77
Fig. 5(f) 38

Total 188873 6840

Experimental 188 858 6825

“Blundell (Ref. 17), with k and [ limited to 4 in the spherical ex-
pansion of the pair functions.

®Comparison between second-order relativistic and nonrelativis-
tic calculations.

found that the extrapolated values coincided to the re-
quired accuracy with the results using a single grid. In
the multipole expansion of the Coulomb interaction, k
values were limited to 4, 5, 6, and 7. Contributions from
higher k values were then extrapolated assuming a k —*
dependence.

As can be seen in Table I, there is a 6% discrepancy
between the CCSD and the experimental value for the
correlation energy of the 3s state. Both relativistic corre-
lation effects and the diagrams in Fig. 4, denoted by
E3 ., give small total contributions. The three-particle

extra’
diagrams shown in Fig. 5 were then evaluated, as de-

TABLE II. A diagrammatic breakdown of the contributions
to the 3s hyperfine constant 4 (using g;=1.47749 for *Na),
and the reduced dipole matrix element for the 3s-3p transition
in Na, with k£ in the multipole expansion of the Coulomb in-
teraction restricted to 7.

A(3s1,) (3p|ir||3s)
Diagram (MHz) (a.u.)
Hartree-Fock (HF) 616.64 4.52580
Fig. 2(a)—HF 95.145 —0.12658
Fig. 2(b) 7.622 —3.55[ —4]
Fig. 2(c) 0.086 2.37[—6]
Fig. 2(d) 130.042 —0.054 54
“First order”
Fig. 2(d) 3.765 0.00197
“Higher orders”
Fig. 2(e) 0.928 —8.04[ —5]
Fig. 2(f) 9.550 0.003 45
Fig. 2(g) 4.396 1.42[ —4]
Fig. 2(h) 1.698 —6.11[ —5]
Normalization —3.007 —0.010 38
contribution
Fig. 6 5.0
Relativistic 11.9
corrections

Total 883.7 4.33937




92 STEN SALOMONSON AND ANDERS YNNERMAN 43

TABLE III. Magnetic dipole and electric quadrupole hyperfine constants for 3s and 3p of Na, and reduced matrix elements of the
dipole transition 3s-3p in Na.

Magnetic dipole Electric quadrupole (3p||r}|3s)
A (MHz) B/Q (MHz/b) (a.u.)
Term Sin *Pip *Ps) i *Ps)
HF 616.641 62.9717 12.5944 3.9357 15.7259 4.52580
Coupled-cluster
contributions
Komax =4 249.635 29.1919 5.6576 1.1228 10.3070 —0.185 66
Kmax =5 249.962 29.1822 5.6592 1.1164 10.3000 —0.186 11
Kmax =6 250.110 29.1764 5.6596 1.1135 10.2968 —0.186 32
Kmax =17 250.188 29.1729 5.6598 1.1120 10.2951 —0.18643
extrapolated 250.3 29.16 5.660 1.108 10.29 —0.1868
Fig. 6 5.0
Relativistic correlations® 11.9 0.88 0.064 0.020 0.12 —0.0056
Total 883.8 93.02 18.318 5.064 26.14 4.3334
Experiment 885.82° 94.3(2)° 18.65(10)¢
Lindgren® 870.5 92.89 18.56
Johnson, Idrees, 860.90 91.40 19.80 4.342
and Sapirstein®
Froese-Fischer® 4.3305
Grundevik et al.” 92.38 18.52 4.84 27.88
Lundberg, Martensson, 873.0

and Svanberg'

aThe relativistic corrections for the hyperfine structure were obtained from Rosen and Lindgren (Ref. 23), and for the dipole transi-
tion the ratio between the Hartree-Fock value and the Dirac-Fock value was used as correction factor.

*Logan and Kusch (Ref. 24)

‘Hartman (Ref. 25)

dSchénberner and Zimmerman (Ref. 26).

‘Reference 4.

'Reference 5.

gNonrelativistic value, Ref. 6.

bReference 3.

iReference 27.

scribed above, using pair functions obtained in the CCSD
approximation for the top and the bottom interaction in
each diagram. The total result, for the 3s state, is then
found to agree to within 0.3% with the experimental
value. For the 3p state we have no value for the E}),, di-
agrams, and a full calculation will be presented in a fu-
ture paper.

FIG. 6. Three-particle diagram evaluated for the 3s hyperfine
structure.

In Table II a diagrammatic breakdown, for k=7, of
the contributions to the 3s hyperfine structure and the re-
duced matrix element of the dipole operator is shown. In
Table III all the final extrapolated values are given.

For the 3s hyperfine interaction, the discrepancy be-
tween experimental and the present result is less than
1%. The three-particle diagram shown in Fig. 6 gives a
surprisingly large contribution, and the final result when
this is added deviates from the experimental one by only
0.2%. Adding the hyperfine perturbation on the valence
lines in all the diagrams in Fig. 5 will give diagrams simi-
lar to the one shown in Fig. 6. It is our intention to in-
clude all these possible diagrams in a future calculation.
It is also noted that the dominating correction to the
Hartree-Fock value arises from the diagram in Fig. 2(d),
in which the core orbitals are spin polarized by the
valence electron, causing the contact interaction to in-
crease. It is therefore plausible that the insertion of such
effects on the hyperfine interaction in Fig. 6 will give
significant contributions.

The coupled-cluster contributions to the hyperfine
structure of the 3P, ,, and *P;,, states are approximately
1 of the total values. A comparison with experimental
results shows small discrepancies of the order of 1%.
The calculations by Lindgren,* using the methods de-
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TABLE IV. Dipole oscillator strengths for the resonance
lines in Na.

f(3s1,,=3pyp2) f(3s1,2—3p3)

Present %(0.9671 ) %(0. 9682)

Johnson, Idrees, 1(0.9709) 2(0.9717)
and Sapirstein®

Froese-Fischer® 1(0.9707) 2(0.9717)

Froese-Fischer® 1(0.9682) 2(0.9692)

1(0.9536+0.0016)"  2(0.9465+0.0023)°

Experiment

2 Reference 5.

"Reference 6.

°Froese-Fischer (Ref. 6) multiplied with the square root of the
ratio between the Dirac-Fock and Hartree-Fock values for the
dipole matrix elements to account for relativistic effects.
dLaser-excited decay, Gaupp, Kuske, and Andri (Ref. 30).
*Gawlik et al. (Ref. 31).

scribed in Ref. 28, are found to agree to within 1% with
the present calculation. The difference for the *P, , state
is as small as 0.2%.

As mentioned above, it is also possible for the 3p
valence electron to interact with the nucleus through an
electric quadrupole field. Knowledge of the experimental
value of the B factor,?® 2.90(21) MHz, and the calculated
ratio B /Q enables an estimation of the nuclear quadru-
pole moment. Use of the value in Table II gives Q=111
mb.

The average value of A(°P,,,) and A(°P;,,) elimi-
nates the effect of the contact parameter, as can be seen
in Egs. 9(a) and 9(b). The value obtained from Lindgren®*
then agrees to within 0.01% with the present calculation,
while the experimental value is approximately 1% larger.

In the second column of Table II the contributions to
the reduced matrix element of the dipole operator are
shown. The coupled-cluster corrections to the Hartree-
Fock value are very small, approximately 4% of the total
value, and the experimental value differs by approximate-
ly 1% from the value presented here. To facilitate a
direct comparison with experimental oscillator strengths,

the observed energy differences are used in Eq. (12) to ob-
tain the values in Table IV. These values agree very well
with the MCHF calculation by Froese-Fischer.® As can
be seen in Table 1V, all the theoretical results are approx-
imately 2% above the experimental value. Even though
this may seem to be a small discrepancy, we must
remember that the total effect of the correlation is only of
the order of 10%, implying that, if the experimental re-
sults are correct, only 80% of the correlation is account-
ed for. A similar situation was found for the lithium
atom.”!® Different theoretical approaches, neglecting
different effects, seem to give similar results. Further ex-
perimental and theoretical investigation is certainly re-
quired to find the cause of this discrepancy.

The relativistic corrections to the hyperfine parameters
were obtained by multiplying the total values with the
correction factors for the valence electron given by Rosén
and Lindgren.”® For the dipole transition, the correction
factor was obtained by taking the ratio between the DF
and the HF value. It would, however, be desirable to per-
form a fully relativistic calculation, since the correction
factors used may not be accurate for the coupled-cluster
contributions. Such a program is presently being
developed within our group at Chalmers University of
Technology.
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