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In order to model turbulent channel How, and establish a closure approximation in lattice-gas hy-
drodynamics, I implement a Levy walk at the microscopic level. The algorithm is described and
discussed, and results on velocity profile Aattening and its shape are presented.

I. INTRODUCTION

The task of deriving the values of macroscopic quanti-
ties for large systems from an underlying microscopic
model is daunting. Most often the microscopic model is
overly complicated. However, for incompressible fluid
phenomena a rather simple model, namely lattice-gas hy-
drodynamics, exists and has been tested in many simple
flow situations. In lattice-gas hydrodynamics point parti-
cles move from site to site on a hexagonal lattice, and un-
dergo energy and momentum conserving collisions at
sites. Upon coarse graining particle velocity and density,
one recovers the Navier-Stokes equation.

Here I wish to use the model to investigate the dynam-
ics of turbulence. Lattice-gas hydrodynamics has been
successfully used before in two-dimensional fully
developed turbulence to study the evolution of an initially
given vorticity field. However, I am interested in a
different issue and will be concerned with the relatively
simple case of turbulent channel flow. This flow is
characterized by a logarithmic velocity profile which de-
pends on a number of constants determined from experi-
ment. The logarithmic profile is derived from scaling ar-
guments due to von Karman and Prandtl. The main in-
gredient is that of a mixing length, which increases with
distance from the channel wall, over which momentum
exchanges transverse to the flow take place. The same
basic idea underlies our understanding of fully developed
turbulence, namely, that momentum and energy ex-
changes occur over many different length scales. It is this
phenomenon of mixing that leads to enhanced diffusion
in turbulent flows.

In Ref. 5 a statistical mechanics approach to enhanced
diffusion was proposed, based on Levy distributions,
which were called Levy walks. Imagine a particle jump-
ing from site to site in a flow. If the mean square dis-
placement is finite the probability density will ultimately
tend to a Gaussian. If it is not it will tend toward a Levy
distribution. A Levy walk is a generalization, where to a
Levy distribution for distances is added a completion
time for each jump. The probability density is thus a
function of both space and time, and describes the proba-
bility of jumping a distance x in a time t. This time is
taken to increase with distance and it was shown in Ref. 5
that, if the corresponding dependence is chosen correctly,
enhanced diffusion characteristic of turbulence indeed re-
sults. For a suf5ciently slowly falling probability distri-

bution for distances, one recovers Richardson's law,
namely, that the mean square distance increases cubically
in time. Additional enhancement of diffusion takes place
if—as experiments suggest —it is assumed that turbulent
phenomena take place on a fractal set.

One is led to propose that the same behavior is ob-
tained when a Levy walk is implemented at the micro-
scopic level. Lattice-gas hydrodynamics lends itself natu-
rally to this implementation, since particles can be ex-
changed among lattice sites according to some space- and
time-dependent distribution. This is the aim of this work:
to study the implementation of Levy walks in lattice-gas
hydrodynamics in the case of pressure driven turbulent
channel flow. The agreement of our results with
experiment —at least as far as the velocity proNe is
concerned —shows that Levy walks in lattice-gas hydro-
dynamics provide the equivalent of closure approxima-
tions to the Navier-Stokes equations in the description of
turbulent flows. Their implementation in a lattice gas
may provide a testing ground for mechanisms of
enhanced turbulent diffusion.

In Sec. II the algorithm and in Sec. III results on veloc-
ity profiles are described. Section IV contains a discus-
sion of results and conclusion.

II. LEVY WALK ALGORITHM

The ingredients of the lattice-gas algorithm are point
particles that move from site to site of a hexagonal lat-
tice. At a site they undergo two-particle, three-particle
symmetric and asymmetric, and four-particle collisions
whenever these conserve momentum and energy. There
are no rest particles. Details of the algorithm being used
can be found in Ref. 8.

A flow is set up in a two-dimensional channel in direc-
tion y. Transverse to direction y, at the channel walls, no
slip boundary conditions are imposed. Microscopically
they correspond to having particles which impinge on the
wall bounce back into their incoming direction. At the
inlet and outlet of the channel boundary conditions are
periodic. However, in order to maintain the flow, certain
particle configurations at the channel entrance which
contain particles moving in a direction opposite to the
flow are rearranged in a way which amounts to injecting
momentum into the flow. This procedure leads to
Poiseuille flow with the usual parabolic velocity proNe
depending on the transverse direction only. Macroscop-
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ic quantities such as density and velocity are obtained by
averaging the corresponding quantities over regions of
the lattice. Since the flow is essentially one dimensional
these regions correspond for Poiseuille flow to strips
along the whole channel in the direction of the flow, of a'

given width in the transverse direction. The width of the
channel divided by the width of a strip gives the number
of points at which the (macroscopic) velocity is deter-
mined. Actually a number of lines at the entrance of the
channel are not included in the strips, in order to give
room for the injected momentum to be distributed among
all particles. For the largest system considered which is
of width 640 in lattice units, and 640 units long, strips are
ten units wide, and at an average density of two particles
per site, the coarse graining involves around 12 000 parti-
cles in a strip.

The Levy walk algorithm for a system of width 2I. goes
as follows. A number l between one and L in lattice units
is drawn according to the normalized algebraic probabili-
ty distribution

p (l) =Kl

where K =(z —1)/(1 L' '), and—where the exponent z
characterizes the fall-off at large distances.

The exchange of particle momenta will take place be-
tween two sites at equal distance I from a randomly
chosen site 4 along the common line of lattice sites per-
pendicular to the How to which 4 belongs. Since the ex-
change involves all particles at each site, total momentum
is conserved. For a chosen l the number of exchanges de-
pends, however, on the value of l. That number is the
smaller the larger I. The relationship chosen is simply
linear, a maximum 1 of 300 (when L =320) leading to one
exchange, whereas a minimum 1 of 1 gives rise to 300 ex-
changes. Each of these exchanges occurs at a different
randomly chosen site 4 through the bulk of the Bow.
Since all of these exchanges take place between two up-
dates (translation plus collision) of the lattice gas, the
characteristic time associated with an exchange of given l
is smaller for exchanges that occur over small distances
than for those that occur over long distances. This corre-
sponds precisely to the time-dependent aspect of a Levy
walk, where the time it takes to travel a given distance in-
creases with that same distance. I will comment in the
last section on the choice of linear relationship between
distance and number of exchanges.

One moment's thought will convince one that the effect
of momentum exchanges is to flatten the velocity profile
as compared to the parabolic one. This is exactly what
happens in turbulent channel flow. Of course the flatten-
ing can occur only if momentum can be exchanged be-
tween far apart sites. Thus if the exponent z becomes too
large in Eq. (1) nothing will happen. The exponent I use
in the simulations is z =1.35, which for an infinite system
would correspond to a Levy distribution without a first
moment. From Eq. (1) the average l can be computed to
be (to leading order in L)

I —[(z —1)/(2 —z) ]L

The average l increases less than linearly with the size of

the system. For z = 1.35 its value is equal to 23 in lattice
units for a system of half-width equal to 320.

One last issue has to be clarified. Once a distance 1 has
been drawn, there will be sites 4' which are closer to one
of the channel walls than l. In such a case the exchange
cannot take place and a new site has to be chosen. Thus
the choice of sites S corresponds to a probability distri-
bution which effectively is not uniform. This can be
checked by counting how often site 4, which is halfway
between the sites whose momenta are being exchanged,
occurs in any of the 32 bins, each ten lattice units wide,
that fill up half the system from say the left wall to the
channel center line. (The Sow is symmetric about the
center line. ) Take bin 1 to be at the wall and bin 32 to be
at the center. Numerical results show that site 4 falls ap-
proximately with equal probability into bins 24—32,
2—3 % less often into bins 13—23, and 14%%uo less often into
bin 4, which is separated from the wall by about twice the
average l. These results can be recovered in an approxi-
mate one-dimensional calculation, in which the fact that
point 4 is chosen anywhere in the two-dimensional chan-
nel is ignored, together with the fact of macroscopic
averaging, and where the relationship between the choice
of l and the number of exchanges is neglected. Namely,
call p (x; I) the conditional probability density for x given
l, where x denotes the distance of 4 from the left wall. It
varies between 1 and L in lattice units, which is also the
range of variation of /. Then

p (x;l)=1/L

if l &x, and

p (x; I)=0

otherwise.
Consequently the normalized probability density

P(x, I) for x and l is given by

P (x, l) = [1/(1 l /L)]p (x—;l)p (l) .

It is then straightforward to calculate the probability of x
for any /, and therefore the ratio R (x) of the probability
of x over that of L, which is given by

R (x)=(1—x ' '/(1 L' ')—
This probability is slowly decreasing as one moves from
the center of the channel to the wall. It should be com-
pared with the simulation results quoted above. The cal-
culation gives the following: for x =120, i.e., bin 12, one
finds R (x)=0.96, whereas for bin 4 one has R (x)=0.84.
Both of these results can be considered in very good
agreement with the numerical results in view of the ap-
proximations made, which are enumerated above.

III. VELOCITY PROFILE

A. Profile flattening

The main result of transverse momentum exchanges is
a flattening of the parabolic velocity profile. This flatten-
ing is the signal of turbulent channel flow. In Fig. 1 are
shown the numerical results, for a system of 640X 640, of
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numbers of the order 10, although for the How studied
numerically the actual Reynolds number is only a few
hundred. In this sense the microscopic implementation
of a Levy walk is equivalent to a closure approximation
for the Navier-Stokes equation. Because it entails creat-
ing turbulent flow through the mechanism of momentum
exchanges on many different scales, it enables one to
reproduce experimental turbulent How as it is observed at
much higher Reynolds number. The data in Fig. 1 are
obtained for an exponent z equal to 1.35 in the probabili-
ty density distribution for length scales, Eq. (1). If the ex-
ponent increases there is less momentum exchange at
large scales. As a result the profile is less Hat. This is
shown in Fig. 2 for a much smaller system (180X 180)
where exponent z = 1.35 is compared with exponent
z =1.55. Whereas the z =1.35 profile is compatible with
the corresponding one for the larger system of Fig. 1, the
z =1.55 one is much less Hat. Clearly if z increases even
further, the profile will remain parabolic because momen-
tum exchanges over small distances will not affect it.

FIG. 1. Fluid velocity u normalized by the center line veloci-

ty U, as a function of the distance x to the wall, normalized by
the channel half width L (solid circles). Here the exponent z in

Eq. (1) is equal to 1.35, and the system studied is 640X640 in
lattice units. As a comparison the usual parabolic profile for
pressure driven Qow is given (open circles).

B. Logarithmic velocity distribution

Turbulent channel or pipe Aow is characterized by a
logarithmic velocity profile, given by

u/U*= A lnxu'/v+B

Quid velocity normalized by the maximum velocity at the
channel center. Because of symmetry only half of the
profile is shown. The flattening is significant when com-
pared with a parabolic profile. In shape it corresponds to
the profile observed in smooth pipe How at Reynolds
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where x varies from close to the wall to the center line.
This form of the profile results from similarity assump-

tions on turbulent shear stress, or from the introduction
of a mixing length which increases linearly with distance
from the wall close to it. In Eq. (4), v denotes the kine-
matic viscosity, and A and B are two empirically deter-
mined constants, where A =2.5 and B =5.5, which are
the same for channel and pipe Row. u* is a characteristic
velocity which determines shear at the wall, shear itself
being balanced by the overall pressure drop driving the
How. The logarithmic velocity profile is valid only out-
side the viscous sublayer, the width of which is of order
v/U '.

As is customary I take the value of U* from empirical
fits to the u/U data for smooth pipes. These fits use the
form4

0.5— u/U =(x/L)'/" (4)
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FIG. 2. A comparison for different exponents z of Quid veloc-
ity vs wall distance, normalized as in Fig. 1. Solid circles corre-
spond to z =1.35, and open circles to z =1.55. The system here
is 180X 180 in lattice units. The data in this figure do not have
the statistical accuracy of those presented in Fig. 1.

where U is the maximum velocity at the channel center.
The exponent n varies between 6 and 10 for Reynolds

numbers between 10 and 10 . There is no single, ex-
ponent, however, which fits data of Fig. 1, although a
varying exponent between 6 and 10 is adequate. This is
no surprise. There is too much uncertainty in the data of
Fig. 1, coming from the statistical uncertainty in u/U
which is of order 1 —2 %, but more so from the uncertain-
ty in x/L since each point can be located anywhere in a
bin of width 10. Small variations in velocity or position
are magnified because of the high value of n. However,
the value of U* turns out to be rather insensitive to the
exact value of n at the 10—20% level of uncertainty.
therefore use the following expression to calculate U *:

U4 —
( U/8 74)n/n+1( /L)1/n+1
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With v=0. 16, I. =320, U=0. 27, and n =7 one finds
v'=0. 0185, whereas for n =8 one has v*=0.0195, and
for n =10, v*=0.021. In the following I will thus take
v =0.02.

My results for the velocity divided by v are shown in
Fig. 3 as a function of lnx. There is no reason they
should follow Eq. (3). However, my data have the right
features for turbulent channel How. First, and not
surprisingly in view of the results described in Fig. 1,
u/u* has the right magnitude. In particular for lnx
greater than 4 the results lie between 10 and 15. Second,
and most importantly, the shape of the curve is right
compared with either experiment or three-dimensional
numerical results based on the Navier-Stokes equation.
Namely, within the viscous sublayer, Qow velocity is
determined by viscous friction and is therefore linear in
x. This region is followed by a transition region, where
both laminar and turbulent friction coexist, which pre-
cedes the logarithmic region proper. These three regions
are seen in Fig. 3.

In our case the thickness of the viscous sublayer is
eight lattice units (the width of a bin) corresponding to
lnx =2. u /U' is exponentially rising as a function of lnx
in this domain. This behavior is visible in Fig. 3 in the
appropriate domain and is followed by a transition region
until there is a change of slope for lnx greater than 5.5.
This is exactly what is observed in the experimental
data. Unfortunately, with a system of half-width 320 in
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FICx. 3. Fluid velocity u normalized by the characteristic ve-
locity U* as a function of lnx. The straight line, which corre-
sponds to u /U*=lnx+const, is drawn for comparison.

lattice units, one reaches barely into the fully turbulent
region where the logarithmic profile dominates. Accord-
ing to experiment this region starts when lnx is greater
than 5.75, which is the limit of our system. The loga-
rithm being a very slowly increasing function of x, a quite
larger system than 320 would be required to fully estab-
lish the velocity profile in the turbulent region. It is not
possible from the high lnx data in Fig. 3 to extract with
any precision the slope of u /U* versus lnx, which empiri-
cally is equal to 2.5. For reference I have drawn a corre-
sponding line of slope equal to 1.

It is remarkable that from the microscopic, Levy-
walk-based, approach which, though embodying some of
the same physical ideas, is totally different from the mac-
roscopic one, rather good agreement with experimental
data is found. How much my profile follows exactly the
logarithmic form of Eq. (3) cannot be decided because
simulation results do not reach far enough into the region
where turbulent shear stress dominates.

IV. DISCUSSION AND CONCLUSION

This work is an attempt to devise a closure mechanism
in lattice-gas hydrodynamics. The mechanism proposed
is that of microscopic Levy walks. Results are encourag-
ing for turbulent channel Aow: the Quid velocity profile
Battens and, most importantly, its shape and magnitude
from the wall to the channel center line are in reasonable
agreement with experimenta1 data. The Levy walk algo-
rithm contains one parameter only, once the relation con-
necting the number of momentum exchanges to distances
is chosen. This parameter is the exponent in the proba-
bility density distribution for distances, Eq. (1). The flat-
tening of the velocity profile depends sensitively on this
exponent. If it is too large there is no flattening at all, be-
cause momenta exchanges do not occur over large
enough distances.

I have done a study on how the results reported here
depend on the form of the above-mentioned relationship.
I have examined the extreme but simple case where the
number of exchanges is fixed whatever the distance over
which momentum exchange takes place. Since, for the
most frequently drawn small distances, the velocity
profile is not affected by any exchange, this procedure
captures the essence of the Levy walk, if—for a given
system size —the effective number of exchanges is chosen
appropriately. Results are essentially the same as for the
more elaborate case reported on here. Therefore,
whereas for fully developed turbulence the result for
maximally enhanced diffusion depends on the value of the
exponent which relates the time it takes to jump a dis-
tance x to a power of x, it appears that for the micro-
scopic implementation in a finite system considered here,
results are'insensitive to the precise form of the relation-
ship. The advantage is that the simulation then depends
sensitively on one parameter only, namely, as already
stressed, on the exponent in the algebraic distance distri-
bution.

I have also considered a different algorithm for
momentum exchanges. Whereas I have reported on a
method where a distance I is drawn before a point is
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chosen where exchanges over / take place, in the second
approach a point is chosen first, and then I drawn from
an algebraic distribution which ranges from 1 to the dis-
tance of that point to the nearest wall. Again results are
essentially the same.

A Reynolds tensor component connecting longitudinal
and transverse Auctuations can be defined as the average
of longitudinal velocity fluctuations taking place per unit
time across the distance over which momentum exchange
occurs. I have obtained it numerically. This Reynolds
tensor component is—as expected —antisymmetric with
respect to the channel center line, but the statistical noise
in the data is too large to extract reliably its magnitude
which is of the order of U

* . '

As a conclusion one can say that the method proposed
to implement a closure approximation in lattice-gas hy-
drodynamics appears successful, The method relies on
microscopic Levy walks for creating the enhanced
momentum di6'usion required to describe turbulent Aows.

Further studies will be necessary to explore issues not
clarified or touched upon here. In particular, while it is
clear that the velocity profile is not sensitive to the pre-
cise relationship between time and distance for segments
of the Levy walk, this might mot be so either for other
quantities, such as the increase of separation between
Quid elements with time, or for other turbulent situations
where the proposed microscopic closure could prove it-
self useful.

ACKNO%"LED GMENTS

I am very grateful to Yves Pomeau for his interest in
this work and for helpful discussions. I also thank
Stephane Zaleski for discussions. This work was support-
ed by the U. S. Department of Energy (Contract No.
DE-F-G02-88ER13916AOOO), and benefitted from com-
puter time provided by The Ohio Supercomputer Center.

For examples, see Complex Syst. 1 (4) {1987).
~U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56,

1505 (1986).
S. Succi, P. Santangelo, and R. Benzi, Phys. Rev. Lett. 6Q, 2738

(1988).
4See H. Schlichtting, Boundary Layer Theory (Pergamon, New

York, I955), Chaps. 19 and 20.
5M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett.

58, 1100 (1987).

L. F. Richardson, Proc. R. Soc. London Ser. A 11Q, 709 {1926).
7W. C. Reynolds, Annu. Rev. Fluid Mech. 8, 183 (1976).
8K. Balasubramanian, F. Hayot, and W. F. Saam, Phys. Rev. A

36 2248 (1987).
See Ref. 4; and S. A. Orszag and A. A. Patera, Phys. Rev. Lett.

47, 832 (1981).
oJ. Laufer, National Advisory Committee on Aeronautics Re-

port No. 1053, 1951 (unpublished).


