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Integral-equation approach to the structure of liquid binary alkali-metal alloys
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We present a comprehensive study of the structure of liquid binary alkali-metal alloys using

integral-equation techniques. As in the one-component case we find that the soft-mean-spherical
approximation is definitively superior to the hypernetted-chain approximation for such poten-

tials, having a harshly repulsive short-ranged part and an oscillating long-ranged part. We find

very good agreement with other liquid-state theories (perturbative methods and computer ex-

periments) and good agreement with experimental scattering data, the differences being due to
the simple model potential used (Ashcroft empty-core potential). By truncating the interactions
at increasing distances (until recovering the full potential), we reveal the strong influence of the
long-ranged parts of the interaction on the structure. We finally present an attempt to include

thermodynamic self-consistency, being for the case of liquid metals a delicate problem that —for

the moment —may not be solved exactly.

I. INTRODUCTION

Among the usual techniques used to determine the
structure and thermodynamics of liquid systems, the
integral-equation methods have been rediscovered dur-
ing the last few years. They are defined by the Ornstein-
Zernike (OZ) relation, together with a nonlinear closure
relation, relating the potential and the structure func-
tions in a functional way. Such standard or "conven-
tional" closures are the hypernetted chain (HNC), the
Percus-Yevick (PY), or soft-mean-spherical approxima-
tion (SMSA) (see Ref. l for an overview). The revival
of these methods is due to two facts: one is the develop-
ment of two powerful and efficient algorithms2 for solv-
ing nonlinear integral equations (in the binary case we
have to solve a set of three coupled equations); the other
reason is the reintroduction of the old idea of interpolat-
ing closure relations. 4 5 Such an interpolation enables us
to eliminate the old problem of thermodynamic inconsis-
tency, i.e., the discrepancy occurring in general between
difFerent equations of state (EOS's) when using approxi-
mative liquid-state theories. This inconsistency may also
be encountered —as a consequence of the approxima-
tions made in the derivation of their closure relations-
at the conventional integral equations. The parametrized
(or interpolated) integral equations are characterized by
closure relations which are —by means of one or more
parameters —functional interpolations between two con-
ventional closure relations. The parameter(s) is (are)
then chosen in such a way to force thermodynamic self-
consistency (TSC) (see below). Among these integra!.
equations, the modi6ed HNC (MHNC) (Refs. 6—8) and
the HMSA (Ref. 9) (being an "interpolation" of HNC
and SMSA) represent in the one-component case power-
ful liquid-state techniques. Both of them have proven in

applications to a great variety of liquid one-component
systems ~ their reliability. Comparing the results

with other liquid state methods (perturbation theories
and computer experiments) we obtain very good agree-
ment, i.e. , results within the uncertainty of present-day
computer simulations; however, the integral equations
have nowadays the advantage of being much less time
consuming than other methods. MHNC and HMSA are
therefore well-established and reliable liquid-state theo-
ries.

Proceeding to the binary case, we are restricted —at
least for the moment —to the HMSA, the MHNC be-

ing ruled out due to technical reasons (discussed in de-

tail in Sec. II). Studies on model potentials (l,ennard-
3ones, soft spheres and Morse potentials featuring an
H-Hz mixtureis) show extremely good agreement with
computer experiments even under high-pressure and/or
high-temperature conditions.

Our main interest is focused on realistic systems, such
as metal alloys, salts and metal —molten-salt solutions.
Their potentials difkr from those of model systems in
two important aspects: their interactions are long ranged
(Friedel oscillations) and explicitly density dependent
(which shall cause some additional troubles, discussed
below). What concerns salts and metal —molten-salt so-

lutions a number of applications have been done.
For liquid metals there exists —to the best of our knowl-

edge —only one study, in which Li6qNa39 —a separat-
ing system —was treated within the HNC framework.
Although the authors obtain qualitative agreement, this
choice seems to us to be somewhat problematic. Due to a
further characteristic deficiency of conventional integral
equations, one closure relation may be applied success-
fully only for a certain class of potentials. HNC is known
to be a very reliable method for Coulombic potentials
but not for metallic systems (as we shall demonstrate in

Sec. III). Besides that treating a system near the phase
separation is always a delicate task.

The aim of this contribution is therefore to demon-
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strate that integral-equation approaches may also be ap-
plied successfully to determine the structure of liquid bi-
nary alloys. As a testing system we have chosen the K-
Cs alloy (i) being one of the rare binary systems which
have been investigated experimentally in detail and (ii)
which allows us (as an alloy of alkali metals) at least to fry
to include TSC (cf. Sec. III D). We compare the SMSA
and the HNC with other liquid-state theories (perturba-
tion theories and computer experiments) as well as with
experiment. As in the one-component case we 6nd very
good agreement with other liquid-state theories and good
agreement with experiment. The diA'erences in the latter
case may largely be attributed to the simple prescription
of how to construct the potentials: we use an Ashcroft
empty-core pseudopotential and Ichimaru-Utsumi's
expression for the exchange-correlation corrections. We
confirm that the HNC yields unsatisfactory results for
such a system.

We have then investigated the infiuence of the long-
range parts of the potential on the structure and find for
distances as large as 52 a.u. that their inhuence is not
negligible. We finally present an at'tempt to include TSC.
If we want to treat this problem exactly we have to be
aware of two facts: (i) as noted above, the interactions
used in metallic systems are exphcitly density dependent,
therefore the pressure EOS contains —compared to the
model-potential case —additional terms; (ii) if we want to
be exact up to second order in the pseudopotential in the
compressibility EOS we would have to take into account
three- and four-body correlation functions, especially the
latter ones being practically unknown. Taking into ac-
count only the erst aspect and neglecting the second one
is neither correct nor satisfactory. We therefore propose
to proceed as in the model-potential case9 io is (and as
we also did in the one-component case obtaining sat-
isfactory results). We think that this is the most honest
compromise to tackle the problem in a first approxima-
tion and want to point out explicitly that this is just an
attempt and may only be regarded as a first step towards
a fully TSC treatment. Here, after having constructed
the potentials we neglect the density dependence of the
potential, i.e. , we create exactly the same situation as
in a computer experiment, where the atoms are not in-
Quenced by the density fluctuations either. From the

I

electronic point of view such an approximation may be
justified —among the metals —only for the alkali met-
als, where the neglected contributions are the smallest~i

(= 5').
This paper is organized as follows. In Sec. II we pro-

vide the reader with the necessary theoretical tools; Sec.
III first presents a comparison of the diAerent integral-
equation results (SMSA, HNC) with perturbation the-
ory, which is followed by a comparison of the SMSA data
with experimental neutron- and x-ray-scattering results.
In Sec. III C we make a systematic investigation of the
infiuence of the long-range parts of the potential on the
structure and finally present in Sec. III D our attempt to
include at least partly TSC. The paper is concluded by
a summary.

II. THEORETICAL TOOLS

A. Conventional integral equations

i, j,k=1, ..., N. (1)

The h;z(i ) and the c;z(i ) are the total and the direct
correlation functions, cy is the concentration of the kth
component, and n is the number density of the system.
To make these N(N + 1)/2 equations with N(N + 1)
unknown functions h;z(i ) and c;z(i.) solvable, we have to
add N(N+ 1)/2 closure relations, relating in a functional
way for each pair i, j the pair potentials 4;&(r) with the
c;, (i ) and h;, (i.):

F{4;~,h;~, c;~ ) = 0. (2)

These relations are simplifications of diagrammatic
developmentsi of the exact statistical-mechanics expres-
sions of the pair-correlation functions g;&(r) = h;z (i ) + 1.
As examples of such (conventional) closure relations (2)
we present here the expressions of the HNC and the
SMSA; for an overview we refer the reader again to Ref.
1:

Integral equations are based on the OZ relation, which
reads for the N-component case

h;, (r) = c;,(r) + ) cccJ 6;c(r')cr, (~ r —r' ~}dr',

exp[ P;C, ( )—i+ h( )i—c;,(i)] (HNC),
~v(~) =

exp[—PC i;~ (i.)][1+ h;~ (i ) —c;~ (r) —Pig;~ ().)] (SMSA)

(3)

(4)

where the 4i;z(r) and C)2;z(r) are the repulsive and
attractive parts of the potentials 4;z(r) in the sense
of Weeks, Chandler, and Andersen~~ (WCA) and P =
I/I(IiT. Provided by one of the closure relations {2),the
OZ relation (1) may be solved numerically by an iterative
algorithm. '

Liquid-state theories, based on a closure relation such
as (2) normally have two deficiencies. (i) If we calculate
one thermodynamic quantity (e.g. , the isothermal com-

I

pressibility yT) by means of difFerent EOS's (compress-
ibility, pressure, or energy route) we shall obtain differ-
ent results, unless we do not have an exact liquid-state
theory. Since we have to make some approximations in
the derivation of the closure relations (2) the integral-
equation methods are not exact theories. Consequently
the EOS's are no longer consistent, i.e., the methods are
thermodynamically inconsistent. This lack is inherent
not only to the integral equations but to all liquid-state
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theories except for the computer simulations. (ii) Each
of these closure relations have —due to information that
was neglected in their derivation —some weak points de-
pending on the potential of the system: without going
into details (we refer the reader to Ref. 1), HNC, e.g. ,
turns out to be a very reliable method for Coulombic
systems, whereas for strongly repulsive potentials with
long-range parts (as liquid metals) PY or SMSA should
preferentially be used.

The revival of the integral-equation technique during
the last years is mainly due to the development of two
very ef5cient algorithms for solving nonlinear integral
equations~ s (reducing the number of iterations necessary
for solutions drastically) and the rediscovery of the old
idea of "interpolating" between two "conventional" clo-
sure relations.

We use in our study a powerful implementation of
Gillan's algorithm, ~ zs which concerns the numerical so-
lution, to solve the coupled integral equations (1); for
details of the method we refer the reader to Ref. 2. In

q and r space we use a grid of 512 points (b, r/a = 0.05,
where a is the Wigner-Seitz radius), Fourier transforms
are performed by the fast Fourier technique.

B. Parametrized integral equations

A lot of possible formulations exist for the
parametrized integral equations (see again Ref. 1 for an
overview). In our studies on pure metalsii iz we have
used two of them, the MHNC (Refs. 6—8) and the HMSA
(Ref. 9), whose closures are given by

g''(&) = exP[—P@; (r) + h; (i') —c; (r) + B; (p)] (MHNC), (5)

&*()=~ p[-~~,*()]I1+ ' *' " " '"" *'"' *'
I (HMSA).

~v(~ ~v) (6)

The functions B;z(r) in the closure relation (5) of the
MHNC are the so-called bridge function. If we could cal-
culate them exactly, (5) would represent an exact closure
relation; however, these functions are extremely com-
plicated to be evaluated. Using the "universality argu-
ment" of Rosenfeld and Ashcroft7 (which was substan-
tiated recentlyz4) the true B;z(r) may be replaced for
an application of the MHNC in a good approximation
by those of a suitably chosen hard-sphere (HS) system,
BH~s(i). The diameters have to be adjusted to force
consistency between the EOS's. The functions BHs(r)
may be determined analytically (i.e. , within a reasonable
amount of computing time) only for the case of an ad-
ditive hard-sphere system (taking profit of the analytic
solution of the PY equation2s), but not for a general sys-
tem; this, however may represent —what concerns the
potentials of realjstjc systems —a drastjc restrjctjon: 3'

most of the realistic systems are nonadditive (sometimes
to a rather strong degree), which is also rejected in the
structure functions. Several attempts have been made to
circumvent these djKcultjes, trying to use the analytic
expressions of the one- and two-component HS case, but
none of them are completely satisfactory solutions
and leave the application of the MHNC to binary systems
somewhat problematic. Thus we are limited —for the
moment, until further progress is done —to the HMSA,
giving results as good as those of the MHNC for the one-
component case.

The functions fy(r, a;z) in (6) are called mixing (or
crossover ) functions. They depend both on the dis-
tance r and the parameters o.;& and trigger the degree of
contributions of the two conventional integral equations
(in this case SMSA and HNC). A typical choice is

f~, (i., n;, ) = 1 —exp( —n;, r),

where the n;& are restricted to positive values. In the
limits n;& —+ oo and a;& ~ 0 we recover the conventional
closure relations (3) and (4). Here we shall determine the
a;& by forcing agreement of the pressure and compress-
ibility EOS s. The compressibility in the long-wavelength
approach (LW) y&w reads for a binary case and constant-
volume condition:

(nk~Tyz"w)-' = 1 —) c;c,nc, , (0), (8)

where the caret denotes the Fourier transform. On the
other hand, in the homogeneous-deformation approach
(HD) the pressure P and yTHD are related via

(On'l = "XT (10)

Since in our case there is only one consistency require-
ment to match [equality of (8) and (10)] we put n;z —a
for all i and j. A rescaling (following Bernu et a1.29) is
necessary only for strongly nonadditive systems.

C. The potentials

For the potentials 4;&(i ) we proceed as in our former
studies on the same system [perturbative approach using
the Weeks-Chandler-Andersen (WCA) approximation22
for the repulsive parts of the potentials and the optimized
random-phase approximationso (ORPA) for the attrac-
tive parts of the potentialssi s~]. Each system investi-
gated is characterized by its density n (or equivalently
its atomic volume 0; for the alloy we use a linear inter-
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polation of the 0 values of the pure metals), temperature
T, and concentration c;, which are taken from experimen-
tal studies. is ~ Again we use local Ashcroft empty-core
potentialsi9 (we take exactly as in the ORPA approach
the following values for the core radii r, : i K=1.2012 A,
i'c, 1——43.93 A), assuming that the i, "s remain unchanged
on alloying. For the local-field correction G(q) we take
Ichimaru-Utsumi's expression;~ the density dependence
is expressed via the density parameter r, which reads for
our series of alloys

in an experimental study 8 at a temperature of 373 K;
the input parameters for each system are compiled in
Table I together with the values for y~, calculated in the
two different approaches using the pressure and the virial
EOS's. Figure 1 depicts these values demonstrating the
degree of thermodynamic inconsistency of the integral-
equation approaches: it is rather large for HNC and quite
small for the SMSA. Table I also contains for the sake of
completeness the data of the pure metals.

A. Comparison of diFerent liquid-state theories

a (the Wigner-Seitz radius mentioned above) is defined
as the quantity r, in atomic units. For brevity we do
not reproduce here the formulas for how to calculate the
effective interactions 4;z(r) since they are well known by
now. We refer the reader to Ref. 32 for an extensive
discuss1011.

We point out that we used in our former study on
liquid potassium a slightly diR'erent value for r K, which
was adjusted to neutron-scattering data just above the
melting point; anyway we have found out that the small
difFerence (2%) between the two values has only minor
influence on the results. Here we rather stick to the r,
values given above to enable an exact comparison with
our former WCA-ORPA results.

Finally we would like to note that eventual disagree-
ment of theoretical and experimental results might be
due to the following simpli6cations made in the construc-
tion of the interactions of the systems: (i) the use of
a simple local pseudopotential, (ii) the choice of G(q)
(which is nowadays anyway the most reliable expression
available), and (iii) the linear concentration dependence
of Q.

III. RESULTS

We performed SMSA and HNC calculations for the
ten diA'erent systems, which were investigated in detail

We present results for the partial structure factors
S;&(q) which are obtained from the g;z(i) via the well-
known expressions

s;, (q) = 6;, + pc;e, n f[g;, (r) —i]exp(ig r)dr.

(12)

We compare in a first step results obtained from the
WCA-ORPA (using a nonadditive hard-sphere reference
system ) and those obtained from the integral-equation
approaches: the agreement, as demonstrated in Fig. 2,
where we have depicted SMSA and WCA-ORPA, is good.
This agreement is more astonishing since both the con-
cept as well as the mathematical tools used by those two
liquid-state methods are completely diAerent. Not only
do the positions of the maxima and the minima coin-
cide, but also the low-q behavior agreement is surpris-
ingly good. Even small details, such as the shoulder in
the main-peak of Szz(q) for c = 0.7 are reproduced ex-
actly (for a detailed discussion of this shoulder, cf. Sec.
III C). Differences in the region of about 0.3 a.u. are due
to the well-known "spurious hump, " an artifact of the
WCA approach.

VVe now turn to a comparison of the diA'erent integral-
equation approaches (SMSA and HNC). As may be seen
from Fig. 3 where we compare these two methods the
well-known deficiencies of the HNC for this kind of po-

TABLE I. Density-input data for the series K,Csi, at a temperature of 373 K. 0 is the atomic volume [obtained by linear
interpolation between the 0-values of the pure metals (Ref. 33)] and a is the Wigner-Seitz radius. The XT s are the respective
values of the compressibility, calculated via the LW or the HD route, within the HMSA and HNC.

0.00
0.20
0.29
0.30
0.40
0.50
0.60
0.70
0.80
0.875
0.95
1.0

0 (a.u. )
829.236
770.390
743.909
740.967
711.544
682.121
652.697
623.274
593.851
571.784
549.717
535.005

a (a.u. )
3.083 87
3.009 27
2.974 93
2.970 45
2.930 60
2.889 64
2.847 47
2.804 02
2.759 19
2.724 58
2.689 07
2.676 58

HNC
XT,HD

0.0349
0.0348
0.0350
0.0350
0.0352
0.0353
0.0353
0.0352
0.0349
0.0345
0,0340
0.0357

HNC
XT)LW

0.1011
0.1049
0.1064
0.1065
0.1078
0.1085
0.1083
0.1070
0.1046
0.1020
0.0988
0.1040

SMSA
XT,HD

0.0389
0.0387
0.0389
0.0389
0.0392
0.0394
0.0396
0.0396
0.0394
0.0390
0.0384
0.0408

SMSA
XT,Lw

0.0443
0.0457
0.0461
0.0462
0.0469
0.0466
0.0473
0.0471
0.0462
0.0454
0.0441
0.0469
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HD

0.02

0.00

0.0 0.5 1.0

ompressibihty (nkaTxT) of K~Css, ss a function of
t H

t

tential are demonstrated: an overestimation of the com-
pressibility (see also Fig. 1) as we shall also see in com-
parison with experiment (Sec. III B), a strong dampening
of the peaks and a large phase shift of the oscillations
are observed. An additional repulsive potential, as it is
represented by the "bridge functions" within the MHNC
framework would be able to correct for this (see our re-
sults for the one-component case~~ ~2). But as noted al-

ready above there is little chance at the moment for a
possible application of the MHNC for binary systems.

%e have also made computer simulation calculations
for K-Cs systems on which we shall report in Sec. III D.

f2 ) c f2(q) + cs f2(q); we just note that within
the integral-equation approach the spurious hump (prm
duced by the WCA) of course does not exist and that the
height of the main peak is somewhat reduced. The phase
shift, between experiment and all liquid state theories
used still remains. When using potentials constructed
in this way, we find the same problems using any of the
reliable liquid-state theories (WCA-ORPA, TSC integral
equations, or computer simulations). It is by now well

established that it is due to the simplifications made in
the construction of the potential, i.e. , the simple Ashcroft
empty-core potential 9 and the local-field corrections.

B. Comparison with experimental results

Since we have seen that the comparison of SMSA re-
sults with WCA-ORPA data is very satisfactory and
since we know in turn that good agreement between per-
turbation theory and experiment holds, ss s~ it would be
redundant to show the integral-equation results together
with the experimental data for the complete concentra-
tion series. Vfe have picked out three concentrations and
display the results in Fig. 4. Of course, all discussions
about the comparison between integral equations and
WCA-ORPA for the S;z(q) also hold for the composite
structure factor, defined as

where the f;(q) are the atomic scattering factors and

C. The influence of the long-range part
of the potentials on the pair structure

Looking at Fig. 2 we remark on the rising part of
the main peak of the partial structure factor S22(q) =
Sc,c,(q), a shoulder, especially pronounced for the con-
centration c = 0.7. This phenomenon is most pronounced
in the intermediate concentration range but may be ob-
served to a weaker extent for all concentrations: both for
Cs-rich alloys (where this shoulder is largely covered by
the rising part of the large main peak) and for K-rich al-
loys [where S2q(q) is —due to the dilution —near unity].
c = 0.7 seems to us to be a good system to make a closer
investigation into this efkct. First, Figs. 2 and 3 confirm
that this eA'ect is not an artifact of the integral-equation
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0.5

I I I I I I f I I I I I I I

0
q (a.u. )

I ~

I I I I I I I I I I I I I I I I I

c( (a..u. )

FIG. 3. Partial structure factors S;~(q) of K,Csq, as a function of q at a temperature T=373 K for two different concen-
trations (a) c=0.20 and (b) c=0.80 . Solid lines represent SMSA results, the dotted lines HNC results. The inset shows the
low-q behavior.

TABLE II. rI. values from whereon the potential 422(r) is dampened in order to study long-range effects of the interaction
on the structure [cf. text and (14)].

15.102 20.136 24.905 29.674 33.914 42.922

10

51.665

15

73.391
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S(q)

0

0

I I I I I I I I I I I I I I I I I I I I I I I I

2 q (a.u. )

FIG. 4. Composite structure factor S(q) [Eq. (13)] of
K,Csz, as a function of q at a temperature of 373 K. Symbols
represent experimental scattering data of Ref. 18 (c=0.5 and
0.8, x rays; c=0.29, neutrons); curves represent theoretical re-
sults: solid lines are SMSA results, whereas the HNC data are
represented by the dashed curve (only for one concentration).

more than twice the distance r4 (from whereon the po-
tential is modified). (Since the effects are rather minor
and the panels for the pair-correlation functions require a
lot of space we do not present these results in a separate
figure. )

For the 2-2 component the situation is difFerent: S2q(q)
has a symmetric main peak up to L = 6, then the shoul-
der observed for the full system starts to form slowly;
for I = 10 difFerences between the full potential and
4~2 is(r) are negligible and only for L = 15 (rl, 73
a.u.) do we obtain the same result as for the full po-
tential [cf. Fig. 6(b)j. What concerns g22(r) is that rl,

triggers directly the influence of 422 L, (r) on g2q(r) for
r ) rL„ i.e., we obtain nearly perfect agreement between
the pair-correlation functions of 422(r) and of 4'2q L, (r)
for r ( rl„whereas remarkable difFerences are observed
beyond this distance (cf. Fig. 7).

Obviously the long-ranged parts of the potential 4 22(r)
force the larger Cs atoms in a distorted structure. The
asymmetric peak —interpreted as the superposition of
two symmetric ones — points towards two preferred
nearest-neighbor distances, the ratio of which is 1.1,
independent of the concentration. Only when these long-
ranged parts of the interactions are truncated by means
of the above-mentioned method these atoms may be ar-
ranged in a completely relaxed structure, resulting in a
symmetric peak (L ( 5). The eff'ect becomes more strik-
ing as the concentration of the Cs atoms becomes smaller:
then the choice for these few atoms where to be placed
is more restricted than in the case where they represent
the majority component: in this case they can arrange
themselves more easily according to their potential, the
efFect is less pronounced but does not vanish completely.

The integral equations are an ideal means to study this
effect (we extend all integrations up to 75 a.u.): they
are the fastest methods among the usual liquid-state the-
ories and enable us to manipulate the input-potential de-
liberately and obtain results within a reasonable amount
of computing time. Although it would be very interest-
ing to study this eft'ect by means of computer simulations,
we doubt if we could obtain —using the usual ensemble
size of about 2000 particles —reasonable results by this
method since the parts of those potentials which cause
this eff'ect would be outside the simulation box.

D. An attempt
to include thermodynamic self-consistency

We now present an attempt towards inclusion of TSC.
If we treat metallic systems we must not forget that the
potentials are —in contrast to model potentials —ex-
plicitly density dependent, bringing along the following
consequences:

s 2

+ 0.05
22

12

+0.005
22

15

sr1 *'j L

0.05

/
I

/

/
/

I
/

/
I

I
- 0.005

FIG. 5. Reduced interatomic potentials C;. (r) = Pe;~(r) for KroCsaa (1-1, solid line; 1-2, dotted line; and 2-2 dashed line).
The vertical arrows indicate the positions rr, from where the long-range parts of the interaction 4qq(r) are dampened (cf. text
and Table II).
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(i) Switching to the one-component case, the expres-
sion for the pressure (9) has to be replaced by

n2 rO'4(r) n2 O4(r)P = nkgyT —— g(r)- dr+ g(r)n dr
6 3 Or 2 On

1 O r OEEGn—r,— 4Bs(r = 0) —n
6 'Or. 3 Or,

The last three terms in (15) are new compared to (9)
and have to be taken into account for the HD route when

calculating the isothermal compressibility [via (10)j. 4Bs
is the band-structure energy and we refer the reader for
its explicit form to Ref. 32; EFG contains the contribution
of the electron gas, and its explicit form depends on the
local-field correction G(q).

(ii) To obtain TSC between pressure and compress-
ibility EOS's by including terms up to second order in
pseudopotential we need three- and four-particle corre-
lation functions. Only for the three-particle correlation

S»(q)

4 &r

0

0.5

(u, .u. )

S~~(q)

-C2

Q' (a.u, )

1.0

FIG. 6. Partial structure factors for the K70Csso alloy, using the potential 422 r. (r). (a) and (d) are the results for Sii(q)
and Si2(q); the solid line represents results using the full potential 422(r), other symbols for results obtained by using 422, L, (r):
- — — —, L=2& ., L=3; — —,L=4; ———,L=5. (b) and (c) are the results for S22(q); for the symbols for panel (b) see (a);
for panel (c) - — — —,L=G;, L=S; — —,L=10; and ———,L=15.
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functions are suitable theories known; 4 about the four-
particle function we know practically nothing.

Since the exact treatment of the problem is not possi-
ble, difFerences (in addition to those caused by the ther-
modynamic inconsistency) between the two EOS's will

occur, which will be called a lack of electronic inconsis-
tency (EOS).

Since we think it is neither correct nor physically sound
to treat (i) exactly but neglect the consequences of (ii),
::epropose the following approach (that results in a sep-
aration of TSC and ESC): we use also for the metal case
the pressure formulation of Eq. (9), thus neglecting the
density dependence of the interactions once they are con-

structed. We are well aware that this assumption is a
crude approximation, yet the situation is not so bad as it
might seem: in fact we create the same situation which
we encounter in computer experiments. Also there the
atoms see —when getting moved according to their equa-
tions of motion —the same potential, despite the fact
that it should vary according to the local particle density.
Once the potential has been constructed (using the av-
erage particle density) it remains the same for the whole
run and for every particle. Consequently computer ex-
periments are TSC but not ESC. And this situation is
the same if we neglect for the integral-equation approach
in the TSC requirement the explicit density dependence.

Sg2(rg) (c)

1.5

1.0

I I I I I I I I I I I I I I I I I I I I I I I

0.6 0.8

q {a.u. )

4,5

() 5

FIG. 6. (Continued).
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TABLE III. Potential parameters for the systems A and B. See also caption of Table I.

System

A
8

C=CK

0.4
0.7

0 (a.u. )
948.703
759.074

s (a.u. )
3.060 23
2.99446

T (K)
773
973

0.05
0.15

HNC
XT,HD

0.2041
0.1548

HNC
XT,I W

0.1077
0.2502

SMSA
XT,HD

0.1315
0.1899

SMSA
XT,I w

0.1249
0.1699

HMSA

0.1291
0.1846

This assumption has also lead to very satisfactory results
in the one-component case. ii i~

From the electronic point of view it may be shown that
the neglected terms may contribute —depending on the
metal —up to 30%%uo. However these contributions amount
up to only 5'%%uo for the pure alkali metals (which we as-
sume to hold also for their alloys) which also justifies this
attempt.

The most sound comparison of these TSC methods is
of course against computer simulations. Looking at the
compressibility values of Table I we see, that in the n
range of [0, oo] (corresponding to [HMSA, HNC]) no in-
tersection of the virial and the compressibility EOS's as a
function of e is possible (a similar phenomenon was also
observed in the one-component case for systems near the
melting point. ii i2) We have therefore constructed two
additional systems (denoted by A and B) at higher tem-
peratures, for which TSC could be obtained. The density
input data were taken from experiment, their param-
eters are compiled together with the thermodynamic re-
sults in Table III. However no experimental scattering
data are available for these two systems. Computer ex-
periments were performed on a 1372-particle system, us-
ing toroidal boundary conditions and a time increment
of bt = 2 x 10 s. Typical runs took about 2—3000
steps for melting and equilibration and about as many
for production. Pair-correlation functions are based on
averages over about 40 independent configurations.

Agreement with computer experiments (Fig. 8) is ex-
cellent, demonstrating very clearly that the dilferent
groups of liquid-state theories have nowadays achieved
the same level of numerical accuracy.

Concluding we want to point out that this subsection
should rather be regarded as a erst attempt to include
TSC in metallic systems. We also think that this way
of approximation is more acceptable than treating self-
consistency in a hybrid way, i.e., including all terms in the
pressure EOS (15) but not in the compressibility EQS.

IV. CONCLUSIONS

In this paper we have presented an integral-equation
(SMSA and HNC) approach to the structure of liquid
binary metallic (alkali-metal) systems. The potentials
show —in contrast to simple model potentials —the well-
known long-ranged oscillations which turn out to have
an important influence on the structure. We have tested
our results against experimental scattering results for the
series K,Csi, and find that agreement for the SMSA is
very good, except for the usual phase shift of the second

peak in the total structure factor. This discrepancy al-
ways occurs (independent of the liquid-state theory) in
both the one- and the two-component case; it may be at-
tributed to the simpli6cations made in the construction
of the potentials. We find that the HNC is not an ap-
propriate liquid-state theory for metallic systems (having
a harshly repulsive and a long-ranged oscillating poten-
tial). Comparing the results with the perturbative WCA-
ORPA method, we obtain excellent agreement within nu-
merical accuracy: a11 details of the structure functions are
reproduced exactly. This demonstrates very impressively
the fact that any of the three large groups of liquid-state
theories (perturbative theories, integral-equation meth-
ods, and computer simulations) at their most sophisti-
cated level show the same degree of reliability, despite the
fact that they are based on completely different concepts.
Studying the inHuence of the long-range parts of the in-
teractions on the structure we find out that especially the
long-range parts of the Cs-Cs interaction are extremely
important for the forming of the structure. The Cs atoms
are forced by the long-range forces into distorted struc-
tures with two preferred distances (with a ratio of about
1.1).

We have tried to implement TSC, separating ESC and
TSC by creating a computer simulation situation, ne-
glecting in a first approximation the density dependence
of the potentials in the expressions of the EOS's. TSC
was obtained by forcing agreement between pressure and
compressibility EOS s. Agreement with computer simu-
lations (where the atoms do not see the density depen-
dence of the potentials either, once they are constructed)
is very good. We can conclude that the HMSA is also for
the case of realistic systems —as liquid metals —a reliable
liquid-state theory.
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