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Decay of density Auctuations in gels
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Near the sol-gel transition, gelling systems exhibit an extremely slow relaxation of thermally

driven density Auctuations. %'e have made a detailed quasielastic light scattering study of the decay

of density fluctuations in reacting silica sol-gels in the pre- and post-gel regimes, and at the gel

point. In the pre-gel regime the dynamic structure factor S (q, t) for the branched polymer melt has

a stretched exponential tail whose characteristic time diverges at the gel point. This critical slowing

down is due to the divergence of the average cluster size and is distinct from the usual critical slow-

ing down observed in second-order thermodynamic phase transitions, since the initial decay rate of

S(q, t) is nondivergent at the gel point. In fact, at the gel point, S(q, t) becomes a power law, indi-

cating a fractal time set in the scattered field. These observations are accounted for by considering

the dynamics of percolation clusters, and in this connection the analogy to viscoelasticity is de-

scribed. Beyond the gel point S (q, t) remains a power law, but the amplitude of the relaxing part of
the intensity autocorrelation function diminishes. Finally, the dynamics of clusters diluted from the

reaction bath is studied, and a crossover from power law to stretched exponential decay of S (q, t) is

observed. It is shown that at infinite dilution the long-time tail of the correlation function describes

the internal modes of a single percolation cluster.

I. INTRODUCTION

When a solution containing a multifunctional mono-
mer reacts to form a gel, a rich variety of structural and
dynamical transformations takes place. These transfor-
mations are extraordinary in the vicinity of the sol-gel
transition, where a complex viscoelastic intermediate be-
tween a liquid and solid is formed. Structural studies of
branched polymers formed near the gel point demon-
strate that gelation is reasonably well described by the
percolation model, so it is appropriate to think of the
sol-gel transition as a geometrical realization of a critical
point, with the usual scaling laws in force. However, the
sol-gel transition does not have aO the characteristics of a
thermodynamic critical point, since it is the connectivity
correlation length that diverges, not the spatial correla-
tion length. Thus critical opalescence does not appear at
the gel point and there is no critical slowing down in the
usual sense.

Nonetheless, the divergent connectivity in sol-gels im-

poses a severe dynamical constraint that gives rise to a
novel form of critical slowing down that is microscopical-
ly manifested in the relaxation of density fluctuations, '
and macroscopically manifested through stress or strain
relaxation. In either case, relaxation functions decay
as power laws in time, and characteristic time scales
diverge. When the sol-gel is exactly at the gel point, an
exotic state of matter is obtained —a dynamically self-
similar Quid with no associated time scale. As we shall
see, photons scattered from this fluid break time itself
into a fractal set. In this paper we report quasielastic
light scattering investigations of the relaxation of
thermally induced density Auctuations in gels, and
present a dynamic scaling description of these phenome-

na. Our observations are compared to qualitatively simi-
lar viscoelastic studies.

In quasielastic light scattering (QELS) the relaxation
of density fluctuations of wave vector q is probed by
measuring the autocorrelation function of the scattered
intensity, I(q, t ) = (I(0)I(t) ) [in terms of the wavelength
of light in the scattering medium A, , and the scattering an-

gle 0, q=4vr sin(0/2)/A]. In our first QELS measure-
ments on sol-gels' we investigated the dynamics in the
pre-gel regime and at the gel point. Specifically, we re-
ported the stretched exponential time decay of I(q, t ) be-
fore the gel point, the power-law time decay of I(q, t ) at
the gel point, and the divergence of both the arithmetic
average and "typical" relaxation times. These measure-
ments are elaborated here, and new results are presented
for the dynamics of the post-gel regime, and for the dy-
namics of semidilute and dilute branched polymer solu-
tions, obtained by diluting a sol-gel near the gel point.

In the post-gel regime a power-law correlation function
is found whose amplitude diminishes as the modulus of
the gel increases. In semidilute branched polymer solu-

tions, correlation functions are found that cannot be de-
scribed by a single time scale; rather, the initial decay
rate is proportional to q, whereas the long-time tail is a
stretched exponential exp[ —(r/ )p]rwith a decay rate

' that is roughly q dependent. However, in dilute
solutions the correlations functions are described by a
single time scale that is 1/q dependent in the regime
where qR )& 1, and the correlation functions are no
longer stretched exponentials.

II. EXPERIMENT

Silica gels were prepared in methanol from 1.OM
tetramethoxysilicon (TMOS), 4.OM HzO, and 0. 1M
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NH3OH base catalyst. To avoid dust contamination,
preparation was conducted in a clean bench, and the final
solutions were either filtered with 0.2-pm
polytetrafiuoroethylene (PTFE) filters into scattering
cells, or centrifuged for 15 min at 30000 g. QELS mea-
surements were made in the homodyne (self-beating)
mode with an argon-ion laser at A, =457.9 nm, and a
256-channel correlator. Near the gel point, autocorrela-
tion functions were collected over an extensive relaxation
time regime by running at three delay times, 3.6 X 10
2.0X10, and 1.3X10 sec, and then merging the
three pieces by appropriate normalization in the two
overlap regimes. Autocorrelation function merging with
the delay times 1.0X 10 and 1.0X 10 sec was used to
integrate I(q, t) to obtain the average relaxation time.
This integration was performed numerically, without
recourse to curve fitting techniques. In all cases the
homodyne dynamic structure factor S(q, r ) was obtained
by subtracting the calculated incoherent base line from
I(q, t) and normalizing to unity at t =0. With such slow-
ly relaxing samples it is not possible to use the delay
channels to estimate the true base line near the gel point,
so this is one case where immaculately dust free samples
are essential. Gel points were determined by attempting
to dilute aliquots of the reacting mixture —the gel point
was taken to be the midpoint of the time interval between
the last soluble sample and the first insoluble sample.

III. THE REACTION BATH

A. Approach to the gel point

Before discussing the quasielastic scattering from silica
sol-gels, it is helpful to have an overview of the growth
and structure that precedes the gel point. Experiments
show that growth is described by aggregation until clus-
ters overlap, at which point growth proceeds via a per-
colative transition. In the following, these stages are dis-
cussed in more detail.

When a base catalyst is added to a tetramethoxysilicon
solution, the methoxy groups are hydrolyzed to produce
various silicic acids that then condense to form dimers,
trimers, etc. and eventually a gel. At the very earliest
times both the kinetics of growth and the structure of the
polycondensates are nonuniversal, being highly depen-
dent on such factors as pH, amount of added salt, etc.
This growth regime is not well understood, but it is likely
that the supersaturation of silicic acids leads to a nu-
cleation event with monomers accreting onto nascent
clusters. In any case, it is known that objects of a rela-
tively high apparent fractal dimension are formed in this
stage. However, at a radius of about 10 nm a crossover is
observed to exponential growth, Fig. 1, that is indicative
of reaction-limited cluster-cluster aggregation. ' Since
the isoelectric point of silica polycondensates is in the
range of pH 2 —3, at high pH the silicic acid groups are
dissociated, leaving a negatively charged polycondensate
with a double layer. The resultant screened Coulomb in-
teraction makes the probability of a collision between ag-
gregates small, leading to reaction-limited growth kinet-
ics. However, if the Coulomb interactions are screened
by adding a uni-univalent salt such as NaCl, the rate of
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aggregation increases by many orders of magnitude, and
the power-law growth associated with diffusion-limited
aggregation is observed, ' as in Fig. 2. In the limit of
low salt and high pH, where the growth is exceedingly
slow due to pronounced Coulomb interactions, it is even
possible to form aggregates with a fractal dimension ap-
proaching 1, in accord with recent simulations" of
reaction-limited aggregation in 1/r ' potentials.

The nonequilibrium aggregation stage eventually
crosses over to the critical growth associated with gela-
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FIG. 2. Under aggressive reaction conditions power-law
growth R —t of silica clusters is observed, indicating
diffusion-limited cluster-cluster aggregation. The sample corn-
position was 0.001M TMOS, 30M H20, catalyzed with 0.04M
NH4OH and 1.0M NaC1 at 30'C.
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FIG. 1. After an initial phase of growth that appears to be
due to colloid formation, the hydrodynamic radius of the base-
catalyzed silica clusters grows exponentially with time, indicat-
ing reaction-limited cluster-cluster aggregation. The sample
composition was 0. 1M TMOS, 2.2M H&O, catalyzed with

0.0044M NH4OH and 0.002M NaCl at 30 C.
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FIG. 3. The z-average hydrodynamic radius for a base-
catalyzed TMOS gel diverges as R, —e ' ' (exponent un-
corrected for swelling). This is in reasonable agreement with
the swollen percolation prediction of R, -e ".Here e is the
reduced time from the gel point.
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FIG. 4. Homodyne correlation functions are logarithmically
plotted for a gelling base-catalyzed tetramethoxysilicon solution
with the top curve at the gel point of -406 min. As the gel
point is approached, a pronounced slowing down of the relaxa-
tion is observed, until at the gel point an ultraslow power-law
decay becomes evident.

tion, ' Fig. 3, when the aggregates become sufficiently
large to fill the volume of the solution. This will occur
when the intrinsic viscosity [q] of the aggregates reaches
c ' where c is the concentration of silica in the solution.
Since the intrinsic viscosity is proportional to the mean
cluster specific volume R",where R is the mean aggre-
gate radius, d is the dimension of space, and D is the frac-
tal dimension, this crossover occurs when the mean ra-
dius is -c ' '" '. Thus at low concentrations of silica,
large clusters are formed by nonequilibrium aggregation
processes. Since we are interested in the dynamics of the
sol-gel transition, we chose to work at high silica concen-
trations where the aggregation-gelation crossover occurs
at small cluster sizes, far from the gel point. Given this
rudimentary description of the pre-gel regime, we now
present the phenomenology of the dynamics of the sol-gel
transition.

As the gel point is approached, correlation functions
become progressively more nonexponential, indicating an
increasingly broad spectrum of relaxation times. ' The
homodyne autocorrelation functions in Fig. 4, taken at
roughly 10 min intervals prior to the sol-gel transition,
demonstrate this point and further indicate an approach
to power-law decay at the gel point (t,~-406 min).
However, the decay in the pre-gel regime is more rapid
than a power law, the long-time tail being well described
as a "stretched" exponential decay,
Sz(q, t) —exp[ —(tlat, )"] with 6=0.66+0.05, as shown
in Fig. 5. These data indicate that near the gel point the
correlation function is a power-law decay that is truncat-
ed by a stretched exponential tail. (This general type of
behavior is observed in spin glasses, due to the percola-
tive structure of a random alloy. )

As the gel point is approached, certain characteristic

relaxation times diverge, indicating that a form of critical
slowing down occurs at the gel point. In fact, it is possi-
ble to define several characteristic times that behave quite
difFerently as the gel point is approached. For example,
the critical plot in Fig. 6 of the relaxation time ~, of the
stretched exponential tails in Fig. 5 indicates the diver-
gence r, —e ' —' where e= ~t,

&

—t
~ lt, ~

(we will later
show that this is the longest characteristic time in the
system). The arithmetic mean relaxation time (r), ob-
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FICx. 5. The long-time tail of the correlation functions shown
in Fig. 4 are shown to be described by the stretched exponential
exp[ —(t ir, )

o 6'—o '] for t & ~„where r, is a decay time asso-
ciated with a typical cluster. The top curve is closest to the gel
time of about 406 min.
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FIG. 6. As the silica solutions approach the gel point, some
characteristic times of the decay diverge, indicating critical
slowing down. The arithmetic average relaxation time, ob-
tained as the integral of the correlation function, shows the
power-law divergence ( r &

—e ' —', where e =
~
ts„—t

l /ts, ~,

whereas the slowest decay time, obtained from the stretched ex-
ponential tails in Fig. 5, scales like ~, -e '—'. The inverse
first cumulant I ' does not diverge. To remove the q depen-
dence, these decay times are plotted as dynamic correlation
lengths R,~~:—(kg T/677&p)q'(r).

10 6 10 5 10 4 10 3

time (sec)

~ ~ ~ ~ ~ ~ ~ ~ I ~ ~

10 10

FIG. 7. At the gel point, the homodyne correlation function
of a tetramethoxysilicon gel shows a power-law decay over five
decades in time at q '=29.7 nm. The curvature at t &3 psec is
apparently due to cooperative difFusion, the fastest observable
relaxation process in the system. It is noteworthy that the ini-
tial decay rate is finite, although the average relaxation time has
diverged at this point.

tained by numerically integrating S(q, t) over a 4.4 de-
cade time domain, has a somewhat weaker divergence,
with (r)-e ' +—'. In contrast, the harmonic mean
(r ') ' of the relaxation time spectrum, obtained from
the initial relaxation rate I = —dlnS(q, t)/dt~, 0, does
not diverge since this average is sensitive only to the most
rapid decay processes in the system. Thus the critical dy-
namics observed near the sol-gel transition is qualitative-
ly unlike that observed for thermodynamic phase transi-
tions, where there is only a single characteristic time and
both (~) and (7. ') ' diverge with the same power of e.

B. The gel point

For a system that exhibits critical slowing down it is
possible to conceive of two simple descriptions of relaxa-
tion phenomena at the critical point. First, the decay can
be described by a function f(t /~) that is scaled by a sin-
gle divergent characteristic time ~, so that there is simply
no relaxation at the critical point. This is precisely the
description of critical slowing down in second-order
phase transitions, ' where f(t/r)=e '/'. Second, the
observed relaxations can be independent of the divergent
characteristic time, at least on times short compared to
this time. This is possible if the decay is described by a
function that does not contain a time scale —a power
law. In this case, relaxation can still occur, even though
the average relaxation time is infinite. In the following,
we demonstrate that the sol-gel transition falls into this
latter class.

A correlation function for a base-catalyzed 1.OM
TMOS solution at the gel point, shown in Fig. 7, demon-

strates an initial exponential decay followed by -5 de-
cades of power-law decay with Sz(q, t)-t —' . The
initial exponential relaxation is probably due to coopera-
tive di6'usion, and merely indicates a short-time cuto6 in
the infinitely wide spectrum of relaxation times. In order
to explore the universality of the decay exponent, a 1.0M
TMOS gel was made using a two-step catalysis scheme
wherein the hydrolysis of the methoxy groups was ca-
talyzed with acid and the condensation reaction to make
bridging Si—0—Si bonds was catalyzed with base: this
gel gave the same decay exponent, within experimental
error. A base-catalyzed 0.25M TMOS gel also gave simi-
lar results, indicating that the decay exponent is insensi-
tive to preparative methods if the spatial correlation
length of the gelling solution is much smaller than the re-
ciprocal scattering wave vector.

The power-law decay observed at the gel point is an in-
teresting physical realization of fractal time, a subject
originally discussed by Mandelbrot' in connection with
the occurrence of transmission errors in data streams.
The intensity autocorrelation function is just the density-
density correlation function (p(0)p(t) ) of detected pho-
tons, since the intensity is the number of detected pho-
tons per unit time. Thus the detected photons form a
disconnected fractal dust on the time axis, with a fractal
dimension less than 1. Since in general the density-
density correlation function of a fractal is the power law
(p(0)p(r) ) —l/r, by observing that the dimension of
time is d = 1 a fractal time set of detected photons should

1 —D
give the decay S2(q, t) —I/t ~. The fractal dimension
of the detected photons scattered from the critical gel is
thus D =1—0.27=0.73. Just as a mass fractal has no
internal characteristic length, fractal time lacks an inter-
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nal characteristi. c time, as evidenced by the divergent
times we observe.

To obtain a better understanding of the gel point dy-
namics we made a base-catalyzed 0.25M TMOS gel with
a gel time of -37 days, in order to have sufticient time in
the vicinity of the gel point to study the q dependence of
the correlation function. After collecting correlation
functions in the range 29.7 nm(q '(143 nm, we no-
ticed that on the largest length scales the correlation
function seemed to clearly indicate the presence of two
separate decay processes —an exponential decay at short
times that crosses over to a power-law tail at long times,
as shown in Fig. 8. On smaller length scales (large q) this
crossover is not as evident since the amplitude of the ex-
ponential contribution decreases. To separate the initial
exponential contribution from the power-law tail we used
a dynamic structure factor of the form

s(q, t)= Ae '+ (1—A)

(1+t/r) '
where 3 is an amplitude, I is the relaxation rate associ-
ated with the exponential decay, ~ is the time at which
the power-law tail begins, and D is the fractal dimension
of the set of scattered photons. The factor of 2 on the ex-
ponent D occurs because the correlated part of the in-
tensity autocorrelation function is proportional to the
square of the dynamic structure factor [in practice the
square of Eq. (1) was fit to the homodyne correlation
function with the calculated base line subtractedj. Al-
though the detailed form of the second term in Eq. (1) is
arbitrary, this function gives an excellent fit to the data,
as shown by the small, nonsystematic residuals in Fig. 8.
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FIG. 9. The initial decay rate for correlation functions at the
gel point is shown to be q dependent. These data were taken
from a 0.25M base-catalyzed TMOS gel that gelled in -37
days. Due to the long gel time it was possible to investigate the
angular dependence of the correlation functions without a sub-
stantial change in the properties of the gel.

And since the data span 4 decades of time, convergence
in the nonlinear least squares fitting process was good,
yielding unambiguous parameters.

The time scales obtained from the gel point correlation
functions appear to be 1/q dependent, indicating that in
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FICx. 8. A homodyne correlation function for a 0.25M base-
catalyzed TMOS gel taken at a relatively long length scale of
143 nm shows a pronounced exponential decay followed by a
power-law tail with an exponent of -0.3. The fit to the square
of Eq. (1) is very good, as indicated by the small residuals.
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FIG. 10. The short-time cuto6' of the power-law tail, ob-
tained by fitting Eq. (1) to gel point correlation functions, is
shown to be essentially q dependent. The inset plot demon-
strates the q independence of the power-law tail exponent of
these correlation functions.
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Flax. 11. The relative amplitude A [see Eq. (1)] of the ex-
ponential contribution to the gel point correlation function is
shown to be dependent on the momentum transfer q. On large
length scales the amplitude increases significantly, giving rise to
the unusual correlation function shown in Fig. 8.

C. Beyond the gel point

Beyond the sol-gel transition the curing gel exhibits
novel quasielastic scattering properties that are due to the
progressive freezing of density fluctuations. This freezing
of fluctuations creates difficulties in making scattering
measurements, due to the inability to ensemble average in
the time domain. In a scattering experiment statistical
errors can arise from two sources: finite photon counting
and finite fluctuation times. In a laser light scattering ex-
periment photon counting errors are usually negligible
since incident intensities are often sufficiently high to run
the photon detector up to point where dead-time errors

some sense diffusion dominates the dynamics. In Fig. 9
the relaxation rate I is shown to be proportional to q,
consistent with the interpretation of the initial decay as a
cooperative diffusion process with D„, =8.3 X 10
cm /sec. Likewise, the time scale r associated with the
start of the power-law tail, shown in Fig. 10, is also
roughly 1/q dependent, although these data are less
convincing since ~ is a weaker fitting parameter.
Nonetheless, ~ is consistently 2 —3 times shorter than I
at all q.

The exponent D that characterizes the power-law tail
is clearly a strong fitting parameter since the tail extends
for several decades in time. The data in the inset of Fig.
10 show that this exponent is independent of q, which is
certainly a simplifying feature of the data. Finally, Fig.
11 shows that the relative amplitude 3 of the exponential
contribution decreases by a factor of 2 at higher q, where
the correlation function assumes the shape of Fig. 7.
Thus the pronounced q dependence of the shape of the
gel point correlation function is due to the change in the
amplitude of the exponential contribution.

become significant, —10 —10 Hz (a typical detector dead
time is —100 ns). However, in order to study the relaxa-
tion of density fluctuations it is necessary to use a nearly
diffraction-limited scattering volume so that the magni-
tude of the intensity fluctuations is large. If the system
has some finite relaxation time ~ then the erg odic
theorem guarantees that if we signal average for a time
T))r (in practice T —10 —10 r is sufficient) we will ob-
tain a correlation function that is independent of the par-
ticular scattering volume chosen for the experiment.
However, gels pose a particular difficulty, since ~ diverges
to infinity at the gel point and ergodicity is effectively
broken there since T cannot exceed ~.

Beyond the gel point, persistent structural irregulari-
ties occur, as evidenced by the grainy appearance of the
illuminated volume provided by an impingent laser beam.
To describe this phenomena the term "microsyneresis"
was coined, syneresis being the exclusion of solvent from
a collapsing gel whose elastic contribution to the free en-
ergy has created a negative swelling pressure. Thus it
was believed that some form of thermodynamically in-
duced microphase separation takes place in gels, produc-
ing solvent-rich and solvent-poor regimes. Although it is
indeed possible that microsyneresis can occur in gels, it is
unlikely that the onset of microphase separation would
occur at the gel point. Instead, in the case of silica these
inhomogeneities appear to be due to the cure-induced
freezing of density fluctuations. Beyond the gel point
there are many uncondensed hydroxyl groups in a silica
gel. Density fluctuations bring these hydroxyl groups to-
gether, leading to condensation and a partial pinning of
the fluctuation. As this process continues, the gel be-
comes progressively more heterogeneous. The pinning of
fluctuations ultimately leads to a heterogeneous silica gel
from which scattering measurements are difficult to
make. In fact, elastic light scattering measurements from
silica gels produce "noisy" data that are highly scatter-
ing volume dependent; a smooth scattering curve is pro-
duced only after averaging over many scattering volumes.
These problems have also been discussed in the context of
the quasielastic light scattering from gels. ' Finally, it
should be mentioned that far beyond the gel point the
crosslink density becomes sufficiently high that the elastic
free energy finally overcomes the free energy of mixing
with the solvent and the silica gel undergoes syneresis.

To study the dynamics beyond the gel point we syn-
thesized a 1M silica gel and collected homodyne auto-
correlation functions at a scattering angle of 135' with an
argon ion laser operating at A, =457.9 nm (1/q =29.7
nm). The decaying part,

&2(q, & ) = [(I(0)I(&)) —(I(0)I(~ ) ) ]/(I(0)I( ~ ) ),
of the correlation function taken from a single scattering
volume at various times beyond the gel point is shown in
Fig. 12 for various values of e. Ideally, one should aver-
age over many scattering volumes' in order to precisely
determine the base line (I(0)I( oo ) ), but in a curing gel it
is necessary to make measurements as quickly as possible.
This compromise gives rise to the random variations in
the shape of the correlation function beyond the gel
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l long after the gel point ( —5t „)show a 45-fold reduction
in the amplitude of the coherent signal. Vr'ell after the gel
point, intensity fluctuations become small and hetero-
geneities large, so the correlation function starts to de-
pend strongly on the particular scattering volume chosen
for study, due to increasing problems with base-line sub-
traction. In Fig. 13 the initial amplitude of the decaying
part of the signal is plotted against e. Empirically, the
amplitude appears to decrease exponentially with the
time beyond the gel point.

D. Scaling theory of relaxation in gels
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FIG. 12. Correlation functions taken at q '=29.7 nm for a
1M base-catalyzed TMOS gel in the post-gel regime show a de-

creasing coherent amplitude as the gel modulus increases.
However, the power-law decay does not appear to change even

long after the gel point. This decrease in the coherent ampli-
tude is accompanied by the appearance of frozen density Auc-

tuations in the gel.
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FIG. 13. The initial amplitude of the coherent signal of the
correlation functions shown in Fig. 12 is shown to decrease ex-
ponentially with time in the post-gel regime. This decrease is a
manifestation of the frozen Auctuations observed in silica gels
beyond the gel point.

point. Unlike the pre-gel regime, where the shape of
S2 (q, t ) changes rapidly with time, the shape of the corre-
lation function is essentially unchanged after the gel
point, beyond that due to the heterogeneities that natu-
rally arise in silica gels. However, the amplitude of the
correlation function decreases substantially with time,
just as the elastic shear modulus increases. Data taken

At this point it is probably evident to the perspicacious
reader that the phenomenology of the relaxation of densi-
ty Auctuations in gels is complex (or at least not simple).
%'e have observed a stretched exponential tail in Sz(q, t)
before the gel point; a power-law decay at and beyond the
gel point; the divergence of the time scales (r) and r,
while I ' does not diverge; and a decrease in the ampli-
tude of the coherent signal beyond the gel point. We
have also seen that there appears to be a pronounced
cooperative diffusion contribution to the signal at small q.

In order to understand the dynamics it is first neces-
sary to have a structural model of the sol-gel. Near the
gel point recent scattering studies of fractal dimensions
and radius and mass divergences have shown that the
sol-gel transition can be adequately described by the per-
colation model. This is indeed fortunate, since percola-
tion is also the only model of the sol-gel transition. Per-
colative theories of the viscoelasticity of the incipient
gel ' have been successful in describing much of the
viscoelastic data on incipient gels, so we will use percola-
tion as the basis of our approach to density fluctuations.

In the simplest cases, the initial decay of a density fluc-
tuation occurs through cooperative diffusion. ' In
cooperative diffusion, the derivative of the osmotic pres-
sure with respect to concentration, BII/Bc, provides the
restoring force, and the sedimentation coefficient s, due to
the viscous flow of the solvent through the incipient net-
work, provides the friction; thus D„, =s BII/Bc. Since
neither of these terms is sensitive to the long-range con-
nectivity that develops at the sol-gel transition, it is
reasonable to expect the cooperative diffusion coefficient
to vary smoothly throughout the sol-gel transition. As
shown in Fig. 6, the initial decay rate is not sensitive to
the connectivity divergence, in agreement with this ex-
pectation. However, the power-law tail of the gel point
correlation function indicates that something extraordi-
nary is contributing to the decay. Physically, a density
fluctuation first decays through cooperative diffusion, as
the system minimizes its local free energy subject to local
constraints. However, if these local constraints decay on
a time scale that is long compared to cooperative
diffusion, a long-time tail in the correlation function
should occur. Thus on large length scales, where the
cooperative diffusion relaxation is slow, we see a pro-
nounced exponential contribution to the correlation func-
tion, as in Fig. 8.

In semidilute linear polymer solutions, these local con-
straints are mostly due to entanglements, which give a lo-
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cal elastic contribution to the free energy. Modern
theories of polymer viscoelasticity are couched in terms
of the relaxation of entanglements through translational
diffusion, so in macroscopic stress relaxation the impor-
tance of entanglements is well accepted. Fluctuations in
entanglement density on microscopic length scales will
naturally lead to quasiequilibrium states of varying densi-
ty that relax on the time scale of polymer self-diffusion, '

a process that may be many orders of magnitude slower
than cooperative diffusion; in this indirect fashion self-
diffusion couples to the decay of density Auctuations. An
"anomalous" slow mode has indeed been observed in
semidilute polymer solutions by many investigators, ' '
and forced Rayleigh scattering measurements have
shown that this mode relaxes on approximately the time
scale of self-diffusion, yet because a slow mode was unan-
ticipated, these observations are still considered some-
what controversial. However, it is known that the long-
time tails in S(q, t) relax more slowly with increasing
molecular weight and concentration, as does self-
diffusion. In contrast, cooperative diffusion becomes fas-
ter with increasing concentration and is independent of
molecular weight.

In branched polymer solutions the role of entangle-
ments is not clear, yet the observation of a long-time tail
indicates that a single cluster relaxation process may con-
tribute. The relaxation may occur predominately
through self-difFusion or it may be due to the relaxation
of internal modes of clusters. Our approach is to calcu-
late each of these contributions and compare the results
to experimental data.

To understand the dynamics of the incipient gel clus-
ters requires a rudimentary understanding of their per-
colative structure. The incipient gel is a self-similar dis-
tribution of fractal clusters of all sizes, from monomers to
the infinite cluster. In order for the distribution of clus-
ters sizes to be self-similar, the average separation dis-
tance S between clusters of radius R+dlnR must be pro-
portional to R, so all clusters see the same environment,
regardless of their size. Using S—1/X(R)'~ -R then
gives the power-law number distribution
K(R )d lnR —R "d lnR in terms of the dimension of
space d alone. The hyperscali ng relation '
%(m )dm —m ' "~ dm for the mass distribution can
then be obtained from R —m. Thus the cluster size dis-
tribution in a branched polymer melt may be regarded as
a direct consequence of'self-similarity. Slightly beneath
the gel point the percolation number distribution is—m/I
X(m )dm —m ' "~ e 'dm, where the exponential
term ' effectively truncates the distribution at the typical
cluster mass M, -g -e

Cluster self-diffusion

Understanding cluster self-diffusion in the reaction
bath is fundamental to understanding the dynamics of
branched polymers. Since branched polymers of compa-
rable size cannot overlap it is reasonable to write the
self-diffusion coefficient in terms of the Stokes-Einstein
relation D, = k T/6m '(R )R, but in a medium with a
radius dependent viscosity-(i.e., the microscopic viscosity

depends on the cluster size). In other words, we expect
the diffusion coefFicient of a cluster of radius R to be pro-
portional to that of a sphere of radius R. The radius
dependence of the microscopic viscosity can be computed
from the following argument. On the time scale in which
a cluster of radius R diffuses its own radius, smaller clus-
ters will have diffused a distance much larger than their
own radius, or interseparation distance, and will thus be
uncorrelated, but larger clusters will remain nearly sta-
tionary. Thus to this probe cluster the smaller clusters
form a Quid with a finite viscosity, embedded in a tortu-
ous medium of essentially immobile clusters through
which the cluster must diffuse. In a self-similar system
the tortuosity is the same for all clusters, and merely
reduces the diffusion coefficient by some fixed, radius-
independent amount. Thus the microscopic viscosity
il(R) is proportional to the viscosity of a fluid of all clus-
ters of radius r (R. Since the cutoff in the power-law
size distribution is the correlation length ' g-e ', a fluid
of viscosity il(R) will be observed e-R '~ beneath the
gel point, where g- e . Noting that the bulk viscosity
diverges like g-e then gives the microscopic viscosi-
ty il(R)-R "~', which when combined with the Stokes-
Einstein relation D, (R ) =k T /6irriR gives
D, (R) —1/R'+" for the diffusion coefficient. In d di-
mensions this becomes D, —1/R

The result for the microscopic viscosity can also be ob-
tained by assuming that a probe larger than the correla-
tion length g feels the bulk viscosity rib, and a probe
smaller than the correlation length feels a finite viscosity
that therefore must be independent of the divergent g&.
This leads to the scaling relation rl(R) Yibh(R-/g)-il&
for R &g, and using ilb -g"~ then gives il(R)-R "~ for
R &g.

The radius-dependent viscosity is physically due to the
screening of hydrodynamic interactions. If hydrodynam-
ic interactions between monomers on a cluster are com-
pletely screened by smaller clusters in the reaction bath,
the Rouse difFusion coefficient D, -kT/porn —1/R
should apply, where go is a monomeric friction factor.
Comparing this Rouse expression to D, —1/R"
then gives k=v(D —d+2) for the viscosity exponent.
On the other hand, if hydrodynamic interactions are un-
screened, the Zimm diffusion coefficient D, —1/R"
leads to k =0. In general, a partial screening of hydro-
dynamic interactions gives the inequality
0 & k & v(D —d +2). Using the percolation estimate
D =—(d +2 ) /2 yields 0 & k /v & (6—d ) /2, which demon-
strates that in the mean field limit (d =6) k must vanish
and the viscosity must diverge at most logarithmically,
i.e., i)-ln(1/g). Numerically, experiments should give a
viscosity exponent in the range 0~ k ~ 1.35.

-To compute the observed quasielastic light scattering
behavior we must recognize that the sol-gel transition is a
connectivity divergence, not a thermodynamic phase
transition, so there is no singularity in the free energy and
no divergent scattering (critical opalescence) from the un
diluted incipient gel. This implies that the scattering of a
single cluster is screened by the other clusters that pack
neatly around it. In the absence of monomer-monomer
correlations only the diagonal terms in
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iq(r, . — . )S (q) =g; ( e ' ' ) contribute, so the scattering from
a cluster of mass m scales like S(q ) —m, not
S(q)-m f(qR), where f(qR) is the coherent cluster
structure factor. The expression for the self-difFusion
contribution to the structure factor is then

S,(q, t)= f mN(m)e 'dm .
1

(2)

At zero time this integral is the total mass of the clusters,
which does not diverge since mass is conserved. And this
integral adequately describes much of the observed dy-
namics in near-critical gels.

Close to the gel point it is readily shown that the corre-
lation function described in Eq. (1) becomes a power law
in time. Using the percolation number distribution

g~a —m /M
X(m ) —m ' e ', along with the relations
D, —1/R '+"~ and D =d —P/v, where 6 -e~ is the gel
fraction, gives

for the heterodyne correlation structure factor at the gel
point. The "homodyne" structure factor Sz(q, t ) is the
square of the heterodyne structure factor, so replacing P
by 2P gives the experimentally observed tail. In the
Rouse limit the homodyne exponent is 2P/(k+ v)
=2d, /(3 —d, )=——', where d, =d D—= (d ——2)/2 is the
codimension of a percolation cluster. In the Zimm limit
the homodyne exponent is much larger, with
2/3/( k +v) =2d, —= 1. Thus the Rouse homodyne ex-
ponent of —', is in much better agreement with the experi-
mental value of 0.3. Note that before the gel point the
power-law decay is only observed for times greater than
I and smaller than a characteristic time ~, .

At very long times Eq. (2) predicts a stretched ex-
ponential tail before the gel point, as indicated experi-
mentally by the rolloff in the power law in Fig. 4. The
method of steepest descents can be used to show that for
times exceeding ~, the correlation function has the
stretched exponential tail

(t/ )D/(D+1)
S,(q, t)-e (4)

This tail is due to the exponential truncation of the mass
distribution, and is therefore physically due to the
diffusion of clusters larger than the correlation length,
called lattice animals. These exponentially rare clusters
of radius R ))g feel the bulk viscosity ilb and so have a
diffusion coefficient D, -g " R '. The lattice animal
fractal dimension of 2 gives a stretched exponential ex-
ponent of —', , in good agreement with the data in Fig. 5,
which give 0.65 0.5. A final technical note: including
fluctuations in the steepest descents calculation gives a
power-law time prefactor to the stretched exponential
decay of Eq. (4). Since this term decays much more slow-
ly than the stretched exponential term it is experimental-
ly irrelevant and so is not included here.

Finally, the divergent time scales observed before the
gel point can be calculated directly from Eq. (2). The
crossover time ~, = I/q D, is the time it takes a typical

cluster of radius g to diffuse a distance q . Using the z-aueragediffusion�coefficient, —g
' gives

w, —1/q D, -e (5)

is obtained by integrating the heterodyne correlation
function. Integrating the homodyne correlation function
gives a similar expression, but with P replaced by 2P.
The Rouse homodyne exponent is thus 3v(1 —d, ) =—1.35,
to be compared with the experimental value of 1.9, and
the Zimm limit gives the quite low value of
v+k —2P=v(1 —2d, )=-0. Finally, the homodyne result

r, /(r)-e applies whether or not hydrodynamic in-

teractions are screened, leading to P=O. 3+0. 1 for the gel
fraction exponent, in substantial agreement with the per-
colation value P =0.39.

At this point we can conclude that invoking self-
diffusion as a mechanism to relieve local constraints, and
thus further relax density fluctuations, gives good agree-
ment with the qualitative experimental behaviors, and
does a reasonable job of predicting the observed ex-
ponents if the Rouse limit is taken. That the Rouse limit
should agree well with experiment is not too surprising,
since Rouse behavior is also found in viscoelastic mea-
surements.

From another perspective, Eqs. (3)—(6) can be used to
determine the gel fraction and viscosity exponents. First
define the exponents P and g through S(q, t)-t ~ and
(r ) -e ~ and solve the homodyne version of Eqs. (2) and
(5) to obtain the expression Ij=gitj/2(1 —P) for the gel
fraction exponent. Using the experimental values
/=0. 27 and /=1. 9 then gives f3=0.35, in good agree-
ment with the percolation prediction of P=0.39. To find

k we use the dilute-solution experimental value v'=1. 35
for TMOS and correct this for cluster swelling' to obtain
the reaction bath value v= 1.35 X0.8 = 1.08. Using
k=P —v+2P from Eq. (5) then gives k =1.5, in close
agreement with the Rouse prediction of k = 1.35, but in
poor agreement with the de Gennes prediction of k =0.8,
which is based on an analogy between the viscosity diver-
gence and the divergence of conductivity in a
superconductor-resistor network. This value of k = 1.5
is also in good agreement with the viscosity measure-
ments reported recently by Colby et aI. for base-
catalyzed TMOS sol-gels, which gave k=1.3. Finally,
substituting these exponents into Eq. (4) gives r, —e
in good agreement with our experimental observation

~
—2. 5+0. 1

z

2. Cluster configurational diffusion

That cluster self-diffusion is so successful in explaining
the long-time relaxation of density fluctuations in silica
gels may be due to the local rigidity of these colloidal
gels. In more flexible systems, where the persistence

The Rouse limit k+v=v(3 —d, ) —=2.25 compares well
with the experimental value of 2.5, but the Zimm limit of
0+v=v—=0.9 is much too small. The arithmetic average
relaxation time
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length is much smaller than q, it is possible that con-
straints on density fluctuations may instead be relieved
through the internal relaxations of clusters. If the idea of
the single cluster scattering being screened is again in-
voked, the relaxation of density fluctuations is described
by Eq. (1) with exp( q—Dt ) replaced by a sum over nor-
mal modes. However, this substitution results in a form
that is the basis of viscoelastic theories of gels. 3 priori,
this correspondence seems reasonable since the analogy
between the dynamics probed by quasielastic light
scattering and viscoelasticity is strong when cluster over-
lap leads to screening of the scattered field. However, al-
though the analogies between light scattering and viscoe-
lasticity are interesting, the agreement with experimental
data makes this connection unconvincing.

In the following we describe the correspondence be-
tween viscoelasticity and quasielastic light scattering in
the Rouse limit. The power-law tail of the heterodyne
correlation function corresponds to the stress relaxation
modulus G(t)-t "~' + '-t . Viscoelastic data for
TMOS gels give G ( t ) —t ' — in substantial agree-
ment with this prediction. However, this viscoelastic ex-
ponent is more than twice the heterodyne scattering ex-
ponent of 0.25 observed in polyurethane gels, a fIexible
system, and is much larger than the self-diffusion ex-
ponent of d, /(3 —d, )=—0.2. The average relaxation time
(r) is analogous to the viscosity, which diverges like—v(2 —dc
gb -e ' -e ', in contrast to the translational
diffusion model prediction of (r }-e ' . The measured
polyurethane divergence is only (r) —e ". Finally, in
the viscoelasticity theory the ion+est characteristic time

p
—v(d+7 —d )

z, is the product gbJ, -e ' -e, where J, is
the equilibrium steady-state creep compliance. This is
much stronger than the self-diffusion divergence
~, —e ' "'-e . Thus we see that although there
are strong analogies between the dynamics observed in
light scattering and that observed in linear viscoelasticity,
the measured exponents are in better agreement with the
self-diffusion description.

IV. BRANCHED POLYMER SOLUTIONS

A. Light scattering measurements

Light scattering measurements from dilute linear poly-
mer solutions have allowed the investigation of a number
of interesting single polymer properties, such as transla-
tional diffusion and the relaxation of internal modes. In
this section we explore the scattering behavior of
branched polymers that are diluted at the gel point, in an
effort to understand how the power-law tail of the corre-
lation function changes upon dilution. Because the opti-
cal screening arguments that were applied to the reaction
bath do not hold in dilute solutions, we expect to observe
dramatic changes in the dynamics. In particular, S(q, t)
should be integrable in dilute solutions, so that it is possi-
ble to observe "critical slowing down" by approaching
the gel point along the concentration axis.

When the reaction bath is diluted two effects occur: in-
dividual branched polymers separate, leading to a
dramatic increase in the scattered intensity per unit con-

centration; and the branched polymers swell because
two-body, monomer-monomer interactions are no longer
screened as in the reaction bath. ' The net effect of
dilution is to significantly increase the spatial correlation
length g, over its reaction bath value of go-10 nm.
Static light scattering experiments show that upon dilu-
tion from the reaction bath concentration of C0 this spa-
tial correlation length increases as g, —=go(Co/C) until
the solution is sufficiently dilute that g, becomes the z-
average cluster radius. On length scales qg, )) 1 only in-
termediate scattering is observed, and this decays as
I-q

' where D, =D ( 3 —r ) =—1.6 is the ensemble frac-
tal dimension. "

The appearance of a significant correlation length in
semidilute solutions can be seen in Fig. 14, where scatter-
ing data are shown for a 1M base-catalyzed TMOS sol-gel
diluted at the gel point. Although light scattering from
the undiluted sample revealed essentially no q depen-
dence (not shown), even a moderate, 1.5-fold dilution
yields a significant scattering dissymmetry. At the lowest
concentrations the intermediate scattering I-q ' is
observed, indicating sufficiently large clusters (larger than
—1000 nm) that qg, )) 1 in the light scattering q window.
The extraordinary concomitant changes in the dynamics
of density fluctuations are unforeshadowed by the simple
concentration dependence of the static scattering of the
critical gel, as we shall now discuss.

When a critical sol-gel is diluted by a factor of 1.5, the
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FICx. 14. The intensity of scattered light per unit concentra-

tion of silica is shown to increase with dilution, due to the swel-
ling of clusters and the elimination of optical screening increas-
ing the spatial correlation length. These measurements were
made by bringing a 1.0M TMOS sol-gel to the gel point and di-
luting the branched polymers thus formed with methanol. At
the lowest concentrations the scattering is in the intermediate
regime, where qA, ))1, and shows fractal scaling with I-q
Thus the ensemble fractal dimension is 1.6. These data are con-
sistent with a power-law increase g, =—g'o(Co/C) in the spatial
correlation length.
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long-time tail of the intensity autocorrelation function
changes from a power law to a stretched exponential de-
cay, as shown in Fig. 15. The static scattering data indi-
cate that qg, ((1 in this case, however, upon further di-
lution the spatial correlation length becomes very large,
till eventually qg, ))1. In this case the stretched ex-
ponential decay gradually crosses over to a more rapid
decay that has no readily discernible functional form, as
shown in the top curve in Fig. 15. Thus as the system is
diluted the relaxations become progressively more rapid,
indicating that the critical slowing down that is observed
in the reaction bath can also be approached along the
concentration axis. In fact, integration of the homodyne
autocorrelation functions, Fig. 16, demonstrates a strong-
ly divergent average relaxation time ( r ) - ( Co —C )

as C approaches the reaction bath concentration Co.
Studies of the q dependence of the dynamic structure

factor of diluted critical gels reveal two time scales that
depend on different powers of the momentum transfer.
Autocorrelation functions for the 1.5-fold diluted sol tak-
en at different values of q are shown in Fig. 17 on the di-
mensionless axis (I t)a, where I is the initial decay
rate. These correlation functions do not collapse at long
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FIG. 16. The critical slowing down in the reaction bath at
tg„ is usually approached along the time (extent of reaction)
axis, as in Fig. 6. However, these data show that it is also possi-
ble to observe critical slowing down by approaching this critical
condition along the concentration axis. These data were ob-
tained by diluting a critical sol-gel and integrating homodyne
correlation functions taken at q =243 300 cm '. At the highest
concentration it was necessary to integrate the tail analytically
from the stretched exponential curve fit to prevent truncation
errors. These data also strongly suggest that in a dilute solution
the divergence occurs at the reaction bath concentration Co.
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FICx. 15. Homodyne intensity autocorrelation functions for
diluted TMOS critical gels show a sensitive dependence on con-
centration (the dilutions are the numbers beneath each curve).
These data were taken at a scattering angle of 135 with a He-
Ne laser at X=632 nm (q =243 300 cm ') and I is the first cu-
mulant. On this log-log vs log plot, a stretched exponential de-
cay exp[ —(t/ )] isra straight line with a slope of b At a dilu-.
tion of 1.5 the correlation function shows the expected exponen-
tial slope of 6 = 1 at early times, but then crosses over to a slope
of b=0.24 at large times, obtained from a nonlinear least
squares fit to the data. Likewise, the two-fold dilution gives
b =0.38 and the three-fold dilution gives b =0.46. As the
branched polymers are further diluted„ the stretched exponen-
tial decay crosses over to a much more rapid decay that appears
to have no simple functional form, but can be attributed to the
internal modes of the clusters.

times on this dimensionless axis because the characteris-
tic time for the tail is not proportional to I . In fact,
the initial decay rate is q dependent, indicating a decay
dominated by cooperative diffusion, whereas the
stretched exponential tail exp[ —(t/ lr' j has a relaxa-
tion rate ~ ' that is q dependent. The crossover be-
tween these regimes is surprisingly abrupt.

At much higher dilutions the stretched exponential
correlation function with two time scales crosses over to
a more rapidly decaying form with a single -q3 depen-
dent decay rate, as shown for 80-fold diluted gels in Fig.
18. Integration of these correlation functions gives a sin-
gle time scale I -q . Since the measurements are in
the intermediate scattering regime qg, ))1, it is reason-
able to assume we are observing the internal modes of
branched polymers in this case. Correlation functions
taken at intermediate values of dilution showed a cross-
over between the slow, stretched exponential behavior of
the 1.5-fold diluted gels and the rapid decay of the 80-
fold diluted gels. For example, the two-fold diluted gel
gave a stretched exponential exponent of 0.38, the three-
fold sample gave 0.46, the Ave-fold sample gave 0.54, and
the ten-fold sample showed no real stretched exponential
regime. The interpretation of these results is still incom-
plete, but it is still possible to draw some conclusions
about the flexibility of the clusters from these measure-
ments.

B. Translational diffusion

1. Power-law decay
In the most dilute branched polymer solutions transla-

tional diffusion alone dominates the decay of the correla-
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FIG. 17. Homodyne correlation functions taken for a 1.5-
fold diluted critical silica sol-gel show a stretched exponential
decay at long times for all values of the momentum transfer q.
However, when plotted against the dimensionless time I t,
where I is the initial decay rate, the long-time tails do not col-
lapse, indicating the presence of two time scales in the correla-
tion functions. The inset graph demonstrates this point: the in-
itial decay rate is proportional to q, but the decay rate 1/v. of
the tail is proportional to q . The q dependence is consistent
with cooperative diffusion, but the q' dependence is indicative
of a decay process that occurs in the absence of an identifiable
length scale.

tion function if the condition qg, ((1 is satisfied. How-
ever, our experiments at low concentration were made in
the qg, ))1 regime where internal cluster deformation
modes must contribute to the observed decay, provided
the clusters are flexible. In a dilute solution of branched
polymers the translational diffusion of the power-law po-
lydisperse clusters can give the experimental observation
I -q in the qg, )) 1 regime, so it is worthwhile to deter-
mine whether the shape of the correlation functions can
also be described by translational diffusion alone before
we consider the effect of internal modes.

For a dilute solution of rigid clusters with negligible
form anisotropy, the unnormalized dynamic structure
factor is

S(q, t)= f m S (q)N(m)e & 'dm,
0

where S (q) is the static structure factor normalized
such that S (0)=1. Since the fractal dimension of a
swollen branched polymer is 2, it is sufficient to approxi-
mate S (q) by the Ornstein-Zernike function
1/(1+q R ) where R is the cluster radius (the detailed
choice does not aff'ect our result). If we are interested
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FIG. 18. Critical sol-gels diluted 80-fold are essentially dilute
in the light scattering window since the scattered intensity is
purely intermediate. For these dilute branched polymers both
the initial decay rate I = (1/r) and inverse decay time 1/(~)
scale as q, so the correlation functions are described by a sin-
gle time scale and collapse to a master curve on nondimen-
sioned axes. The long-time decay of these hornodyne correla-
tion functions is probably due to the complex normal modes of
branched polymers.

only in the intermediate scattering limit where qR, ))1,
then it is sufficient to use the gel point polydispersity,
N(m)-1/m'. Changing variables to remove the inte-
grable singularity at the origin then gives the unnormal-
ized form

0 1 + 1/(w —2) (8)

where Qt =q tkT/6mqo is a dimensionless time and go is
the solvent viscosity. It can be shown that the short-time
decay of Eq. (8) is exponential with a first cumulant
I -Q-q, in accord with our observations on dilute
solutions. However, for I t & 1 the heterodyne correla-
tion function exhibits the power-law decay

S(,t)- 1

(I t )2(~—2)

Using z= 1+d /D gives a homodyne exponent of
4d, /D —=0.8, which is a much slower decay than is ob-
served experimentally. In fact, the correlation functions
in Fig. 18 do not appear to be power laws at all, but if one
were to force-fit the long-time tail to a power law, an ex-
ponent of about 2 would be obtained. Thus it is clear
that translational diffusion alone cannot account for the
decay observed in solution, indicating that the swollen
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clusters have some Aexibility on light scattering length
scales.

2. Stretched exponential decay

In general, if the system is slightly beneath the gel
point then at very large times the exponentially large
clusters will dominate the decay provided that these clus-
ters are sufFiciently rigid that normal modes do not con-
tribute to the observed relaxations. In this case the
stretched exponential decay of Eq. (4) applies, but with
the solvent viscosity go incorporated into the terminal
time ~, .

C. Internal modes

The contribution of internal modes to the dynamic
structure factor of linear polymers in dilute solution is
reasonably well understood, and serves as a useful refer-
ence point for branched polymers. Detailed calcula-
tions ' show that on length scales large compared to
the polymer radius the decay is due to translational
diffusion, and that on intermediate length scales
qR )1)qa (a is the persistence length of the polymer)
the decay is dominated by the relaxation of internal
modes, which is much more rapid than the translational
diffusion contribution. In fact, in the intermediate re-
gime the initial relaxation time is just the time 0, ' it
would take a cluster of radius q

' to diffuse a distance

q '. In the Zimm limit' the initial relaxation rate is

I =—f(u),
u

where u =qR and A=q kT/6nrto. The function

f(u) = 1 in the translational diffusion dominated regime
u ((1, yielding 1 =q D„and f(u) —u in the internal
mode dominated regime u ))1, giving the radius-
independent relaxation rate I -q kT/6~go. Since this
scaling of the initial relaxation rate is quite general, rely-
ing only on the absence of an internal length scale and
hydrodynamic interactions, Eq. (10) should hold for Aexi-
ble branched polymers as well.

The functional form of the time decay of S(q, t ) is also
dependent on the scattering length scale. In the transla-
tional diffusion regime the decay is a single exponential,
but internal modes from Gaussian polymers with hydro-
dynamic interactions give the stretched exponential de-
cay

$(q t )
—(nt)

where A=q kT/6rrrlo. (This should not be confused
with the stretched exponential decay that results from the
translational diffusion of rigid, exponentially rare lattice
animals. ) A diffusive and internal mode regime should
also be found in QELS measurements from monodisperse
solutions of branched polymers, and it is reasonable to
expect the form of the correlation function in the internal
mode regime to be the stretched exponential of Eq. (11),
but this would be quite dificult to prove with any degree
of rigor.

The interpretation of dynamic data from branched po-
lymer solutions is further complicated by the fact that in

the intermediate scattering regime where qR, ))1 there
are always small clusters for which qR «1 and large
clusters for which qR ))1. Thus the small clusters con-
tribute to the observed relaxation through translational
diffusion and the large clusters contribute through the re-
laxation of internal modes. This polydispersity dom-
inates the dynamics, giving the power-law decay in Eq.
(9), if internal modes are neglected, but if internal modes
are included the large time decay is dominated by inter-
nal modes and is independent of polydispersity.

The combined effects of polydispersity and internal
modes can be expressed by rewriting Eq. (7) in the more
general form

u D(3—r)
$(q, t)=f, S(u, At) —du .

(1+u ) u

Here D is the fractal dimension of a diluted cluster,
S(u, At) is the single cluster dynamic structure factor,
normalized such that S(0,0)=1, and u =qR. For a flexi-
ble self-similar cluster, we expect S(u, At) to have two
limiting behaviors; the diffusive limit $(u, At)=e
for u ( 1, and the internal mode limit S(u, At ) =e
for u ) 1. Note that the characteristic time u /0 depends
on the length scale R in the diffusive limit, whereas the
internal mode time scale 0 is independent of R. By split-
ting the interval of integration into [0, 1]+[1, oo ] it can
then be shown that the diffusive part is dominated by an
exponential decay at large times. The internal mode con-
tribution, however, is then

—f(Ot) —du -e
1 uD(~ —2) u

(13)

If this decay is slower than exponential, as it is in linear
polymers, then this term will dominate the diffusive term
at long times. In this case the gel point polydispersity
has no effect on the time dependence of intermediate
scattering from flexible clusters at long times and the
long time tail of-the correlation function isjust the single
cluster relaxation function This is in. contrast to the q
dependence of the intermediate scattering, which is
strongly affected by the polydispersity. Physically, this
result implies that at early times the decay is dominated
by the translational diffusion of the self-similar distribu-
tion of small clusters. After clusters satisfying qR «1
relax in this fashion, the larger clusters provide a relaxa-
tion via internal modes that is independent of their ra-
dius, being roughly the time 0 it takes a cluster of ra-
dius q

' to diffuse a distance q '. It is most reasonable
to expect this long-time tail to be the stretched exponen-
tial in Eq. (11), but experiments indicate that the long-
time tail has no simple form, so it remains a challenging
theoretical problem to compute the dynamic structure
factor for a branched polymer in a good solvent with hy-
drodynamic interactions.

It is clear that solutions of branched polymers provide
some of the most vexing theoretical issues. Our measure-
ments indicate that the power law observed at the gel
point crosses over to a stretched exponential decay
characterized by two distinct regimes at moderate dilu-
tion. In dilute solution the correlation functions can be
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described by a single time scale that depends on 1/q
strongly suggestive of internal modes. We have shown
that a time scale of 1/q is expected, and that the long-
time tail of the correlation function is unaffected by the
self-similar size distribution of the branched polymers.

V. CONCLUSIONS

In this paper we have undertaken an exhaustive experi-
mental investigation of the relaxation of density Auctua-
tions in gelling systems, including studies in the reaction
bath, and of semidilute and dilute solutions of branched
polymers. In the reaction bath a novel critical dynamics
is observed that is characterized by a power-law spectrum
of relaxation times at the gel point with a longest time
that diverges at t,~. This spectrum is experimentally ob-
served in the power-law relaxation of the dynamic struc-
ture factor and in the divergence of two characteristic
time scales. A simple cluster diffusion model of the dy-
namics is proposed that relies on the concept of a size-
dependent viscosity, the hyperscaling form of the size dis-
tribution, and the screening of the scattered intensity.
This cluster diffusion interpretation accounts for the
power-law time decay of S(q, t } at the gel point, the
divergence of the average and longest relaxation times,
and the stretched exponential decay before the gel point.

Beyond the gel point the gel becomes effectively noner-
godic and the magnitude of

fluctuations

decreases
dramatically with the extent of reaction. The nonergodi-
city is manifested in the inability to obtain a smooth
scattering function from a single scattering volume. Cu-
riously, the power-law decay of S(q, t ) continues after the

gel point, although the small amplitude of the correlated
signal beyond the gel point makes measurements of this
power law progressively more difficult.

Studies of semidilute solutions of branched polymers
show a stretched exponential time decay characterized by
the presence of multiple time scales, including an early
time decay with a decay rate proportional to q and a late
time decay rate proportional to q . Dilute solutions do
not show a stretched exponential decay, and are de-
scribed by a single decay rate proportional to q, and it
is possible to show that the long-time decay in po-
lydisperse solutions is just the monodisperse decay. Un-
derstanding this decay will require a detailed theory of
the relaxation of normal modes in branched polymers.
Finally, the divergence of the average relaxation time
along the concentration axis is much stronger than the
divergence along the time axis.

It should by now be evident that even a rough charac-
terization of the decay of concentration Auctuations near
the sol-gel transition produces a wealth of unusual
findings. These observations should vex the minds of
theoreticians for years to come, and should provide a
growth industry for experimentalists as well, as the
universality of these findings is explored.
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