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We consider the problem of transport of a passive tracer in the time-dependent Aow correspond-
ing to a Rayleigh number A slightly above the %, at the onset of the even oscillatory instability for
Rayleigh-Benard convection rolls. By modeling the Aow with a stream function, we show how to
construct and identify invariant structures in the How that act as a "template" for the motion of
Auid particles, in the absence of molecular diffusivity. This approach and symmetry considerations
allow us to write explicit formulas that describe the tracer transport for finite times. In the limit of
small amplitude of the oscillation, i.e., when (A —%', )' is small, we show that the amount of Auid
.transported across a roll boundary grows linearly with the amplitude, in agreement with the experi-
mental and numerical findings of Solomon and Gollub [Phys. Rev. A 38, 6280 119881]. The presence
of molecular diffusivity introduces a (long) time scale into the problem. We discuss the applicability
of the theory in this situation, by introducing a simple rule for determining when the effects of
diffusivity are negligible, and perform numerical simulations of the Aow in this case to provide an
example.

I. INTRODUCTION

In many Auid Aows, knowledge of the velocity field
cannot be regarded as the solution. In physical applica-
tions, one is often interested in how quantities like mass
or heat are transported in the flow. With good approxi-
mation, these quantities can often be described as moving
with the Auid, i.e., their transport is essentially governed
by convective processes. Therefore an understanding of
the motion of Auid particles becomes of fundamental im-
portance. Unfortunately, this would imply going one ex-
tra step in integrating the Navier-Stokes equations, the
well-known difficulties usually involved with the first step
of finding the velocity field notwithstanding. In fact, it is
well known that even when the velocity field is explicitly
determined and has a very simple form, the individual
Auid elements can have an extremely rich and complicat-
ed dynamics. '

The present study is meant to be an example in the
direction of gaining a better understanding of the Auid-
particle motion. However, we try not to limit ourselves
to the level of qualitative description, such as merely
proving that the motion of a class of Auid particles can be
chaotic. We strive throughout this study to compute
quantities of direct physical interest. Our motivation
comes from the recent series of experimental investiga-
tions carried out on transport in the context of the
Rayleigh-Benard convection. By exhibiting a wide
variety of behaviors, ranging from stationary to traveling
waves to fully turbulent Aow, this system seems to offer
an ideal trial ground of increasing (and controllable) com-
plexity for experimental observation and theoretical test-
ing. The wealth of information in the literature about
this problem indeed seems to show this. However, for
the particular problem of mass transport in this system
very little has been done from the theoretical point of

view, ' and what has been done is mainly limited to
stationary Aows. In this case the Auid-particle trajec-
tories coincide with the streamlines and an Eulerian ap-
proach is possible. In particular, this approach shows
that if the Aow is cellular, advection can only be responsi-
ble for the intracellular transport of a tracer, while
molecular diffusivity is the only agent governing trans-
port across the cellular boundaries. ' This fact is
reAected in the large time asymptotics of the tracer con-
centration, which is basically given by a diffusion equa-
tion with an enhanced diffusion coefficient.

The experimental work of Solomon and Gollub
focuses on the transition from stationary to time-
dependent Aow, while still remaining in the cellular re-
gime" where the streamlines are closed and hence no net
mass transport is possible. The enhancement on the
spreading of tracer they observe in the experiment is
therefore entirely due to the radically different behavior
exhibited by the particle paths in the time-dependent
case.

To model the Aow after the onset of the time-
dependent instability, we use the stream function intro-
duced by Solomon and Gollub and based on the analysis
of Busse. "' The velocity field generated by this stream
function basically describes two-dimensional convection
rolls. The time dependence would correspond to the col-
lective oscillation of the roll boundaries in the direction
perpendicular to the roll axes, a phenomenon known as
the "even" oscillatory instability. Whenever the velocity
field is obtained from a stream function, the problem can
be cast into the framework of the Hamiltonian formal-
ism, with the Hamiltonian corresponding to the stream
function. The physical space can then be interpreted as
the phase space, and the transition from time-
independent to time-dependent Aow would correspond to
the loss of integrability due to a nonautonomous com-
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ponent in the Hamiltonian.
By providing a precise definition of the time-dependent

equivalent of the rolls, we can identify the mechanism of
inter-roll convective transport and derive formulas for ex-
plicitly computing the transport rates, in the spirit of
Rom-Kedar et al. ' Making use of the symmetries of
the problem, we are able to predict that the lateral
spreading of tracer along the rolls follows a linear law in
time, for as long as the molecular diffusion effects can be
neglected. As a by-product of this derivation, a lower
bound on the rate of stretching of the interface between
clear and dyed Quid can be obtained. In the limit of small
lateral oscillation of the roll boundaries, we use the Mel-
nikov technique to analytically estimate the amount of
Quid exchanged between rolls during each period. This
analysis confirms the findings of Solomon and Gollub of
linear dependence on the strength of the perturbation and
points out the strong (nonlinear) dependence on the ratio
of the frequency of oscillation and the maximum speed of
the fIuid along the roll boundary. Although this ratio can
be considered as independent of the Rayleigh number J7
as a first approximation, " it still exhibits a (possibly very
weak) dependence on the Prandtl number, ' and, in view
of the preceding remark, this may induce an observable
effect.

%'e carry out detailed computations, based on the for-
malism we derive, for three examples, which are good
representatives of the main effects induced by varying the
parameters of the fiow. In the more general context of
transport in Hamiltonian systems, we show that the pro-
posal' of modeling the mechanism of transport of phase
points by a Markov chain is inappropriate, at least for
these types of Rayleigh-Benard Rows.

Finally, we discuss the validity of a pure1y convective
approach in the presence of molecular diffusivity, and in-
troduce a simple criterion for the time scale in which the
effects of diffusivity can be neglected. As an example, we
carry out some numerical simulation of the time-
dependent How with a term representing the Brownian
motion a tracer particle would undergo in the presence of
molecular diffusivity.

The model for the stream function can satisfy both slip
and nonslip conditions at the horizontal plates. Which
type is actually enforced has no effect on the )echnical
implementation of the numerical computations, and the
results from global analysis are largely independent of the
boundary conditions. However, the Melnikov analysis
and the proof of existence of chaotic motion do require
that some technical point be resolved in the presence of
nonslip boundary conditions. We address this case with
some detail in the Appendices.

This work is organized as follows. In Sec. II we intro-
duce the relevant definitions and concentrate on the
analytical results. These include the formulas for com-
puting the transport rates, the time scale of spreading of
a tracer and interface stretching, the Melnikov estimates,
the comparison between the time scales of molecular
diffusivity and convective transport. In Sec. III we work
out the specific examples and provide the comparisons
with the results of the Markov model. We conclude the
section by reporting on the computation simulating

molecular diffusivity. The two Appendices discuss the
use of symmetries in the computation of the tracer con-
tent in a given roll, and derive the Melnikov function for
the case of nonslip boundary conditions.

II. THE MATHEMATICAL MODEL
AND TRANSPORT THEORY

As a model for the Bow after the onset of the time-
dependent instability, we consider the following stream
function: '

1((x,z, t) =Ho(x, z )+eH, (x,z, t )

sin(kx)sin(n. z )+ A ef (t )cos(kx)sin(~z )
k

(2.1)

which yields the velocity field

x = — = — co(svrz )[ ins(k x)+ ekf (t)cos(k x)],a@
Bz k

(2.2)

with x E IR, z E [0,1], and f (t) a function of time we will

specify later. This stream function is actually a Taylor-
series expansion of the one reported in Ref. 2, arrested at
first order in e, but the velocity field retains the same
structure as the one induced by the full stream function,
and furthermore there is no effect on the quantitative re-
sults based on the Melinkov calculations of Sec. IIE,
which are first-order approximations in e. From the La-
grangian point of view, (2.2) describes the motion of
"Quid particles" and hence, in particular, particles of a
passive tracer in the Quid, corresponding to an assigned
initial configuration. Here length measures have been
nondimensionalized with respect to the distance between
the top (z= 1) and bottom (z =0) surfaces, k is the wave
number k =2m/A, , A, being the period of the roll pattern,
and A represents an estimate of the maximum vertical
velocity. The amplitude of the perturbation e is propor-
tional to (A —%, )' with A, being the Rayleigh number
corresponding to the onset of the time-dependent instabil-
ity. "

The unperturbed (E=O) liow given by (2.2) corre-
sponds to single mode, two-dimensional convection with
slip boundary conditions, ' and the perturbation intro-
duced by the term in e describes the (small) oscillation of
the roll boundaries along the x (lateral) direction. Thus
the model refers to a simplified version of the "even" os-
cillatory instability"' by considering the motion of the
roll boundaries as independent of the coordinate along
the roll axes. This is a good approximation near the on-
set of the time-dependent instabi1ity, " and is verified in
practice by the experiment performed by Solomon and
Gollub. On the other hand, the assumption of stress-free
boundary conditions is almost never verified in practice,
but it is certainly of theoretical interest since it allows
closed form calculations (see Sec. II E). Furthermore, the
basic mechanism of Quid transport from roll to roll, in
the time-dependent case, relies on the existence of the
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structures we are going to describe in detail in the follow-
ing sections. These structures are based on the invari-
ance of certain curves [surfaces for the full three-
dimensional (3D) space] under the action of the fiow, and
these exist regardless of the type of boundary conditions,
which have only mild quantitative effects. As fluid parti-
cles cannot cross these invariant curves, they act as a
geometrical "template" through which their motion is
constrained. An understanding, from the global point of
view, of the geometry of these curves is hence going to be
the most important piece of information on which to
build a theory of transport.

The bulk of this section is organized as follows. We
first identify the invariant structures (Sec. II A) we use in
deriving formulas for computing the tracer content of
each roll (Sec. II 8). We derive the results about the time
scale of tracer spreading and the lower bound on the in-
terface stretching in Sec. IIC. We briefly mention in
which sense the orbits of fluid particles can be chaotic in
Sec. IID. In Sec. IIE we use the Melnikov theory to
evaluate the volume of fluid transported at each iteration
across a roll boundary. We then look at the existence of
invariant structures that could actually prevent mixing
inside one roll in Sec. IIF. In these regards, perhaps a
more serious deficiency of the model is the fact that it
does not describe a weak recirculating flow induced by
the vertical boundaries, the existence of which can be
shown experimentally in the time-independent case.
However, as discussed in more detail at the end of Sec.
II F, this 3D effect should only bear consequences for the
transport inside a roll and does not affect the inter-roll
transport mechanism. We conclude (Sec. II G) the sec-
tion with a discussion on how the molecular diffusivity
could affect the results obtained, in anticipation of the
numerical simulations reported in Sec. III.

A. The basic structures governing roll to roll transport

x, z 0 z 1, j 0+1, . . . (2.3)

physically corresponding to the stagnation points in the
fiow, joined by the heteroclinic connections (stagnation
streamlines) corresponding to the roll boundaries.
Switching the perturbation on, this ordered structure is
seemingly lost as the path lines of the fiuid particles can
now intersect themselves and no longer coincide with the
(instantaneous) streamlines.

For periodic time dependency, say f(t ) =cos(cot ), a
well-known and effective way of unveiling the structure
still possessed by the flow is to study the Foincare map of
Eq. (2.2), F: lR X [0, 1 ]~R X [0, 1]:

First, we note that (2.2) and (2.3), as suggested by the
notation used, can be interpreted as a Hamiltonian sys-
tem, with an integrable component Ho and a nonintegr-
able perturbation eH„forma11y equivalent to a two de-
gree of freedom Hamiltonian system. The unperturbed
(time-independent) flow is characterized by the hyperbol-
ic fixed points Ipj.+0] and Ipj o J, respectively along the
top and bottom surfaces

+ = +
pJ O =(xj.O, ZJ ),

x(to) x(to+ T)
'o z(t, )

= z(t, +T)

toE(O, T], T= (2.4)
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FIG. 1. The splitting of the vertical heteroclinic connections
for the Poincare map.

This map corresponds to taking a stroboscopic snapshot
of the fluid, and in mathematical terms is an area and
orientation preserving two-dimensional diffeomorphism.
For the Poincare map, the hyperbolic fixed points present
in the time-independent flow persist with the same stabili-
ty type, i.e., they become periodic points for the time-
dependent flow. We will denote the map fixed points by
p +,(to).—The notation used stresses the fact that their x
coordinate depends on e and on the section to; however,
for the sake of tidiness, we will drop the subscript e and
to dependence from now on, simply referring to p —,(to)
as p

—and restoring the full notation whenever ambigui-
ties can arise.

The heteroclinic orbits along the top and bottom sur-
faces also persist for the map, since the lines z=0 and
z =1 are left invariant by the perturbation H&. However,
the stable and unstable manifolds, which in the unper-
turbed case coincide to form the vertical heteroclinic con-
nections between p+o(to) and p 0(to), break apart under
the action of the perturbation and intersect transversely.
We will denote the perturbed manifolds by W', (p ,(to))—.
and W,"(p —,(to)) for the stable and unstable one, respec-
tively (see Fig. 1 and Sec. II E). Due to the invariance of
the manifolds under the map, a heteroclinic point, i.e., a
point that belongs to both W', (p

—
) and W,"(p.+ ), must

remain on both manifolds under the action of F, and
0

F, (the inverse of F, ), resulting in the wild oscillations,
0 0

or "tangle, " of one manifold about the other when ap-
proaching a fixed point. Intersections are not limited to
manifolds of the same j couple, however, only "hybrid, "
i.e., stable with unstable, manifold crossings are allowed.
We remark that in the following we will only be con-
cerned with a particular class of heteroclinic points, the
principal intersection points (PIP s). The reader is re-
ferred to Refs. 13, 14, and 19 for a definition.

Using pieces of manifold and the PIF's as building
blocks, we can now define the time-dependent analogue
of the roll boundaries. Although a similar construction
can be carried out for any Foincare section, i.e., any
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choice of to in (2.4), the symmetries possessed by the
Poincare map for a particular tQ may suggest a natural
definition. For instance, when to=0 and f(t)=cos(cot) it
is easy to show that the flow given by (2.2) is invariant
under

t —+ —t, x —+x, z~1 —z, (2.5)

and therefore W', (pa+ ) is mapped into W,"(po ) byz~1 —z. An immediate consequence of this symmetry
for this Poincare section is that the manifold will always
have a PIP, say c., along the line z= —,'. The spatial
periodicity of the vector field also implies, for any cross
section tQ, the invariances

t~ —t, x~x+ —,z~z, (2.6)

t~t, x —+x+, z~z, j=+0 +1, . . . .2&J
k

(2.7)

Z=1

r

R; R;1 Rj 2

Z=O
P;)

FIG. 2. The definition of the time-dependent analogue of the
roll regions RJ.

Using (2.6) for the Poincare section to=0, one can see
that for the couple p& to p,+ the vertical heteroclinic
connection breaks up into the same structure as the one
at x =0, the only difference being that the manifold sta-
bility is now reversed.

We therefore define R, as the region bounded by the
heteroclinic orbits connecting p& to pQ and pQ+ to p&+,

the segments So[co,po ], S,[c, ,p, ] and Uo[po, c~],
U, [p,+,c, ] of, respectively, stable, W', (po ), W', (p, ),
and unstable, W,"(po ), W,"(p,+ ), manifolds. Using the
periodicity in x in Eq. (2.7) one can similarly define the
regions R. for all j, thus tessellating the whole strip
EX[0,1] (see Fig. 2). We note that for @=0 these re-
gions go over to the ones representing time-independent
rolls.

In order to see how the map can describe the transport
of fiuid from one (time-dependent) roll to another we
need to introduce one more object, the "turnstile" lobes.
If the segments S[qo, q, ] and U[qo, q, ] of stable and un-
stable manifolds between two PIP's qQ and q &

do not con-
tain another PIP, we refer to the region enclosed by these

segments as a lobe. Under the action of the map F, ,
PIP's are mapped into PIP's. ' Without loss of generali-
ty, we assume that between a PIP qQ and its image under
the map, F, (qo), only one PIP can exist, one being the

0
minimum required for preserving orientation. We will
then have two lobes for each couple qo, F, (qo). In addi-

0

tion, we choose tQ=0, so that we can drop the subscript
to from now on, and F(qo)=c as in Fig. 3, where j=0.
We label the lobe lying in region R, as L

& Q and the lobe
lying in region RQ as LQ &, the meaning of this notation
being clear when one considers that L

& Q is mapped from
R, to RQ under F and vice versa for LQ „seeFig. 3.
Thus the Quid transported across the boundary between
RQ and R, in one period is precisely that contained in
L i Q or LQ, ~ This pair of lobes has come to be known as
a "turnstile" in the literature. ' We note that, because of
the symmetries (2.5) and (2.6) and area preservation, all
of the turnstile lobes will have equal areas. This is a
consequence of the fact that the flow given by (2.2) does
not have a preferred convective direction, or the average
mass transport is zero. Under the action of the map F,
the turnstile lobes are then stretched and folded following
the tangle of the unstable manifold W,"(pj ) with the
stable one, W', (p ). Because of orientation preservation,
the Quid that crosses the boundary between two regions
at some iteration n must be contained in the (n —1)th
preimage of the turnstile lobes. This is the crucial obser-
vation for constructing a theory of transport' based on
the dynamics of the lobes.

B. The spreading of tracer initially contained in one roll

We illustrate how the definitions given in the preceed-
ing section can be used by considering the following
problem. Suppose we have some passive tracer in the
Quid that initially is all contained in one roll, say the one
corresponding to region R ], with uniform concentration
C. Of course, due to the symmetries (2.5)—(2.7), as long as
the tracer is initially uniformly concentrated in one ro11,
we can always label the regions in order to reduce to this
configuration. We would then like to know what is the
average tracer concentration in any region R at any later
time t=n corresponding to the nth cycle. Neglecting
any molecular di8'usivity for the moment, this is
equivalent to asking how much Quid which is initially in
R, is contained in R - at time n. We denote this quantity
by T (n ) and refer to the fluid in R i at t =0 (or n =0) as
the R, species. For definiteness, let us assume that the
lobes forming a turnstile are entirely contained in neigh-
boring regions, which for small enough e and large
enough co can always be shown to be the case (see Sec.
II E). Typically, we find that this is true for co as small as
0.2 (at A =0. 1), and expect it to be true for e up to O(1).
Thus the only way Quid can enter region R is to be con-
tained in Rz, or R +& at the previous cycle. Having
stated the problem, we proceed to construct the formulas
necessary for its solution. We will show that knowledge
of the evolution of one turnstile lobe only is all that is re-
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FIG. 3. The turnstile lobes for region R, .

quired.
From the preceding remarks, it should be clear that the

R, species entering R, , j&l, at iteration n can only be
contained in the intersections of L 1 and L +1 with
the lobes that have left R, , i.e., F L, 0 and F L, 2,
k=1,2. . . , n —1. However, not all of the iterates E L1 0
and F L, 2 will consist purely of R, species. As time in-

creases, iterates of the lobes Lp 1 and L2 1 will transport
Quid coming from Rp and R 2 into region R, , from which
it can eventually escape, the only way it is allowed to do
so being through the lobes L1p and L12 ~ Hence this
Quid has to be subtracted from F L, 0 and F L, 2 in or-
der to get the net content of R, species in these lobes.
Denoting by p(L.'

&
(n ) ) the amount of R

&
species in

lobe L.
1 entering R at cycle n, the above considera-

tions can be summarized into the following formula "

p(L', .(n)}=5Jzp(L~ q)

n —1

+ y y [&(L, „nF"L,, )

k=1 s=0, 2

p(L,—, flF"L, , )] .

(2.8)

Here p(JN)denote, s the area measure of a subset JNCIR, ,

and 5 k is the Kronecker 5. A similar relation for
p(LJ'+, J(n )) can be obtained by replacing the first term
in (2.8) with 5 ~(L, o) and L~, ~. with L +, .

The same arguments apply of course to R1 species
leaving R . at iteration n., so that the variation

TJ ( n ) —TJ ( n —1 ) of R
&

species in region R at cycle n

can be written as

T~(n ) —T~ (n —1)= . g [p(L~', +„~(n)) p(L ',+„(—n )}].
r =0,2

n —1

=5 ~(L, 2}+5~op(L, o)+ g.

k=1 rs=0, 2
lv(LJ I+, &F'Li,.—) v«, i+,,, &—F"L,

, i}]

[p(L) J,+„AF"L,, ) p(LJ J,—+„AF"L,, )]
r, s =0,2

(2.9)

with j&1. This equation can be "integrated" once to
solve for T, (n ),

T, (n)=p(R, )
—g TJ(n) .

(j&1)
(2.11)

From these formulas it can be seen that in order to
evaluate the amount of R1 species in any region R at

T (n)=n[5 ~(L, 2)+5 ~(L, o)]+ g (n —k)a k,
k =1

(2.10)

where a. k stands for the terms in large parentheses in
(2.9), and use has been made of the initial condition
T (0)=0. The content of R& species in R& is best ob-
tained by using the mass conservation property,

time t=n, only the dynamics of the four lobes of the
turnstiles for region R, is needed. In view of the symme-
try property (2.6), this number can immediately be re-
duced to two lobes of just one turnstile. By careful exam-
inations of the symmetries possessed by the Poincare map
for the cross section t0 =0 and the ones corresponding to
the sections tp = T/4 and tp = T/2 one can show that the
computation of (2.10) can be carried out by following the
dynamics of just one lobe. The details of how this is done
are reported in Appendix A.

Before concluding this section, a few remarks are in or-
der. Firstly, the formulas derived above refer to the pure-
ly convective case. The presence of molecular diffusivity
adds an extra mechanism for the transport of tracer par-
ticles across the lobe boundaries and hence the
equivalence between average concentration of tracer and
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1,D

Rp

Fq

FIG. 5. Intersection of F Lj o=FLl 0 with FLO 1
~ At the

next iteration, I+ 1 =2, the "tip" (shaded region) of FL
& o

enters region R ~.

goes to zero. An example illustrating the previous con-
siderations is offered by the case a=0. 1, co=0.6, and
A =0.1. For this choice of parameters we have m =3,
the unstable segment of F L

& p has a four-point intersec-
tion with the boundary of L p &, and m '= m =3, with an
eight-point intersection at the boundaries for
F ™L

& p A Lp &. Therefore the lower and upper
bound for the first visit time in (2.13) coincide and the
tracer pollutes a new cell every three periods.

We remark here that these results only depend on the
signatures m and m' and are valid for nonslip boundary
conditions as well. Of course, the type of boundary con-
ditions can have some inhuence on the actual value of
these signatures for a given set of parameters e, cu, and
A, however, once m and m' are fixed the pace of roll in-
vasion by the tracer is set and does not "feel" the bound-
ary any more. Furthermore, when the lobe area is large
enough, i.e., the volume of Quid transported across the
roll boundary is large, m and m' are small and it is easy
to see that the boundary conditions are not going to have

an inAuence in this case, since the turnstile intersection
can happen before the images of the turnstile lobe have
entered the boundary layer. In fact, since one typical
length scale for the turnstile lobe is fixed by the upper
bound of half the distance between the top and bottom
boundaries, a large area of the lobe would necessarily
mean that the distance between the lobe segments of
stable and unstable manifolds is large. Hence, since the
map is area preserving, it will take fewer iterations for
the lobe to stretch across the roll width, i.e., m and m'
will be small.

The upper and lower bounds (2.13) also show that the
"natural" time scale for the lateral spreading of the
tracer is linear in t, at least initially, i.e., within the time
scale of applicability of our theory (see Sec. II G). This is
somewhat difFerent from the time-independent case,
where the number of invaded cells grows initially liket', t' for slip and nonslip boundary conditions, re-
spectively. However, it should be noticed that our result
is deterministic, whereas these estimates rely on the ex-
istence of molecular diffusivity and hence are only valid
in a statistical sense.

We will now use the signatures m and m for estimat-
ing a lower bound on the stretching of a turnstile lobe,
which in turn will provide one for the unstable manifold.
The region F + +'L,

p AL
& 2 is stretched and fold-

ed by the next application of the map (see Fig. 7 for the
example m = 1 and m ' =2) and hence, at the next
turnstile encounter, F + Li p AL 2 3 will consist
of at least four disjoint strips. Each of these strips will be
trapped in exactly the same way as F + L, p A L
and, due to symmetry, will undergo a similar evolution.
It is then possible to provide a lower bound for the
stretching of lobes, or more physically of the interface be-
tween dyed and clear fluid. This bound is not sharp as it
only takes into account the fate of particular segments of
the unstable manifold, but it is rigorous and does provide
an exponential estimate for the rate of stretching of the
lobes. In a region LU z bounded by a segment U of and a
segment S between two intersection points of an unstable
and a stable manfiold, respectively, we will define the dis-
tance of a point p AALU& from S as

l (Lv s) = inf inf l(c ),
qES c

(2.14)

R2 R1

where c~ q
is any continuous curve t LUz connecting P

and l(c ) is its length, see Fig. 8. Thus, l(Lvs) is the
distance of the point p from S within the region LUz.
Furthermore, we will define the length of region LU z by

l(Lv, s)=sup 1 (Lv, s) ~

pEU
(2.15)

F LO1

FIG. 6. The tip F +
L& o=F L& o completely "pushes"

through L». The points q& and q, are preceding p&, q3 and

q4 are following p2 according to the arc length measure of
w,"(p+, ).

and denote by pl the point on U at which the sup is
U, S

achieved. As time n increases, if F"LUz gets stretched
and thinner, this distance will approach the measure of
half the length of the unstable segment.

Having introduced the necessary definitions, we now
provide the estimate of the turnstile lobe length. Let us
consider the region, Lf say, bounded by the unstable seg-
ment of F L& p and the stable segment of Lp &

between



43 CHAOT Ic ADVECTION IN A RAYL IG'H-QENARDD FI-OW

1,P

e t

the first twtw intersectiontwo points of i

[ o d to th l th f 8'"
n the case of Fi s) ol1L i

.~po ~l, i.e.
g

the

] ~ o ~ ~ ) F L0, —1 O JFL ~

distance s in

f F L ig. 9.
shorthand notation for

, . . . , m'. Now, consider the fate

f Fm+1LL ne iteration f hL, 0 under o

~,o~L
o

terna.

h
h''l' "ll'

g

h fF +L
the di

& 0 can safel
er ound for

o e twi

g
e en, ing on with simi-

e action of the m 'th '
e m t iterate of Eon th "ran " rapped" part of I' I.

& o for the casee m =1, m'=2.

s S

PF

P
LU,s

FIG. 8. Thee definition of
1

tersection o
s a e and

a region b

n points s and r.
e manifold betwe ween two in-

FICx. 9. The oiF . . e points P+I and p 2 o

a e manifold 8 ,(p ) ).



R. CAMASSA AND S. WIGGINS 43

1(Fm'+ m+ lL
Im

(2.16)
P+

4B F4L)p
I

p+

I

l

and since F + +'L, 0AL 1 2 will consist of at least
two strips playing the role of F + 'Ll o ALO l (see
Fig. 7),

Im

B+

FL

/(F2m'+m+ lL ) ) (4+2) y (2.17) Rp

Hence, in genera1,
Im

$(Fnm'+m+1L ) ) (2n+ l+ 1) (2.18)

which shows explicitly the exponential character of the
turnstile lobe and therefore of the interface stretching
with time.

One can of course refine this estimate by further distin-
guishing between the types of turnstile intersections
(whether two or four point), by taking into account the
fate of manifold segments not trapped by the intersection,
etc. The information on the interface stretching can be of
great practical value when, rather than a tracer, one con-
siders the transport of species that can chemically react
with each other, when usually the objective is to maxim-
ize the length of the interface between the species, which
is the "core" of the layer where the reaction takes place. '

P) Pp

B'
I

FIG. 10. The evolution of the rectangular region 8+. The
unstable manifold "drives" the stretching and folding of 8+ un-
til it intersects the lower box 8 . 8 would follow a similar
evolution, thus mapping a part of 8+ back onto itself.

D. Chaotic fluid-particle motion

In this section we briefly examine an issue, the ex-
istence of chaotic particle motion, that has drawn consid-
erable attention in the literature on dynamical systems,
but whose usefulness for fluid dynamics is not completely
clear, since no quantitative information can easily be ex-
tracted from it. In particular, for the theory of transport
outlined above this issue is largely irrelevant.

The splitting of (some) heteroclinic orbits in a hetero-
clinic cycle generally implies that a horseshoe construc-
tion can be carried out, ' and hence a zero-measure set of
initial conditions can be found for which the motion is
chaotic (see, e.g., Wiggins ). Being of measure zero, this
set is of no physical interest in itself. However, it can in-
duce some transient chaoticlike behavior for orbits whose
initial condition falls into a neighborhood of this set, and
hence it can be of interest in case individual trajectories
of fluid particles, or very small dyed regions, were to be
followed. Furthermore, one can heuristically expect that
the presence of horseshoes in the flow would enhance
mixing, although it is not clear how to quantify this.

Various constructions of a horseshoe are possible in
our case, but two in particular are interesting, since they
are responsible for two diferent types of chaotic motion,
i.e., an inter-roll "transport" horseshoe, which leads to
orbits that can move all over the array of rolls, and an
"internal" one, with chaotic orbits confined inside one
roll. Accordingly, the transport horseshoe can be expect-
ed to enhance inter-roll mixing whereas the internal one
would have an influence on the mixing inside the roll
only. We show the two constructions in Figs. 10 and 11
and Figs. 12 and 13, respectively. Both can be obtained

B

B

FIG. 11. Schematic diagram showing the geometry of the
mapping of the two rectangular regions 8+ and 8 onto each
other.

FL

L&,o

FIG. 12. The evolution of the rectangular region 8 for the
internal horseshoe. The unstable manifold "drives" the stretch-
ing and folding of 8 until it intersects itself.
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F38 can be shown that (see Appendix B)

M(r) +0
f/DHO(x( —r), z( —r) }//

(2.19)

Here D is the (x,z) gradient,
~~ ~~

is the usual norm in R,
and M(r) is the Melnikov function,

M(r)= I {H,(x(t),z(t)), H, (x(t),z(t), t+r)Idt,
(2.20)

FIG. 13. Schematic diagram showing the geometry of the

mapping of the rectangular region B only itself.

by considering the action of the unstable manifolds on a
rectangular region that contains an unstable segment,
keeping in mind that the manifolds are invariant so that
the boundary of the rectangle is forced to follow the evo-
lution of the unstable segment.

Finally, the number of iterations necessary to have a
complete horseshoe can be expressed in terms of the sig-
natures I and m' introduced above, since the dynamics
of the unstable manifold intersecting the turnstile lobe is
(partially) determined by these numbers. For instance,
for the transport horseshoe of Fig. 10, the image I' L] 0
would cut through the lower box 8 as a horizontal strip
for I+1~n ~m', where m=2, n=4 for the particular
case depicted in the figure. As indicated in the figure, the
lobe I.

& 0 would then "drag" the upper box 8+ along to
intersect B in a horizontal strip. We notice at this
point that this construction does not by itself constitute a
proof of existence of an invariant set on which the dy-
namics is chaotic. The proper estimates for the rates of
stretching of Quid elements have to be established, and
for the case of nonslip boundary conditions the proof be-
comes quite technical. We plan to report about this in a
separate paper.

E. The Melnikov method and analytical estimates
of the lobe areas

So far, no explicit use has been made of the fact that e
is small, and the previous results hold with only mild re-
quirements on the size of e, in order to have each of the
turnstile lobes entirely contained in one single region. If
we assume @~0 however, then it is possible to compute
the first-order term of the Taylor-series expansion in e of
the distance between W', (p

+—
) and W,"(pj ), along the

direction normal to the unperturbed (heteroclinic) orbit,
without solving (2.2). Denoting this distance (with sign)
by d (r, e), where r H R parametrizes the vertical hetero-
clinic orbit, i.e., (x( —r),z( —r)) E Wo(pj

—
) fl Wo(pj+ ), it

h {,I denoting the Poisson bracket. A glance at (2.19)
suggests that at the zeros Ir, ] of M(r), the manifolds get
very close, O(e ). In fact, an application of the implicit
function theorem shows that if M changes sign there, i.e.,

M(r;) =0 and (dM/c}r)(r, )%0, then W', (pj
+—

) and
W,"(p+) intersect transversely in an F neighborhood of
(x (

—r; ),z( r, )).—T.hus the approximate location of
PIP's can be computed along the unperturbed heteroclin-
ic orbit. Once an estimate for the distance between the
manifolds and the location of PIP s is obtained, it is easy
to derive an expression for the lobe areas' ' valid to or-
der e:

p(L)=e I M(t)dt +O(e ),
7 I

(2.21)

(2.22)

the integral for the Melnikov function (2.20) can be eval-
uated in closed form by the method of residues:

M(r) = A co sin(car) J sech(~At )cos(cot )dt

63=co sin(cur)sech
2A

(2.23)

This shows explicitly that M has two simple zeros per
period, i.e., only one extra PIP between a PIP and its im-

age, and that the manifolds intersect at a point e close to
x =0, z =

—,'. The lobe area is readily evaluated to be

p(L 0)=2esech +O(e ) .1,0 2A
(2.24)

We notice that it increases monotonically as ~&0,
and it does not depend on the wavelength A, of the con-
vection rolls. This immediately implies that the Aux of
tracer across a roll boundary is independent of A, , in
agreement with the findings of Solomon and Gollub.

where ~, and ~2 are two consecutive zeros of the Melni-
kov function and L stands for any of the turnstile lobes.

We now proceed in calculating the Melnikov function
for our problem. When the Poincare section is chosen as
in Sec. II A, the symmetry properties (2.5) and (2.6) as-
sure that the Melnikov function is independent of the
particular heteroclinic connection Wo(p+—) U Wo(pj+ ), so

that we may take j=0 in the following. Substituting H0
and H& in (2.20} with their expressions (2.2), and noting
that the heteroclinic orbit from p0 to p0 is simply

1x(t —r)=0, z(t —r)= —ra sci ns{e eh[a. A(t —r)]I,
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Furthermore, the linear dependence in e signifies that the
flux scales linearly with the strength of the oscillation,
another fact well observed experimentally.

We also provide a comparison, in Table I, between the
area measures predicted by the estimate (2.24) and the
ones obtained numerically, for various values of co. We
note that the agreement is quite good, and hence one can
predict analytically the amount of Quid that can be ex-
changed between the rolls in one period of oscillation, ac-
cording to the model, for a wide range of parameter
values.

The information in (2.24) would be enough for deter-
mining the value of the enhanced diffusion coe%cient D*
introduced by Solomon and Gollub, according to the
Fickian law

@( ),( )
BC(x, t)

(2.25)

V{z)=cos( qoz )
—a i cosh(q iz }cos(q2z )

+a~sin"(qiz)sin(q2z (2.26)

where qo, q &, etc. , are positive constants whose value can
be determined numerically, and z =z —

—,'. With this func-
tion, it seems that the trajectory along the unperturbed
separatrix can no longer be found in closed form, and we
have to evaluate the Melnikov integral numerically.

TABLE I. Comparison between the lobe area p(L& 0) es-
timated by Melnikov function and numerically, with A =0.1.

e=O. 1

Melnikov Numerical
@=0.01

Melnikov Numerical

0.6
0.4
0.24

0.019 865
0.053 160
0.11045

0.019 858
0.052 916
0.11035

0.001 986
0.005 316
0.011 045

0.001 986
0.005 315
0.011043

where C&(x, t) is the flux of tracer past a roll boundary at
x at time t and BC(x, t )IBx is the difference, between two
adjacent rolls, of the roll-averaged concentration C(x, t ).
The quantity C(x, t ) is a coarse-grained concentration
profile along the array of rolls, and is obtained from the
local concentration, say 8(x,z, t), by integrating over a
roll region. ' In Ref. 2, D* is evaluated from the varia-
tion in the average concentration between a roll initially
containing all the dye and the adjacent one, during one
period of oscillation, i.e., the volume of fIuid correspond-
ing to L, 0 in our notation. Unfortunately, we cannot
provide a direct comparison with the data provided in
Ref. 2, as the authors do not report the values of the pa-
rameters co and A at which they were collected. Due to
the way they appear in the Melnikov function, these pa-
rameters can be even more important than the strength
of the perturbation, although, as remarked in Sec. I, the
ratio ~/A cannot be considered as a free parameter and
can only be varied by changing the type of Quid.

The foregoing discussion has focused exclusively on the
case of slip boundary conditions. It is also of interest at
this point to observe the effects of nonslip boundary con-
ditions on the lobe areas. In this case we have to replace
sin(mz ) in (2.2) with the function's

However, after some manipulations, (2.2) can be written
as

1

M(r) =23 co sin(d'or) I dz cos[cot(z )]
1/2

where t(z) is the function

(2.27)

r(z)= I dz'
in V(z')

(2.28)

Since the function V(z) vanishes at z=0, 1 together with
its derivative, the motion towards the stagnation point
along the stable manifold is no longer exponential, but
algebraic, like t '. From this and (2.22) and (2.27), by
looking at the zeros of the integrand, it can be argued
that in the limit of small cu the lobe area for nonslip
boundary conditions is always smaller than the corre-
sponding case with stress-free boundary. The opposite
situation would occur for large ~, as shown by Fig. 14.

We note that the algebraic, rather than exponential,
convergence to the fixed point introduced by the nonslip
boundary conditions can cause some additional term to
arise in the expression (2.19) for the distance between the
manifolds by means of the Melnikov function. As this
is the situation likely to occur generically in a fluid
mechanical context, we discuss this point in greater detail
in Appendix B, where we show that (2.19) is the correct
expression in the case of nonslip boundary conditions as
well.

I'. The structures and transport within a roll

R —= U UF(L iUL i ).
I& =0

J

Clearly, in two dimensions this region cannot include the
interior of any invariant closed curve contained in an R,
and for e not too large it is well known that such curves
will be provided by Kolmogorov-Arnold-Moser (KAM)
tori and island bands. Being impenetrable by the unsta-
ble manifold, and hence by the lobe images, these struc-
tures would effectively constitute a barrier to transport
via lobes and prevent mixing inside a roll.

In analogy with the time-independent case, transport
across the largest KAM torus would be possible by
molecular diffusivity only, and the region encircled, from

The theory outlined in the preceding sections leads to a
scenario which is completely different from the time-
independent case. In fact, the quid particles for station-
ary convection rolls follow the streamlines, and these are
closed in this case, so that transport would only be possi-
ble, and still essentially governed, by molecular
diffusivity. It is then natural to ask whether this behav-
ior of Quid particles in the time-independent case is com-
pletely wiped out as a result of the time-dependent per-
turbation, or remnants of the stationary How are left in
some part of the roll region. In the following, we show
that, for e not too large, the second alternative is correct.

In the absence of molecular diffusivity, the only Quid
particles that participate in the transport from roll to roll
are the ones contained in the lobes and their images. We
thus can define a (noncompact) transport region by just
taking the union of the lobes, and their images,
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Fl~ ]4 The lobe area p(i. ) for co&(0, 1] using the slip (solid) and nonslip (dashed) boundary conditions, with e=o. 1 and

3 =0.1.

now on referred to as the "core," will in general consti-
tute the largest part of a roll not subject to lobe transport.
From the above remarks, it is clear that as a~0 the core
tends to occupy the whole region R . The m elliptic fixed
points associated with an m /n resonance will in general
be surrounded by their own KAM tori, thereby contrib-
uting m extra forbidden regions, or island chains, when-
ever these lie outside the core. We notice that in general
the measure of the portion of phase space occupied by an
m-island chain decreases exponentially with m, as we
show below for our particular case. Furthermore, the
stable and unstable manifolds associated with the m hy-
perbolic fixed points between the islands would regulate
the transport of Quid from one side of the island chain to
the other by a mechanism completely analogous to the
one described above for the main (inter-roll) manifolds. '

However, we note that this mechanism is in general
much less e6'ective than the one from roll to roll, as the
areas of turnstiles associated with island chains are in
general many orders of magnitude smaller than the main
ones. We also note that a similar role in regulating the
transport of Quid in the inner region would be played by
the Cantori, i.e., quasiperiodic orbits that do not fill a
torus, but rather a torus with gaps on a Cantor set. '

Once again, in the limit of small t, it is possible to pro-

T(a.)= K(ir) .
mA

(2.30)

Here E(tr) is the complete elliptic integral of first kind, Ir

being the elliptic modulus, ~=0 corresponds to the roll
center, while ~~1—for orbits close to the heteroclinic
cycle, thus explicitly showing how their period tends to
infinity approaching the cycle. We note that the period is
monotonic in ~, and hence for a given frequency of the
time periodic perturbation the resonant orbit would be
unique. Suppose ~ identifies the orbit whose period
satisfies the resonant condition T(~)/T=mjn, i.e., Ir is
the solution of

A
IC(~) =

2con
(2.31)

Then, in analogy with Sec. IIE, the simple zeros of the
subharmonic Melnikov function

vide some analytical estimates for the size and location of
islands and KAM tori for the Poincare map induced by
(2.2), by means of averaging techniques. Denoting by
T(a) the period of revolution of a fiuid particle along a
(closed) streamline for the unperturbed fiow, where
jr& [0, 1) parametrizes the family of streamlines, it can be
shown that

(2.32)

would correspond to periodic points for the Poincare map located within an O(e) neighborhood of (x( —w), z( —r)) on
the unperturbed v orbit. It can be shown in general that these points occur in even number with alternating, hyperbolic
and elliptic, stability type.

Although the method of averaging cannot resolve the fine details of the tangle of manifolds associated with the hy-
perbolic points, as these would appear to be connected by heteroclinic orbits in the averaged Aow, it nonetheless pro-
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vides an upper bound estimate of the area of the "core region" around the elliptic points, just as p(R ) does for the
main core. Denoting the measure of the area enclosed by the "averaged" heteroclinic cycle with p(I ), one can show
that the coeScient of the leading order term in an expansion in e depends on M

p(I )=O(e' [maxM /"(r)]' )+O(e) .

The function M " can be explicitly computed for the vector field (2.2),

(2.33)

2' sech
K((1—i7 )' )co

sin(cur) for n~ 1
Mm /n( )

0 for n =1, m even, (2.34)

X —E (I7)
8K

[maxM /'(r ) ]

+O(e), (2.35)

with a'=(I —~ )', thus showing that as m increases,
i.e., ~~1 and the resonant orbits approach the hetero-
clinic cycle, the size of the islands decreases exponentially
as the coefficient of the 0 ( e' ) term goes to zero. We
note that in this limit the subharmonic Melnikov func-
tion reduces to (2.23) (apart from a factor 2 which takes
into account the contribution from both the heteroclinic
connections pertaining to each region R ). Table II pro-
vides a comparison between the estimate (2.35) and a nu-
merical evaluation of the area of an island, based on the
largest identifiable KAM torus, for the 3:1 resonance
band, for various values of e, co=0.6 fixed. The poor
agreement when a=0. 1 can easily be explained by the ob-
servation that, for an e this large, the splitting of the
heteroclinic connection in the averaged system is relative-
ly large and a considerable portion of the island would
actually appear as chaotic.

The geometry of the islands and KAM tori can be
clearly seen in Fig. 15(a). For this co, the period is about
half the minimum period T(0) in (2.30) and the 3:1 reso-
nance band seems to be the only relevant structure be-
sides the core region, the next (5:1) band being too close
to the manifold tangles and hence unobservable, as the el-
liptic periodic points are stripped of almost all their

TABLE II. Comparison between the island area p(I3) es-
timated by averaging and numerically for decreasing e, co=0.6,
with A =0.1.

showing that only the m:1 resonances with m odd have a
nonzero O(e' ) leading order term, and would hence be
the most important island contribution to the forbidden
region inside a roll. Furthermore, the estimate (2.33) is in
this case

16&2
3/2 5/2k 1/2 g 1/2

—1

closed orbits and the manifolds of the hyperbolic points
intersect the ones from the inter-roll homoclinic tangle
and are forced to follow their dynamics. To further pur-
sue this point, we reduce e to 0.01 and the result is shown
in Fig. 16. The 3:1 resonance is now surrounded by
KAM tori and the 5:1 is clearly visible outside a core that
has enlarged as much as to occupy almost the whole roll.
By reducing co one can bring the 1:1 resonance into play,
as in Fig. 15(b); where co=0.24 and @=0.1. It can be
seen that the transport region now deeply penetrates into
the center of the roll, so that this situation should favor a
quicker homogenization of the tracer concentration.

As a final remark, we note that the relevance of the
inner structures described above (or their equivalent for
more refined 2D models) would depend on the degree to
which the two-dimensional idealization of the Aow is real-
ized in practice. Even for the time-independent case, for
instance, the experiment shows that the tracer appears
to invade unpolluted rolls by diffusing inward from the
boundary and outward from the center, because of a
weak boundary induced 3D Aow that convects tracer
directly onto the region corresponding to the roll axis.
However, this 3D component is orthogonal to the motion
of the roll boundaries and therefore is not expected to
significantly affect the inter-roll transport mechanism. A
qualitative comparison between the visual observations of
the interface between rolls in the time-dependent experi-
ment performed by Solomon and Gollub, and the lobe
structures for the model suggests that this is indeed the
case.

G. The relative time scales of chaotic advection
and molecular diffusion

The transport theory outlined in the preceding sections
refers to the purely convective case, but of course in any
realistic situation the tracer will always have some, albeit
small, molecular diffusivity. The applicability of the
theory as it stands would then be limited to the time
scales where the effects of diffusion are negligible. We re-
mark here that in the presence of molecular diffusivity,
the spreading of a passive tracer would be governed by an
advection-diffusion equation,

10
10
10

Averaging

0.1397
0.043 86
0.013 97

co=0.6
Numerical

0.033 956
0.043 86
0.01400

r)B(x,z, t) + Bg BB Bg BB
Bt Bx Bz Bz Bx

B2B(, , r ) O'B(, , t ) (2.36)



43 CHAOTIC ADVECTION IN A RAYLEIGH-BENARD FLOW 787

where v is the diffusion coefficient and e(x,z, t) is the
tracer concentration. Setting v=O, the resulting equa-
tion can then be "solved" by the method of characteris-
tics, which is of course the approach we have been fol-
lowing so far, since the equations for the characteristics
would be (2.2). However, mathematically the limit v —&0

is singular, since in this way the terms containing the

higher-order derivatives in (2.36) cancel and the structure
of the partial di6'erential equation would be completely
altered. Thus we cannot expect to uniformly approxi-
mate the solution of (2.36) with the one for v=O for all
times, no matter how small v is, a situation akin to the
well-known (and much more complicated) case of the
Euler and Navier-Stokes equations.

(a)

K
r; „

LI

I I !~ ii IPII

ii7 'g

FIG. 15. The distribution of escaping times for the Quid particles in a roll from n = 1 (red) to n = 100 (blue). For the black areas
n = 0O. (a) a=0. 1, co=0.6, and A =0.1. (b) e=0. 1, m=0. 24, and A =0.1.
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One way of providing a criterion of applicability for
the purely convective limit naturally suggests itself. In
fact, the time scale for tracer to diffuse across a distance
of the order of the turnstile width should be long com-
pared to the time it would take a lobe to be mapped
across the boundary of a region, i.e., one period. Thus
denoting this time scale by Td we have

[d(e)]d— (2.37)
.r';

.EI ~

where d(e) is the maximum on ~&[0,T] of the distance
function defined in (2.19), and we require

Td))T . (2.38)

For the cases considered. in Sec. ' 'III, taking
v =5.0 X 10 cm /sec which coi're'sponds to the
diffusivity for the methylene blue tracer. ,:used in the ex--.
periment by Solomon and Gollub, one would have the
following estimates for Td.

Tz- 2T for c—v=0. 6, e=0.01,
'I

,.I

I

d=0. 56= Td-—300T. for ~E=0.24, @=0.1-.

(2.40)

(2.41)

E

The transport theory of Sec. II 8 can ther'efore be expe'ct™
ed to perform well only in the first and third cases, at

d =0.123 -=- Td —-2000=.200T for ~=0;6, e='0.'1,
(2.39)

least within the typical total number of iterations (total
time) to which the computations of Sec. III are carried
out, which is about 20 periods. We will come back to this
point in Sec. III 8, where results from numerically simu-
lating the tracer transport in the presence of diffusivity
are reported.

The relative importance of lobe versus diffusive trans-
port can immediately be conveyed by introducing a non-
dimensional number by taking the ratio of the two time
scales T-: and Td,

[d(e)] {ceo/Asech(co/I23 )cosh(vr A /2')) 1

Tv T V

(2.42)
'I

so that the applicability criterion of the purely convective
theory. can simply be summarized by the requirement
thaIt, ,this number be large.

I-II. NUMERICAL SIMULATIONS
FOR THREE "CANONICAL" CASES

In this section we report the results of computations
based on the lobe dynamics described in the preceding
section, for three sets of, ,parameter values, (i)
@=0.1; 4)=0.6, (ii) @=0.1, co=0.24, . and (iii)
Ie=, . 0.01, co=0.6, with A =,0. 1, A, =~ in all cases. These
choices are within the exper'imental values reported in
Solomon and Gollub and are motivated by the fact that
the'y e6'ectively illustrate'. the consequences of varying the
two crucial parameters'. in the model, e and co ( 2 can al-
ways be scaled away and included in co through t~ At

' 0.9

I

e.

0.7

' 0.5

: 0.1

I'
Q. 1

.I

'0.5

\

I '.'". '- ' .
'

I
'

0'.7:, : . '- ":-''-' P.9
P

: l

: 1;5
X

1.7

FIG. 16. The 5:1 and 3:1 resonance bands for co=0.6, a=0.01, and A =0.1.
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and waco/A ). Specifically, keeping e fixed and decreas-
ing co, i.e. , going from case (i) to (ii), not only can lead to
a dramatic change in the roll inner structure, as the cen-
tral elliptic point undergoes a bifurcation, but also has
the effect of increasing (nonlinearly) the lobe area [see
(2.24) and Table I] and of changing the signatures m and
rn

' for the turnstile intersections (from I=m ' = 3 to
m =m ' = 1 ). Keeping co fixed and decreasing e, on the
other hand, i.e., going from case (i) to (iii), has compara-
tively milder consequences, as the lobe area decreases
linearly in e and the locations of PIP's on the tangle of
W", (pj

—
) and W,"(p~ ) remain (almost) the same [see

(2.23)]. Accordingly, the core region becomes larger with
higher-order resonance bands becoming visible, and the
signatures m and m ' change slightly, from m =m '= 3 to
m =m '=4 in this case.

As shown in Sec. IIB, the transport rates can be ob-
tained once the intersection measures of images of just
one turnstile lobe of R

&
with those of each region R are

known. In all of the cases considered above, we choose
to operate on I,

& o, covering it with a grid of points and
iterating it numerically, the areas of intersection being
then given by the number of points falling in each of the
turnstile lobes. The use of the lobe dynamics enables us
to drastically reduce the amount of computation time
with respect to simply covering the whole region of in-
terest, in our case R „with a mesh of the same size. For
instance, with the typical grid size adopted in case (i),
1.0X10 equivalent to 19850 grid points in I., o, in-
tegration of (2.2), using a vectorized fourth-order Runge-
Kutta code on a Cray X-MP 48 machine, results in about
55 min of CPU time for 22 periods (with 10 for the in-
tegration time step). Even when invariant regions are
identified and therefore taken away from the domain of
computation, this CPU time has to be multiplied by a
factor of about 50 for the direct approach with the same
grid size (the number of initial conditions would be about
9.2X10 ), which brings it to the limits of feasibility of
the current computational power. The lobe dynamics ap-
proach is even more advantageous when the lobe areas
and hence the transport rates are small, as in case (iii).
To achieve an accuracy comparable with the one of case
(i), we had to use a grid step of 2. 5X10 resulting in
31760 points. Although the core region is greatly in-
creased, in these units the area outside the largest
identifiable KAM torus would still amount to more than
4.0X 10 points or a factor of 150 for the CPU time.

In order to check for the accuracy of the computation,
we have tested the numerical results pertaining to cases
(i) and (ii) versus the symmetry properties (2.5) and (2.6)
and described in more detail in Appendix A. We typical-
ly find errors in the most significant digit for some of the
lobe intersections after 20 iterations. Reducing the in-
tegrator step size or even changing the integration
scheme altogether, by using an adaptive step size
predictor-corrector method, has almost no inAuence, the
error being confined to at most a difference of one point
in the counting for some of the intersections, which
would amount to less than 0.5%%uo in the intersection area,
after 18 and up to 22 iterations. We present results from
these computations in Sec. III A, where they will be com-

pared to the predictions offered by a simple model recent-
ly proposed by several authors. ' We conclude the sec-
tion with the results of introducing a term representing
molecular diffusivity in the equations of motion (2.2).

A. Roll concentration of tracer and comparison
with a Markov chain model

As we have seen in Sec. II, the lobe area measures the
amount of Auid exchanged in one period of oscillation be-
tween two neighboring rolls. This behavior is analogous
to the transport of particles through Cantori as described
by MacKay et al. , ' and indeed the term turnstile was
first introduced by them. These authors also propose to
model the transport of species among regions connected
by turnstiles as a Markov chain, in which the states
represent the average concentration of species in each re-
gion, and the transition probabilities are proportional to
the area of the turnstile lobes.

Specifically, in our context, let us denote by R. the
portion of roll R which participates in the transport, i.e.,
according to Sec. IIF, the region outside the largest
KAM torus and island bands, and let rT be its measure.
The subscript j is redundant for the measure, since by the
symmetries (2.5) and (2.6) the transport region will have
the same size for each R roll. If one assumes that the
Quid transported across a roll boundary quickly homo-
genizes over the transport region of the invaded roll, in
fact instantaneously if one looks at the discrete time n

denoting the number of oscillation cycles (or the iterate
of the Poincare map), the change of R

&
species in the jth

roll at time n can be written as

T (n) —T (n —1)=p(L, +, )C +, (n —1)

XC (n —1) (3.1)

where C (n) is the concentration (uniform by assump-
tion) of R, species in the jth roll at time n, i.e.,
CJ.(n)=T/(n)/rT. Thus the change in T, can be dis-
tinguished into the increment due to the amount of tracer
coming from the neighboring rolls j—1, j+1, i.e., (R~+,
concentration) X (volume of Quid transported in R . ),
and the decrement due the tracer transported from R to
R +&. Since the lobe areas are the same for any turnstile,
we can simplify (3.1) as

T, (n) T(n —1)=a[T—+,(n —1)+T~ , (n
—1)].

—2aT (n —1) (3.2)

where a:p(L& 0)/rT can be rega—rded as the probability
for a fIuid particle of being transported across a roll
boundary. Although very simple, the model relies heavi-
ly on the knowledge of the transition probability. As we
have seen, the area of the lobe can actually be determined
analytically with great accuracy, but there is apparently
no way of improving the analytical estimate for rT
beyond the one of a mere upper bound.
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A more fundamental problem for the applicability of
the Markov model is the fact that the Quid just transport-
ed across a roll boundary does not homogenize rapidly
once inside e roll region, and indeed the results of Sec.
IIC illustrate how one can derive some "long time"
consequences from the knowledge of a few initial features
of the manifold tangles (and lobe dynamics). This prob-
lem is not directly related to the size of the turnstile
lobes, as we will see for case (iii), i.e., co=0.6, @=0.01,
which reduces the lobe measure by one order of magni-
tude with respect to case (i) i.e., co=0.6, e=O. 1.

In order to compare the results of the lobe dynamics
with the Markov chain model (3.2), we have computed
the size of the transport region directly, by covering a re-
gion R with a grid of step size 5X10 and removing
the areas inside the clearly identifiable KAM tori to
reduce the total number of points of the grid. Counting
the points left inside the region after 100 iterations of the
Poincare map leads to Table III for the estimate of rT in
the three cases under consideration, and correspondingly
we also exhibit the transition probabilities a. Keeping
track of the number of iterations required by each grid
point to escape the roll region and defining a color code
for representing this number, we obtain Figs. 15(a) and
15(b), in which the transport and core regions can clearly
be seen, together with (a part of) the lobe images. The 1:1
island structure visible in Fig. 15(b) greatly enhances rT
with respect to the case co=0.6, almost by a factor 2 as
quantified by the numerical value reported in the table.

According to the considerations in Sec. II B, the initial
condition for T, (n ), the content of R, species in the jth
roll, is rT6, , One can then solve (3.2) for T (n ) at any

TABLE III. The numerical estimates for rT, a, with A =0.1.

m=0. 1 @=0.01

0.6
0.24

0.619
1.135

0.032 09
0.097 23

0.115 0.0173

later time n and compare with the results from lobe dy-
namics. This is done in Figs. 17, 18, and 19, for cases (i),
(ii), and (iii), respectively. For each of these figures, the
solid lines represent the exact computation by lobe dy-
namics, while the dashed lines refer to the predictions
oftered by the model. Each line originating from the t
axis is a plot of the content T~(n ) of R, species in the jth
roll versus time, for j=0, —1, . . . ,

—5, i.e., for the five
rolls R~ next to the "source" roll R i. As can be seen, the
general trend of the model is to overestimate the content
of the region next to the source roll while underestimat-
ing it for the distant regions, i.e., the lateral spreading of
the tracer is not as fast as in the exact calculation (where
it is linear in time, see Sec. III C). Furthermore, the oscil-
lations of T.(n ) in time, exhibited by case (iii) for j=3, 4,
and 5, cannot of course be represented by the model, and
actually the Markov chain description performs worse in
this case of small lobe area, or small transition rates.
This is in contrast to the hope that small lobe areas
would be the optimal situation for the applicability of the
Markov chain approach. '

The model can be slightly improved by taking into ac-
count the correlations introduced by the lobe dynamics,
which are related to the signatures m and I ' discussed in
Sec. IIC. For instance, each time step of the Markov
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for obtaining an estimate of the transport region area can
be larger than the CPU time required by the lobe dynam-
ics approach. Although the grid need not be as refined as
the one covering the lobes for the cases we have con-
sidered we typically have to use about twice the number
of lobe grid points. Furthermore, in order to identify
with some certainty the points belonging to the transport
region, one has to use a large number of iterations (100 in
our case). For case (i), for instance, this results in a factor
of about 5 for the overall CPU time.

B. The effects of molecular diffusivity

z = +g(t),
Bx

(3.3)

From the theory of transport of a passive tracer
presented in the preceding sections, one element is still
missing from the physics of the problem, namely molecu-
lar diffusivity, which, as discussed in Sec. IIG, can be
neglected only on a short time scale. The meaning of
"short" here is made precise in Sec. II G by introducing a
diffusion time scale, based on the Melnikov estimate for
the distance between manifolds. In this section, we want
to explicitly demonstrate the effects of molecular
diffusivity, still keeping the Lagrangian point of view, by
numerically integrating the vector field (2.2), with an ex-
tra term representing the Brownian motion that a tracer
particle would exhibit in the presence of molecular
diffusivity. This motion can be described by a general-
ized Langevin equation,

where P is the stream function (2.2) and 7)(t ) and g(t ) are
random variables with a Gaussian probability distribu-
tion, such that their correlations are

and v is the diffusivity value, chosen to be v= 5.0 X 10
which is close to the experimental value determined by
Solomon and Gollub for the methylene blue tracer.

Choosing an initial configuration corresponding to the
setup described in Sec. II 8, i.e., covering the whole re-
gion R, with a grid of step size 10, we integrate (3.3)
for 21 periods of oscillations, using the parameters of
cases (i) and (iii), i.e., keeping co=0.6 fixed and decreasing
e by one order of magnitude, from a=0. 1 to @=0.01.
This reduces the nondimensional number (2.42) and, ac-
cordingly, the diffusion time scale Td by two orders of
magnitude, and should therefore exhibit the transition,
within 21T, from a transport dominated by chaotic ad-
vection to one dominated by molecular diffusivity.

The results are shown in Figs. 20 and 21, where we plot
the tracer content of each roll R, j=0, . . . , —4 versus
time, for cases (i) and (iii), respectively, the dashed lines
referring to the case with molecular diffusivity, and the
solid to the purely convective case, as in Figs. 17 and 19.
The comparison shows that the lateral spreading of the
tracer, for j (0, is severely reduced in case (iii), while for
(i) there is very little difFerence. The tracer content of
each region R shows the general trend of being higher
than the corresponding case with no molecular diffusivity
for the rolls closer to the "source" roll R &, and lower for
rolls far away. This is especially evident for R„,i.e., the
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g3 (xpyzo ) = (x ( & y t 1 7x11/zp )yz( r y r1 yxoyzo ) ) (A2)

then

g,
' S(xo,zo) =Sg,' (xo,zo) .

'Lo
1
=S 3.ns, g (S+3ns, lo, i)

This in particular holds for t discretized on the set
r = T33, n &Z, that is, for the Poincare map (2.4). In the
following we will always take t&=0 and omit the sub-

script t&.
We begin by noticing that the symmetries (2.6) and

(2.7) enable us to reduce to the images of only one couple
of turnstile lobes, say the one near x=0. In fact, by
refiection about the line z= —,

' and translation of A. /2
along x we have, using (A3),

the one for pp by reAection S, and translation S&&2.

The Poincare section at to
= T/2 can be obtained from

the velocity field (2.2), with cos(o3t+ojtp)= co—so3t in

place of cosset. Thus we will have the same symmetries
as for the section tp=O, and in addition for any orbit
[F"(x,z)j, n HZ, for the Poincare section at
to=0, S„IF"(x,z) } will be an orbit of FT&2, where (x,z)
is any point EEX [0,1]. In particular, this implies that
the rnanifolds can be mapped into each other by S„,e.g.,
W', (po )=S„W',(po }. Figure 22 shows the structure of
the manifold tangles for the Poincare sections at

to =0, T /4, T/2 and identifies the turnstile lobes.
Focusing on the section tp=T/4 first, we first notice

that, following how PIP's are mapped under ET&4 and

X=S g~2S, g'L, 2

FT~4Lp ) =S S Lp (A7)

XS "„,S,'(I.„,flF"I, ,}=I, , , AF"L, ,

Similarly,

XS "„,S,'(L.. . flF'L, , )=L., „AF"L.. .
XS ' S, (L, AF"L, )=L,AF"L
X ns (Lj+l,j AF L2, 1} Lj,j—1 AF Ll, o

and

Xs "„,s,'(I., „AF"I,, )=L., „,AF"L, ,

Xs "„„s,'(I. . .AF"I, , )=L, „,AF"I.. .
Xs "„,s,'(I.. .AF"L, , )=I. .. ,AF"L. . .
XS S, (L,AF"L, )=L , AF"L, .

(A4)

(A5)

(A6)

Using the symmetries mentioned above, and (A3), one
can see that

and so

'Lj j+1=sjj.nS» S, g '(S, S, Lo, 1}

x R R t=Sj~r2Sx'Sz g'(Fr j4Lo, i »

(S ",3 j2S, S, }(FTi4'Lp, A L, +, , )

—k=FTj4Ljj+1AL1o .

Area preservation then implies

p(L, AF"Lu, )=p(L, AF" 'L, ) .

Similarly, for the section at to = T/2, we can write

(A9)

LJ 1AF"+'Lo .
1 =s„(Lj,j AFTj2L1 o), (A10)

from which, due to area preservation of the Poincare
YIlap,

Thus only Lp ] and L& p need to be iterated and their
intersections with the turnstile lobes near
x =j3(,/2, (j—1)A, /2, and (j—2)3(,/2 determined for
evaluating all the terms in (2.9).

We will now take Poincare sections at tp=T/4 and

to= T/2. As remarked in Sec. II, in general each Poin-

care section may have its own symmetries, and, in addi-

tion, symmetries might exist between the phase portraits
of different cross sections. We note that a Poincare. map
with to&0 can be obtained from the velocity field (2.2) by
introducing tp as a phase in the argument of f(t ), i.e. , in

our case cos( o3t +o3t p ).
I.et us denote by A, and fkt the images of a region JR of

phase space under the action of g and g, respec-
tively. It can be seen that, for the to= T/4 section, be-

sides the overall translational symmetries along the x
axis, (2.6) and (2.7), one also has invariance of Eq. (2.2)

[ with f ( t ) = —sin(o3t ) ], with respect to S $, and

t ~ t. Thus the unstab—le manifold W,"(pp ) can be ob-

tained from W;(p p ) by the symmetry z ~ 1 —z and

x ~—x. As usual, using (2.6), the tangle corresponding
to the unperturbed position x =A. /2 can be obtained from

Rj Rj+1

Li+1,]
I 3
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t0- TI4 R1 ) I Rj+~
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FIG. 22. The Poincare sections at to =0, T/4, and T/2.

p(L 1A F"Lo, ).=j2(L, fl F" 'L, 11) . (Al 1)
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Thanks to these relations, two of the four terms in (2.9)
involving images of I.o &

can be eliminated in favor of
terms containing only I.

& o. The remaining two terms in-
volving Lo &

are LJ, J. AF"Lo
&

and LJ J. +~ AF Lo ~.
Using the translational symmetry x~x+A, q, q E.Z and
(2.6), we have, for q = —j,

XS "zS, F +'Lo, =F I. +, (A12)

Similarly, for q = —j+ 1,

S, ",„,„S,(F" 'L, , AI.

. . AFI, ,

The usual area-preservation argument then implies

(A15)

where we have used

Lo~ =S.I i o (A13)

which once again can be obtained by looking at how the
PIP's de6ning the turnstile lobes are mapped by I" and
S, . We can then write

p(L. . .AF L, )=p(L ), , AF L, ) .
(A16)

(A14)

Using the relations (A5)—(A16) one can determine each
term in (2.9) using (forward) images of L, o only. The
summation in (2.9) can be rewritten as

T (n) T(n ——1)=(5Jz+5J o)p(L& o)

n —1

+ g [2p(L. , A F"L, )
—2p(L . A F"L, ) —2p(L . , A F"L, )

/I =1

+2@(L, tlF 'L, )+p(L, AF L, ) —p(L J,AF 'L, )

p(L ~
A—F L~ )+p(L —.+~ —.A F L~,o)+P(L —'+2, — +] A F Ll, o)

p(L . —
, AF"L, ) p(L—, AF" 'L, )+IJ,(L, A F L, )] . (A17)

APPENDIX B

In this appendix we show how the Melnikov approxi-
mation (2.19) and (2.20), for the distance between the
stable and unstable manifolds is also valid in the presence
of non-slip boundary conditions. Under this assumption
any rigid boundary in the Aow will correspond to a curve
of fixed points. This situation can certainly be expected
to occur generically in problems with a fluid mechanical
interpretation, but is almost neglected in the literature on
dynamical systems, and there is a lack of standard termi-
nology for this case.

%'e will refer to the set of points which reach the boun-
daries z =0 and z = 1 asymptotically with forward or
backward iterations of the Poincare map as center stable
manifold and center unstable manifold, respectively.
By definition these curves are invariant under the action
of the Poincare map. The Jacobian of the vector field
(2.2) at the fixed points pj

—
o vanishes identically, and in-

formation on local behavior of invariant manifolds can
no longer be obtained by linearizing the vector field
around the 6xed points. In fact, the convergence to the
fixed points on the boundaries is only algebraic in the
case of nonslip boundary conditions, as opposed to ex-
ponential for the slip (hyperbolic) case. However, in the
unperturbed case the manifolds are explicitly known,

merging into the separatrix between two rolls, and we
will then assume that for small e the perturbed manifolds
exist, going on to examine the question of their mutual
distance.

Referring to orbits lying on W,"(p,—) and W', (pj ) as

qQ, S
, x," '(t, r)

z," '(t, r) (81)

a distance (with sign) between the manifolds at time t =0
can be introduced as

DHo( qo( —~) ) [q", (0,~) —q', (0,r ) ]
IIDHo(qo( —r) ) II

where qo(t —r)=(0,z(t —r)) is the unperturbed orbit on
the heteroclinic given by (2.28), the dot is the usual scalar
product in R, and otherwise the notation of (2.19) is
used. Therefore this distance is the projection of the sep-
aration q,"—q', along the unit vector normal to the un-

perturbed heteroclinic orbit [whose tangent is in the
direction of ( —B,Ho, B„Ho), i.e., the vector field].

If we further assume that the manifolds be
di6'erentiable with respect to the parameter e, we can
look for an approximation to d(r, e) by Taylor expanding
(83),
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DH (q ( —r)) [B,q,"(O,r) —B,q', (0,~)]~,=
d(r, e)=e +O(e ) .

(fDH0(qo( —~) ) /f

(83)

The Melnikov trick would then consist in deriving a linear differential equation for the function at the numerator in
(83), i.e.,

Bq,"'(t, ~)
b "'(t,r) =DHo(qo(t —r) ).

BE
@=0

by restoring the time dependency in qo, q,"'. Since [Bq," '(t, ~)/Be~, 0 satisfies the first variational equation

(84)

dq,"'(t,r)
dt Be

a=0

Bq,"'(t,r)=JD Ho(qo(t —~))
BE

+JDH, (qo(t r),—t), (85)

where J is the matrix

0 1

0

by taking into account that qo solves the unperturbed equation (2.2), we have

b, "'(t,r)= ftrJD Ho(qo(t r))]b,"—'+DHo(qo(t —r)).JDHi(qo(t r), t)= IH—O(qo), Hi(qo, t)I,
where we have used the Poisson bracket defined-in Sec. II E and the fact that the trace is identically zero. Hence,

t)6"'(t, , r) —b "'(0,r) = [Ho(qo), H, (qo, t ) I dt
0

(86)

(87)

(BS)

and the integrand can be recognized as the one appearing in the Melnikov function (2.20). By taking the limits t, —+ ~
and t, ~—~ for the stable and unstable parts, respectively, one can obtain the first term in (83) as

6 "(O,r) —6'(O, r)= f [Ho(qo(t)), H&(qo(t), t+7)Idt+ lim b, "(t~,7)—lim b'(ti, r)
Qo f ~ —oo

1
~ oo

1

provided the limits and the integral exist.
In our case, the question about the integral has already

been resolved, since it can be expressed in the form (2.27).
The integral term is of course the Melnikov function, and
in order to show that the distance is given by (2.19) at
first order in e, the extra terms given by the limits have to
vanish. In the hyperbolic case, this can always be shown
to be true, but, as already remarked, in the case under
consideration the convergence of qo(t ) to the fixed points
is only algebraic. For instance, in the limit of large }t~,

the expression (2.26) for V(z) and the differential equa-
tion satisfied by z

z = A V(z)
show that

with qz, the second ("z") component of q,". Denoting

[dq,"(t,~)/r}E]~, 0 by

yi(t, r)

y2(t, r)

it is easy to see that the first variational equation, evalu-
ated on the heteroclinic orbit, reduces to

yi = —AV'(z(t —r))y, + Af(t)V'(z(t —r)),
(813)

yi = A V'(z(t —r))y2,
where the prime denotes differentiation of the function V
with respect to z. Recalhng that z= A V(z), a solution
for yz is simply

y (t2, )=rcotnXsz(t —r) =const X V(z(t —r)) .

z(t —r) =—1+ (t)

with P constant and Q bounded as t ~—oo .
From

(810)

Similarly, the solution for y &
is

const
y, (t, r)=

V(z(t —r))

(814)

(811)
0

V(.(t —))
and from (84), it can be seen that all one has to check in
order for the second and third terms in (88) to vanish is
[by the symmetry (2.5), we need to analyze one term only,
the unstable one, say]

+ f f(t') V'(z(t' r))—Vz t

X V(z( t ' r) )dt ' . (815)—
Hence the limit (812) reduces to
lim V(z(t —r))y, (t, r)

(816)Bq2, (t, r)
lim V(z(t —r) )

f ~ —oo BE'
=0, (812)

= lim V(z(t —r) ) V'(z(t —r) ) =0,
f —+ oo

since lim, z(t ) =0, and V(0) = V'(0) =0
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