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Parametric resonance in Rayleigh-Benard convection with corrugated geometry
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Rayleigh-Benard convection is considered with the top surface of the bounding volume
sinusoidally corrugated. Parametric resonance is shown to occur if the wavelength of the corruga-
tion is half the wavelength of the convection rolls that one would have observed with a Aat surface.

The problem of flow of a fluid over a sinusoidally pat-
terned surface was considered by Kelvin. ' He found the
remarkable result that if the flow speed exceeded a cer-
tain value the free surface of the fluid was sinusoidal and
in phase with the bottom surface, but for flow speeds
below this critical value the sinusoidal pattern of the free
surface was out of phase with the bottom surface.
Kelvin's calculation can be presented as a resonance
phenomenon, and the phase shift understood on the basis
of the phase shift associated with resonances. In this
work, we put Kelvin's geometry in a new setting, namely
Rayleigh-Benard convection and predict the existence of
a parametric resonance.

In the usual Rayleigh-Benard convection, a fluid of
Prandtl number o (o =v/A, where v is the viscous
diffusion and A is the thermal diffusion) and coefficient of
thermal expansion n is taken between two infinite parallel
plates a distance d apart (in the direction of gravity, g)
and heated from below maintaining a temperature
difference AT between the plates. Convection begins
when the Rayleigh number R =a(ET)d g/Av exceeds a
certain critical value R, which depends only on the
boundary conditions on the top and bottom plates for
infinitely large plates. A variant of this problem is to
have a time-dependent heating and to study the effect of
this time dependence on the threshold Rayleigh number
and the flow pattern in the convective state. We in-
troduce a different variant by giving one of the plates (say
the top one) a sinusoidally modulated shape (see Fig. l).
The effect of this spatial modulation on the threshold can
be significantly larger than that due to temporal modula-

tions studied so far.
In the absence of convection, heat transport occurs by

conduction alone, and the temperature profile is given by

T=T =T —AT—zs 1 d '

where T, is the temperature of the lower plate which is at
z =0 and T2 is the temperature of the upper plate at
z =d, with AT = T, —T2. The mathematical formulation
of the problem involves the study of the stability of the
state T=T, (z) and velocity v=O. To do so, one consid-
ers small perturbations, 5v in the velocity and 5T in the
temperature, oT = T ( r ) T, (z). —The Navier-Stokes
equation and the heat conduction equation are linearized
in 5v and 0 under the Boussinesq approximation to yield
the equations for linear stability analysis,
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In the above equations all variables are dimensionless.
Spatial variables are scaled by d, time by d /v, velocity
by A/d, and temperature by AT. The z component of the
velocity is to and 8= oT/b, T. The derivative
V&=B /Bx +8 /By . For an infinitely extended system,
we must have translational invariance and hence periodic
structure in the x-y plane. Hence 0 and w are of the
forms

i (a&x+a2y)
to =Re g (z)e

leading to
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FIG. 1. The proposed geometry for a Rayleigh-Benard con-
vection experiment. The bottom surface is Aat while the top
surface is corrugated.
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where D =d fdz. One needs to specify boundary condi-
tions on f and g. If the plates are good thermal conduc-
tors, then g =0 on z =0 and z = 1 and as for the velocity
field the more mathematically tractable situation is that
of stress-free boundary conditions which imply
w =D w =0 on z =0 and z = 1. The conduction state is
unstable if the time dependence of f and g is exponential-
ly growing, i.e., of the form e ', where Rek, &0. At the
transition point ReA, =O. This particular instability is
rigorously known to be a stationary bifurcation and
hence at the transition ImA, =O as well. Consequently,
the critical R (=R, ) is found from self-consistent solu-
tions of

where w is biggest, the geometry produces a higher gra-
dient (compared to the unmodulated case). If the modu-
lation size is of 0(E), the excess energy thus created
should be 0 (e) and hence it should be possible to sustain
the convection at a lower critical value of the Rayleigh
number. The lowering of R, should be 0(e). In the rest
of the paper we establish this fact in perturbation theory.

The bounding surfaces in this new Rayleigh-Benard
problem are z =0 and z =1+@coskx, where e ((1. The
conduction state is now to be determined under the con-
dition that the temperature is maintained at T=T& on
z =0 and at T=T2 on z =I+ac osk x. To 0(e), the
profile can be written down by inspection as

(D a)g=——R,a f,
(D a)—f =g,

(8) T, (x,z) = T, (b T)—z +ERAT coskx sinh(kz)/sinhk .

under the boundary conditions mentioned above. Im-
mediately one finds R, =(m +a ) /a, with the
minimum value obtained for a =m /2, giving

R, =Z7~'/4 . (10)
s

The linear stability analysis does not say anything
about the plan form. However, it is possible experimen-
tally to obtain cylindrical rolls by suitably biasing the
external conditions. In the subsequent discussion we will
consider a plan form of parallel rolls [see Fig. 2(a)].

We now provide an explanation for the resonance
which we talked about in the opening paragraphs. The
result of Eq. (10) can be understood as the condition
where the energy lost due to viscous dissipation is exactly
balanced by the energy released by buoyancy. Let us now
look at the situation shown in Fig. 2(b) where the spatial
modulation of the top plate has a wavelength which is
half that of the rolls that would be formed in the absence
of the modulation. It should be apparent from the figure
that the energy Eb released due to buoyancy will be in-
creased since EI, =(w8) (the angular bracket denotes
average over horizontal coordinates) and at the points

To establish Eq. (11) as the first term of a perturbation
series, we carry out a transformation which will be used
throughout. The temperature profile in the conduction
state is the solution to

T 8 T
+ =0

aX' Bz2
(12)

under the boundary conditions

T, =T, on z =0

and

(13)

T, =T2 on z =h (x)=1+ecoskx .

The transformation is to use the variable z defined by

z =z/h (x)

(14)

and

af 1 af
Bz „h (x)

(16)

such that in terms of z, the boundaries are at z=0 and
z=1. For the derivatives the following transformations
hold

Bx
zh '(x) df
h (x) gz

(a)

(b)

FIG. 2. (a) Section of the cylindrical flow pattern in the stan-
dard Rayleigh-Benard geometry. (b) Section of the flow pattern
in the corrugated geometry with the wavelength of the pattern
twice the wavelength of the corrugation, the case for which
parametric resonance is obtained.

where the prime denotes di6'erentiation with respect to x.
Using Eqs. (16) and (17) repeatedly, Eq. (12) becomes

a'T O'T = a'T aT
h + =2h'hz +hh "z

ax' —, az 2 'axe '
az

BT, BT,—2h' z —h' z'
az

'
az 2

(18)

T,' '=T, —(b, T)z

and the complete profile is obtained as the series

The right-hand side is of 0 (e) and higher, being propor-
tional to derivatives of h (x). On the left-hand side, h (x)
contains terms of 0(1) and higher-order terms in e. The
zeroth order solution is clearly
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T = T '+ET'"+
S S S (20)

g 7'"
+ 'z =hh z = ( 5T)zk coskx

Bz Bx Bz
(21)

leading to

Clearly T,"' and the other terms have to satisfy T,"'=0
on z=0 and z= 1. Equating O(e) terms in Eq. (18) one
finds

T, =AT . —z coskx .( ) ) slnhkz
sinhk

(22)

We can easily see that Eqs. (20) and (22) are equivalent to
Eq. (11) to O(e).

To study the stability of this new conduction state, we
obtain the analogs of Eqs. (2) and (3) using the variables z
and x. The parallel rolls plan form eliminates the y
dependence. The time dependence is dropped as the in-
stability is going to be stationary. Straightforward alge-
bra leads to

w —R,ax' az ' ' ax' I, ' az

83

Bx Bz

4 4 4 31 Bw +4~, Bw +4~, Bw +6h, Bw
h Bz Bx BXBz Bx Bz BXBz

3 2 2
/p 8 W +4Q I 8 W +4 h

I/p 8 W + Q
J)J BW

Bz Bz BzBx Bz
(23)a', ao sinhkz

z
+ 0—to =zh' +dukw cos(kx) coshkz/sinh(k) —eku sin(kx) . —1

c1x Bz sinhk
(24)

The right-hand side is of O(E). Perturbation theory
proceeds along standard lines at this point. We expand

hand side has got to be orthogonal to the left eigenvector
of X and that leads to

W = W p +E'W
i + E' W 2 +2

O=OP+eO, +e 02+ .

Rc Ro+«i+@ R2+. . .

(25a)

(25b)

(25c)

9 R p 1f k =2a,
R 0 otherwise . (27)

Hence, to 0 (e), we find the critical Rayleigh number for
a modulation with k =2a,

XV=N, (26)

where V is a two-component vector with components w
&

and 8, . The column vector N is constructed from Eqs.
(23) and (24) by collecting all the 0 (e) terms and X is the
operator

g4 R P2

p2

where V =8 /Bz +8 /Bx and V[=8 /Bx . The opera-
tor X has a zero eigenvector which is the O(1) solution.
Consequently, for the solvability of Eq. (26), the right-

At O(1), we obtain the solution exhibited in Eq. (10),
with wp = A cosa, x sinmz and Op= 3 cosa, x sinmz /
(m +a, ), where A is some constant. At O(e), we are
faced with an equation of the form

R, = 27+4
(28)

This reduction in the threshold at 0 (e) is the parametric
resonance we described above. In a more realistic calcu-
lation the stress-free boundaries have to be replaced by
rigid boundaries, which changes the numbers for R o and
R

&
without changing the qualitative situation in any way.

In summary, we have shown that the conventional
Rayleigh-Benard experiment done with a spatially modu-
lated boundary can produce an observable parametric
resonance when the modulation wavelength is half the
wavelength of the convection rolls.
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