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Intermittency in a cascade model for three-dimensional turbulence
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We discuss a possible mechanism for intermittency of the energy dissipation in a model for three-
dimensional fully developed turbulence. We compute the structure functions for the velocity field
and show that their behavior can be described in the context of a multifractal approach. We also
compute the instantaneous maximum Lyapunov exponent and the corresponding (stability} eigen-
vector. Violent bursts of energy dissipation are related to a sudden increase of the instantaneous
Lyapunov exponent, and simultaneous localization of its eigenvector on the high wave numbers at
the end of the inertial range. In particular, we relate the correction to the k ' Kolmogorov law
for the energy spectrum to the fractal dimension extracted by temporal sequences both of the in-
stantaneous Lyapunov exponent and of the eigenvector.

I. INTRODUCTION

The small-scale statistics of three-dimensional fully
developed turbulence is one of the fundamental problems
in Quid mechanics. The phenomenological theory of Kol-
mogorov' gives a qualitatively correct description of the
main mechanism acting in incompressible fluids at high
Reynolds number Re. According to Richardson's
scenario, in turbulent Aows there is a cascade transfer of
energy toward small scales where the dissipation is due to
molecular friction. The cascade is hierarchical in the
sense that a disturbance on a certain scale receives its en-
ergy from a larger-scale disturbance and transfer it to
smaller-scale disturbances. At the end of the cascade, the
smallest disturbances are characterized by very large ve-
locity gradients because the direct conversion of kinetic
energy into heat is strongly localized.

The presence of a range of length scales where inertial
forces are dominant and where viscous effects as well as
the external forcing can be neglected suggests the ex-
istence of (universal) scaling laws.

Assuming that the rate of nonlinear transfer of energy
is constant both in space and in the steps of the energy
cascade, one obtains the classical Kolmogorov results. In
fact, dimensional analysis shows that the Navier-Stokes
equations have singular velocity gradients in the limit of
infinite Reynolds number, i.e., the velocity difference
5u(l)—= ~u(x+1) —u(x)~-1" with a singularity h =

—,'. It
follows that, in the inertial range, the velocity structure
functions scale as

(5u (1)~) ~1 ~, with gg =Q/3

where ( ) is a spatial average. Nevertheless there are
many experimental and numerical evidences ' ' that
strong Auctuations of the energy transfer and dissipation
are present, leading to the existence of a whole spectrum
of possible singularities. In particular, the exponents g&
are different from their classical value Q/3 and appear to
be nonlinear in Q. Indeed, the intermittency of the ener-

gy dissipation is a very important feature of turbulence,

even if its theoretical understanding is still at the first
steps. For instance, some fractal phenomenological ap-
proaches have been proposed in the last years. ' We be-
lieve that a first goal is the connection between the
correction to the Kolmogorov scaling with the dynamical
properties of the time evolution generated by the Navier-
Stokes equations.

For this reason, it is useful to analyze particular mod-
els of the energy cascade process, instead of the complete
Navier-Stokes equations, using an approach to the inter-
mittency problem firstly proposed by Obukhov,
Gledzer, Siggia, ' and developed by Grappin et al. "
We thus hope to reproduce the main characteristics of
the small-scale statistics of turbulence by a chaotic
dynamical system with a limited number of degrees of
freedom.

We consider a model for the energy cascade extensively
studied by Yamada and Ohkitani. ' ' The Fourier space
is divided in N shells. Each shell k„(n =1,2, . . . , N)
consists of the wave numbers k such that
Eo2" & k ~XO2"+'. The Fourier transform of the veloci-
ty difference over a length scale =k„' is given by a cor-
responding complex variable u„. The energy is
E =g„~u„~ /2 and its power spectrum is
E ( k„)= ~ u„~ /(2k„). The Navier-Stokes equations are
thus approximated by a dynamical system with 2X
differential equations. Let us remark that severe limita-
tions of this type of scalar models stems from considering
only the modulus of the wave number. Indeed, one loses
all the effects due to the geometrical structures of tur-
bulent eddies by neglecting phases. Moreover, for nu-
merical simplicity, one only considers the interactions of
a shell with its first and second nearest neighbors. This is
a sensible approximation of the nonlinear terms of the
Navier-Stokes equations, if one assumes that the energy
cascade is local in the k space, with exponential decreas-
ing interactions between shells. '

The linear terms of the equations are given by the
viscous damping —vk„u„, where v is the kinematic
viscosity. The nonlinear terms responsible for the for-
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ward energy transfer are just quadratic in the velocity
fields with coefBcients proportional to the wave number
of the shell. In the unforced inviscid limit, the energy as
well as the volumes in phase space are conserved. These
conservation laws also hold for the Euler equations and
are a fundamental requirement of any realistic model. In
fact, it seems to us rather difficult to find an improved in-
termediate approximation between this type of scalar
models and direct simulations of the Navier-Stokes equa-
tions.

In Sec. II, we recall the main features of the scalar
model and compute its structure functions. We find that
there are intermittency corrections to the predictions of
the Kolmogorov theory which can be interpreted in the
framework of the multifractal approach. Indeed, the
scaling exponents g& are not linear in Q and seem to be
quite close to the values obtained in experiments.

In Sec. III we characterize the temporal intermittency
of the system. We calculate the time sequence of the en-
ergy dissipation. Using the Taylor hypothesis, we then
show that it concentrates on a fractal structure. Its di-
rnension estimated by the Grassberger-Procaccia algo-
rithrn is found to be equal to the value estimated by the
structure functions.

We also study the temporal behavior of the instantane-
ous maximum Lyapunov exponent and of the corre-
sponding stability eigenvector. Our numerical results
provide clear evidence that the burst of the energy dissi-
pation are due to a sharp increase of the instantaneous
maximum Lyapunov exponent and a simultaneous locali-
zation of its eigenvector in the dissipative shells consist-
ing of the wave numbers at the end of the inertial range.

En Sec. IV one finds concluding remarks.

II. STRUCTURE FUNCTIONS
OF THE SCALAR MODEL

The equations of the cascade model with N shells can
be written as'

+vk„u„=i( a„u„*+,u„*+2+b„u„*,u„"+,
dt

+e„u„',u„* z )+fo„4 (2.1)

where u„(u„)denotes the real (imaginary) part of u„.
The coefficients of the nonlinear terms of (2.1) follow

from demanding energy and phase-space conservation in
the inviscid case without forcing (v=f =0):

a„=k„, b„= Cn

where v is the viscosity, f is a forcing (here on the fourth
mode). In the following, we shall use the notation

du~ du—F2„1(u), =F2„(u)

chaotic and confined on a strange attractor in the 2N-
dimensional phase space, with an information dimension
proportional to the number of degrees of freedom. '

The energy spectrum is observed to scale as k, in an
inertial range of wave numbers with an exponent
a= 1+$2 not depending on N, v, or the particular type of
forcing, but not exactly equal to the value —', expected by
applying dimensional arguments which neglect the role of
intermittency.

By a numerical integration of Eqs. (2.1) with N =27
and 19 shells, we have computed the structure functions
(1) for positive integer moments up to Q =12. In the fol-
lowing, the averages ( ) obtained in the context of our
model are time averages. Figure 1 shows the scaling of
1n( ~u„~~) with ink„(the slope is —g&), which is clearly
different from the Kolmogorov result ( ~u„~~) ~k„~
Moreover, in Fig. 2 one sees that the exponents g& are
not linear in Q. In particular the correction to the Kol-
mogorov law a= —,

' for the energy spectrum is very close
to the experimental value, since we find
(2=a —1=0.70+0.01. We want to mention that Ohki-
tani and Yamada' have recently computed the variance
of the energy Aux. Its scaling exponent is found to be
p=0. 3, which is slightly different from our result for
p =$6

—2=0.21+0.05.
It is also interesting that our data for Q ~ 1 can be

fitted by a simple random P model:

g&=Q j3—1n2[1 —x+x( —,')' ~~ ], x =0.12 (2.3)

By dimensional counting, one sees s(l)=l 5u (I)/1 so
that the relation between dimensions and structure func-
tion exponents is

where only two possible kinds of fragmentation are as-
sumed in the cascade process: a disturbance generates ei-
ther vorticity sheets (with probability x) or space filling
disturbances, as in the Kolmogorov theory (with proba-
bility 1 —x). Let us recall that the experimental data of
Anselmet et al. can be fitted with a very similar value,
i.e., x =0.125.

The intermittency of the energy dissipation exhibited
by the model is therefore consistent with the multifractal
approach. ' It is an open question to understand whether
the exact values of g& (at least for not too large Q) do not
depend on the details of the nonlinear interactions of the
equations, and there exists a form of universality in the
energy cascade, stronger than generally believed.

Let us recall that, in dynamical systems, ' one usually
defines the generalized Renyi dimension D . In tur-
bulence, ' they are related to the probability measure of a
ball A of radius l centered in a given Quid point x,
e(l) =Izd x s*(x), given by the density of energy dissi-

pation e*(x). In the inertial range the moments scale as

(2.4)

b1 bN ~1 ~2 aN —1 N

(2.2)
g3g+2Q —3

Dg= (2.5)
Notice that the unstable fixed point of Eqs. (2.1) when
v=f =0 is given by the Kolmogorov scaling u„~k„'

The time evolution of the dissipative system (2.1) is
Do is the fractal dimension of the set where the energy
dissipation concentrates. We numerically find that
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limy Ogg =0 i.e. Dp =3, in agreement with some exper-
iments' and some recent numerical integrations of the
Navier-Stokes equation with a 128 grid. ' This result,
however, is not in contradiction with the fractal nature of
turbulence. Indeed the multifractal approach considers a
hierarchy of singularities h and related fractal sets S(h)
of fiuid points x, such that !u(x+1)—u(x)! —l". The
fractal dimensions D(h) of these sets are related to the
exponents g& by the Legendre transformation '
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If there are fiuid regions (with fractal dimension 3) where
the velocity gradients are not singular, that is

! u(x+ I ) —u(x)! —l, (2.7)

(2.6) implies that g&
=Q for Q small enough. On the con-

trary, a nonzero fractal codimension (i.e., (0%0) is ob-
tained assuming !u(x+1)—u(x)! =0 in the nonactive
"laminar" regions instead of (2.7).

Nevertheless, the relevant dimensionality is the fractal
dimension of the probability measure (information di-
mension) D, rather than the dimension of its support.
D, is given by the derivative of g& around Q =3. In fact,
it can be shown' that the most probable behavior of the
velocity gradients is given by the singularity
h = (D, —2) /3. This means that the probability of
finding a singularity h&h vanishes when Re~ ~. We
have estimated 3 —D, =0.08+0.02, which can be com-
pared with the value 3 —D& =0.13 obtained by diA'erent

experiments ' in real turbulence.
FIG. 1. Scaling of the structure functions. ln(!u„!~)vs inK„

for (a) Q =1 and {b) Q = 12 from a numerical integration of Eqs.
(2.1) with N =27. We average over 10 steps where each step is
10 ' time unit. The solid lines with slopes respectively —

—,
' and

—4 indicate the Kolmogorov scaling laws. The dashed lines
have slopes —0.39 and —3.18.

III. SPATIAL AND TEMPORAL INTERMITTENCY

In this section we want to link the multifractal correc-
tions discussed in the previous section with the behavior
of the instantaneous maximum Lyapunov exponent and
of its eigenvector.

Indeed, it has been conjectured' that the scaling laws
of the model could be related to the features of the
characteristic Lyapunov exponents' X, A, 2

- k»
and the corresponding (Lyapunov) eigenvectors
f ] fp . . fp~, They are defined by considering a linear
variational equation of the form

Zi =2, z. , i j=1, . . . , 2%
dt

(3.1)

00 lO

FI&. 2. The structure function exponents g&, plotted vs Q for
positive integer Q up to Q = 12. The squares are obtained by an
integration of Eqs. (2.1} with %=27 shells, the circles with
N =19. The errors are smaller than the size of the symbols for
Q &10 and for Q & 10 are given by the bar close to the last
point. The solid line is the Kolmogorov result (&=Q/3; the
dashed line is the random P model fit (2.3) with x =0.12.

for the time evolution of an infinitesimal increment
z =5U, where 3„=BF„/8 U is the Jacobian matrix of
Eqs. (2.1), and U=(u", , u, , . . . , uz, u~). The solutio~
for the tangent vector z can thus be formally written as

z(tz)=M(t&, t2)z(t&), with M =exp( f,'A (r)dr). The

orthonormal Lyapunov basis is then given by the 2N
eigenvectors f; of the matrix M M in the limit t~ ~,
and depends on the starting point Uo in the phase space.
It is also possible to introduce a stability basis e; given

by the eigenvectors of the matrix M. Note that a generic
tangent vector z(t) is projected by the evolution along e&

[i.e., z(t)=c exp(A, &t)e&] a part of corrections
O(exp( —

!A, ,
—A2! t ).
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Yamada and Ohkitani' have computed the time aver-
ages of the Lyapunov basis. In fact, ( ~f, (k„)~ ) gives a
measure of the localization of the instability related to
the ith Lyapunov exponent on the k„shell in the wave-
number space, defining ~f;(k„)~ =~f, (2n —l)~
+ f (2n)~ .

In particular, there is a strong correspondence between
Lyapunov eigenvectors of the last negative Lyapunov ex-
ponents and dissipative modes following the end of the
inertial scaling range. This result is somewhat expected
since the viscous damping is responsible for the strongest
contraction rates, so that A,2; =A,2; &

~ —vk; for i'=N.
More interesting, a large part of the Lyapunov ex-

ponents is found to be very close to zero. Their eigenvec-
tors are concentrated, although in a less sharp way, in the
inertial wave numbers. This weak correspondence indi-
cates that power scaling laws are probably connected to a
very large number of small (or zero) Lyapunov exponents
in turbulence. Ruelle ' has obtained a similar theoretical
result for the (discrete) spectrum of the operator which
linearizes the Navier-Stokes equations, in our model the
Jacobian matrix A of Eqs. (3.1). He has shown that the
number of operator eigenvalues y; with average close to
zero diverges in the "unifractal" /3 model but only if the
intermittency is strong enough, i.e., if Do 2.6. This re-
sult is not in disagreement with the fact that in our model
D& =2.9, while there is a finite fraction of Lyapunov ex-
ponents close to zero. Indeed, the only relation between
Lyapunov exponents and average eigen values is the
bound:

y ~, ~y (),).
i=1 i=1

(3.2)

The weak correspondence suggests that power laws ap-
pearing in the small-scale statistics of turbulent Rows
could be connected to a situation of "weak" chaos. It is
interesting to remark that a large number of zero
Lyapunov exponents is also present in chaotic Hamiltoni-
an systems near integrability, where there are slow re-
laxation phenomena with characteristic times unrelated
to the maximum Lyapunov exponent.

Now, in turbulence there is also a large positive max-
imum Lyapunov exponent, which must be proportional
to the inverse of the smallest characteristic time of the
system, the Kolmogorov turnover time, using dimension-
al arguments. In light of the previous discussion, it is
natural to expect that it gives origin to the intermittent
corrections to the power laws connected with the almost
zero Lyapunov exponents. As there is a correspondence
between smallest Lyapunov exponents and dissipative
small length scales, zero Lyapunov exponents and inertial
range, one could imagine that there is again a rough
correspondence between A,

&
and the large length scales.

However, this is not true in the cascade model where the
average of the first eigenvector f&, as well as of e„ is not
concentrated on the small wave numbers, but spreads in
the whole inertial range. ' Our intermittent corrections
to the Kolmogorov scaling laws cannot be simply related
to the instability of the large scales (energy containing ed-
dies) but must be related to a more complex mechanism

involving the energy transfer in the whole inertial range.
To make this idea more precise, we have computed the

response after a time ~ to an infinitesimal perturbation,
defining an instantaneous maximum Lyapunov exponent
as

y,(t) —=—ln
1 z(t+~)

zt (3.3)

and similarly for ED,g and pD, y which are, respectively,
0.38, 0.25, and 0.23. The correlations decay very fast in
time. For instance, Fig. 4(a) shows

( 5ED ( t + r)5p~ ( t) )
C~ ~ (r)=+D t'D (5E 5p )

(3.5)

The correlation between energy dissipation and instan-
taneous Lyapunov exponent, Cc &, as well as the corre-D)X
lation between tangent vector and instantaneous
Lyapunov exponent, CpDy are also fast decaying with
the time delay ~. Nevertheless, there is a strong an-
ticorrelation after a delay of order one time unit, as
shown in Fig. 4(b). This means that a chaoticity burst is
followed by a strong contraction rate (i.e., a negative y).

Note that A, &=limr (1/T) fDdt y(t). We have found
k, =0.169+0.003, for X = 19 and v= 10, in good
agreement with the independent results of Ref. 12. The
value of g is an indication of the global chaoticity of the
system, at a given instant. In order to determine how the
chaoticity is distributed among the wave-number shells,
we estimate the components of the stability eigenvector
e&, defining ~e&(k„)~ =~e&(2n —1)~ +~e&(2n)~ . The
value of p(n)—= ~e&(k„)~ lg. ~e&(k )( can thus be inter-
preted as the fraction of the largest instability localized
over the shell k„. Note that e, is different from f&, but
has a direct geometrical interpretation, and seems to us
more relevant from a physical point of view.

For simplicity we have focused our attention only on
one dissipation wave number (practically a kD close to
the end of the inertial range, for instance k

&& in a numeri-
cal integration with %=19). We have thus computed
three temporal sequences for 10 time units, considering
N =19 shells: the instantaneous Lyapunov exponent y,
the energy dissipation ED estimated by ~ u» ~, and the
chaoticity fraction on the shell kD estimated by
pD—:p(k»), as shown in Fig. 3. They present a very
strong temporal intermittency. The average values are
small compared to the large deviations which appear fre-
quently. It is quite impressive that p (k» ) can arrive up
to 0.7, while its time average is =2. 1 X 10

The peaks of the three sequences are moreover very
correlated. This indicates that instantaneously the chao-
ticity concentrates on dissipative wave numbers, in
correspondence with high values of the energy dissipation
and of the instantaneous Lyapunov exponent. Defining
5y =y —(y ), we have computed the correlation
coe%cients for ED and pD,

(5ED5pD )
((5E' ) (5p' ) )'" ' (3.4)
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FIG. 4. From a temporal sequences of 10 time units for
N =19 shells: (a) The time decay of the correlation C& ~ (~)
between ED and p&. (b) The time decay of the correlation
C& ~(~) between ED and g. Note the strong anticorrelation

after ~=1 time unit.

FIG. 3. Temporal sequences (200 time units) of (a) ED, (b) the
instantaneous Lyapunov exponents y, and (c) PD for N=19.
The sequences show that the energy bursts are in correspon-
dence with large deviations of y and localization of its eigenvec-
tor on the dissipative modes. Note the laminar phase (very
small ED values) during the first 50 time units corresponding to
almost vanishing pD and g.
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This feature is clearly exhibited from the time sequence
of y shown in Fig. 3. In fact, a high value of ED (energy
burst) is followed by a very small value because of the for-
ward energy transfer and dissipation. If Iu„ I

is small for
k„-kD, the dominant terms of the Jacobian matrix A; ~,
ruling the tangent vector evolution (3.1), are given by the
viscous linear part of Eqs. (2.1). The behavior is thus of
laminar type for a short period following the passage of
the energy burst.

In Fig. 5 we show p(n) as a function of n at two
di6'erent instants which belong, respectively, to a laminar
phase (very low values of ED and y=O) and to a chaotic
phase (energy burst plus a large y value). In the first
case, the components of eI spread around the forced
mode and over the whole inertial range in contrast with
the second case where p ( n ) has values significantly
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FIG. 5. Distribution of the global chaoticity among the shells
during a laminar and a chaotic phase. lnp (n) is plotted vs n for
N = 19. the crossed circles (linked by a dotted line) correspond
to a "laminar" instant (ED =4.2X 10, y=0. 12) and the
squares (linked by a dashed line) correspond to a burst
(ED =0.39, y = 1.35 ). Note that the average values are
(ED ) =(2.09+0.02}X10 and A, ,

= (y) =0.169+0.003.
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different from zero only for few shells k„around ka.
As discussed above the intermittency gives rise to

corrections to Kolmogorov theory leading to a concen-
tration of the energy dissipation on a fractal set with di-
mension D, =2.9, which is not space filling. One may
therefore naturally ask: Where is this fractal in the mod-
el? To get an idea, we analyze a time sequence of the ve-
locity difference in one of the modes. As we are interest-
ed in dissipation, we consider a mode kD at the end of the
inertial range, corresponding to the Kolmogorov length
scale. This sequence was discussed above and
Eo =

I u, 5(t) ~

is shown in Fig. 3(a). Clearly, the energy
content of the sequence is concentrated in isolated bursts
and since we are at the dissipation scale, the energy dissi-
pation will also be concentrated in the bursts. Actually,
it seems that the "peak structure" shows self-similar be-
havior. To test this quantitatively, we choose a "gate" ug
and take into account only those bursts whose value of
ED(t) is greater than u (see Fig. 6). At N =19 we have
used a time sequence over 10 time units (the maximum
Lyapunov exponent is A,

&
=0.169) with a recorded value

at each time unit. With ug =10, we get a Cantor-like
set consisting of M =1181points. To estimate its dimen-
sion df, we use the Grassberger-Procaccia algorithm

for the correlation integral by evaluating the number of
pairs of points separated by a distance less than ~, i.e.,

(3.6)

where e is the Heaviside step function and t; are the
times for which

I
u (kD ) I

is larger than u . The squares
in Fig. 7 show a plot of I(w). A good scaling is found
over around three decades indicating a power law
I(r)-r" with an exponent x =0.92+0.02. In principle
one has only the bound x ~ df, but our set is very close to
a homogeneous fractal, with respect to the weight given
by the point density, so that x =df. It is interesting to
remark that a similar behavior is exhibited by the ran-
dom P model which is multifractal with respect to the en-
ergy dissipation but not with respect to the probability
measure given by the number of active eddies. '

The exponent x appears to be independent of the gate,
at least when it is chosen within some reasonable limits.
We have performed similar calculations for the fractal
structure of the bursts in time sequences of pD(t) and of
the instantaneous maximum Lyapunov exponent 7t'„(t). Of
course, the gate is changed now according to the typical
values of the signals. The corresponding curves for the
correlation integrals are also shown in Fig. 7. Again,
reasonable scaling is found, giving an exponent
x =0.94+0.03 for pD and x =0.94+0.03 for y. So the
fractal dimensions of the burst structure are, within er-
rors, equal in the three cases, giving further evidence that
bursts in each of the three quantities are strongly corre-
lated. To relate the fractal structure of the time se-
quences to a fractal structure in space, we invoke the so-
called Taylor hypothesis saying that the statistics ex-
tracted by time measurements is similar to that extracted
by space sampling at fixed time. We thus would say that
the intermittent structures shown in Fig. 3 are equivalent
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FICx. 6. Construction of the fractal set of the energy dissipa-
tion, estimated by ~u, 3I for N =27. When ~u2, I

~2X10, a
vertical bar is drawn under the plot of the time sequence. (a) is
a sequence from t =0 to t =1000, (b) is an enlargement of (a)
from t =740 to t =1000. Note the self-similar appearance of
the set.

FIG. 7. Correlation integral (3.6) for N = 19 shells. Scaling
of lnI(r) vs ln~ for ED (squares), y (circles), and pD (triangles)
for N = 19. The gates are ug = 10 (leading to M = 1181
points), pg=0. 03 (M=912 points), and kg=0. 3 (M=1206
points). The solid line has slope 0.92.
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to an intermittent space structure. To use this hy-
pothesis, one needs a typical velocity Uf in order to relate
a spatial segment L to a time segment ~ by L =Uf~. For
a turbulent Quid in a channel, vf is just the average flow
velocity. On the other hand, for homogeneous tur-
bulence, one can assume that the large-scale structures
(energy containing eddies) have the same effect of a mean
Aow on the small-scale behavior. In this case

(y f

/2)1/2

If we accept the Taylor hypothesis and make the as-
sumption that the two other transverse spatial directions
in the system do not have fractal structure, we obtain a
dimension for the dissipation set of Df =2+x =2.92.
This value is in perfect agreement with the value estimat-
ed by the structure functions in Sec. II, i e.,
Dt =2+3dg/dg~& 3=2.92+0 02,. and is an a posteriori
justification of the validity of the Taylor hypothesis in
our model. Indeed, we expect df =D, —2, because our
fractal set contains by construction only the points where
the energy dissipation is concentrated (i.e., ED ug). In
order to study the rnultifractal behavior exhibited by the
structure functions, one should consider the scaling of
the weight given by the value of ED on each point of the
fractal obtained by the time series. This would be a test
of the Taylor hypothesis in a stronger form, i.e., a test of
its validity not only for the typical events but also for the
statistics of the large fluctuations of the energy dissipa-
tion. Because of the gate and of the absence of a weight
on the points, we have taken into account only the most
probable behavior connected with the information dimen-
sion D, of a probability measure. '

The numerical integrations of (2.1) and (3.1) described
in Secs. II and III have been performed using two
different methods: fourth-order Runge-Kutta and
Burlirsch-Stoer, with 16 digits precision. We have con-
sidered % =19 shells with v=10, f =(1+i)X5X10
Ko =2, and X =27 shells with v= 10
f =(1+i)XSX10,K&=0.05. These parameter values
are the same ones used in Ref. 12.

IV. CONCLUSIONS

We have proposed a mechanism describing the inter-
mittency of the energy dissipation in a cascade model for
three-dimensional fully developed turbulence. Our nu-
merical calculations show that the structure functions for
the velocity field have an anomalous scaling which can be
interpreted in the context of the multifractal formalism.

We have provided strong evidence that this result is
connected to the temporal intermittency of the chaotic
evolution exhibited by the dissipative dynamical system
(2.1). In fact, the instantaneous maximum Lyapunov ex-
ponent has very large fiuctuations. Its peak appear in
correspondence to a sudden localization of its eigenvector
e, on the dissipative modes at the end of the inertial
range, and to violent bursts of energy dissipation, as well.
The three temporal sequences (energy dissipation ED,
component of e& on a dissipative wave number pD, instan-
taneous Lyapunov exponent y) allow us to introduce a
fractal set in space, via the Taylor hypothesis. Its dimen-
sionality is in agreement with the dimensionality of the
energy dissipation extracted by the structure functions.

We have discussed the severe limitations of the scalar
cascade model as compared to real Navier-Stokes equa-
tions. Nevertheless extended numerical integrations of
the two-dimensional Navier-Stokes equations indicate
that some features of the model are generic phenomena of
fully developed turbulence. For this case, when, at a
given instant, the vorticity gradients assume very large
values in small zones of the Quid, the eigenvector corre-
sponding to the maximum Lyapunov exponent has been
found to be concentrated in those same zones.

Our results can thus be useful for a deeper comprehen-
sion of the fractal nature of turbulence using dynamical
systems with a limited number of degrees of freedom.
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