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Exact sine series solution for oscillatory convection in a binary fiuid
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The linear equations governing the onset of convection in a binary fluid subject to the Soret and
Dufour effects are solved exactly for rigid boundary conditions by expanding the velocity and tem-

perature as Fourier sine series. The velocity and temperature distributions are found to be those of
the free-boundary problem, plus small admixtures of higher harmonics. Exact expressions for the
Rayleigh number and oscillation frequency are obtained in terms of infinite series. For the special
case of negligible Dufour effect our results agree with exact numerical calculations. Results for the
general case are compared with previous approximate methods of solution.

I. INTRODUCTION

(D a)(D —a i co)w =R—a —(I+S)g+RSa g,
(D a oico)8= ——w+ —AL(D a)q, —

(la)

(1b)

Binary Auids, i.e., mixtures of two nonreacting pure
components allow observation of a much wider variety of
convective phenomena than pure Auids. The most impor-
tant of these is a transition from equilibrium to oscillato-
ry convection in which the convective motion appears as
standing or traveling waves. Convection in binary mix-
tures is also influenced by the Soret effect, in which a
temperature gradient gives rise to a diffusive mass Aux,
and the converse phenomenon of a concentration gra-
dient producing a heat Aux, known as the Dufour effect. '

Binary fIuids are important experimentally because the
Auid parameters can be varied by altering the composi-
tion of the mixture. Typical mixtures used include
alcohol-water and liquid He- He.

Although the onset of convection is described by linear
equations, it is surprisingly difficult to find exact solutions
for realistic rigid boundary conditions. Solutions have re-
cently been obtained by brute force for the special case of
zero Dufour coefficient by expanding the vertical velocity
as a linear combination of exponentials. However, the
algebra involved is heavy as it includes calculation of the
real and imaginary parts of an SX8 matrix. In practice
this calculation is done numerically. Knobloch and
Moore report that the matrix involved is ill-conditioned,
necessitating use of a double-precision representation. In
this paper we present a technique for solving the oscilla-
tory convection equations with rigid boundary conditions
exactly, avoiding the numerical problems inherent in the
previous approach. An exact treatment of the Dufour
effec is presented. In addition, our method shows that
the velocity and temperature distributions are those of
the free-boundary problem, plus small admixtures of
higher harmonics.

The onset of oscillatory convection in a layer of binary
fiuid confined between two horizontal plates is governed
by the equations

(1+A)L (1+A)L

The upper and lower boundaries are maintained at tem-
peratures To, To+ET and concentrations co+Ac co re-
spectively. Once AT has been chosen, b,c is fixed by the
requirement that the vertical component of diffusive mass
Aux vanishes at the boundaries. In Eq. (1) w is the verti-
cal component of velocity and 0 and g represent depar-
tures from equilibrium of temperature and concentration
respectively, with g= —y —0. Physically Vq is propor-
tional to the diffusive mass fiux. The separation ratio S
measures the relative contribution of concentration and
temperature to density variations, 0. is the Prandtl num-
ber, L the Lewis number, and A the Dufour parameter.
D denotes the operator d/dz. The eigenvalues are the
thermal Rayleigh number R and the oscillation frequency
co. It is assumed that the layer is of infinite horizontal ex-
tent and convection sets in with horizontal wave number
a. All quantities are dimensionless. In particular,
lengths are scaled with the layer thickness so that the
horizontal boundaries are at z=0, 1 and frequencies are
scaled with v/d, where v is the kinematic viscosity.

Solutions are easily found for free-boundary conditions

m=D m=6I=g=0 at z=0, 1

for the eigenfunctions are then proportional to sin(nz ).
However, such boundary conditions are artificial as they
allow fiuid to diffuse through the boundaries. Exact solu-
tions using realistic rigid boundary conditions

m =Du =0=DE=0 at z =0, 1

have proved hard to find. Consequently initial efforts
concentrated on finding approximate solutions for R and
co. The earliest approach was the Galerkin technique of
Hurle and brakeman. The temperature is expanded in
terms of a finite number of orthogonal basis functions
satisfying the boundary condition. Equations (1) are then
solved for u and g in terms of this approximate tempera-
ture distribution. Expoliting orthogonality gives expres-
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sions for R and co. This technique was subsequently
rediscovered by other authors ' and recently extended to
treat a rotating binary mixture. Indeed it is the same
method as was originally applied to pure Auids by Chan-
drasekhar. '

An alternative Galerkin technique, expected to give
lower accuracy, consists of expanding all three variables
as independent series of orthogonal basis functions and
applying orthogonality conditions to all three governing
equations.

A different approach introduced by Gutkowicz-
Krusin, Collins, and Ross resulted in an expression for R
in terms of integrals over the layer of quantities quadratic
in w, 8, i). The approximation 8=sin(mz) was made for
the temperature and w and g were solved for exactly in
terms of hyperbolic and trigonometric functions.

We label this expression a pseudovariational principle;
it is not a true variational principle if co%0, but reduces
to a variational principle in the co~0 limit. Although
Gutkowicz-Krusin, Collins, and Ross calculated the
eigenfunctions w and g corresponding to higher tempera-
ture modes 8=sin(nmz), n ) 1, there is no way they can
be used to improve the accuracy of the lowest-order solu-
tion, using a series of form g„a„sin(nmz) —as their in-
tegral expression is not a true variational principle one is
not at liberty to determine the a s by setting M /Ba; =0.
Thus the method should give good results for separation
ratios near zero but may become less accurate for large
negative S.

II. SINE SERIES SOLUTION

Recent experiments on liquid He-"He mixtures"'
give critical Rayleigh numbers in good agreement with
theoretical values obtained from the pseudovariational
expression provided S is greater than —1.4. As S is de-
creased beyond —1.4 theory and experiment diverge rap-
idly, the theoretical Rayleigh number becoming several
times larger than the experimental value. Therefore it is
clearly desirable to solve Eqs. (1) with rigid boundary
conditions exactly. This system is symmetric about the
layer midpoint so solutions will have a definite parity.
We will restrict attention to even parity solutions because
they give the lowest R value.

The standard Rayleigh-Benard problem is recovered by
neglecting g and setting S=0, A =0, ~=0,

(D a) w =Ra 8—
(D a)8= —w . —

Naively, one might expect to get a solution by expanding
w, t9 as Fourier series

w= g a„sin(nirz), 8= g b„sin(nmz),
n Odd n Odd

satisfying the boundary conditions w =0=0 at z =0, 1.
However, substituting in (4) gives a„=b„=O Vn The er-.
ror in this approach is that it will turn out that a„-n
for large n. Thus the series for D w and higher deriva-
tives diverge.

Jeffreys' got around this difhculty by first eliminating

one of the variables from (4) giving

(D2 a2)38+ Ra28 0

He then expanded D 0 as a Fourier series

(6)

d 0
dz' c, sin nmz

Integrating gives an expression for 0 in the form Fourier
series plus polynomial:

&48=B + (z ——') + (z —-')
4~

cn
6sin n~z

(nm)

(Remember that a solution symmetric about z= —,
' will

produce the lowest Rayleigh number. ) The boundary
conditions (3) translated into conditions on 8 are

8=D 8=(D aD)8=—0 at z=0, 1 . (9)

The first two conditions fix the relative sizes of the con-
stants BD,B2,B~; (6) then determines the coefficients c„
and the third boundary condition gives an expression for
R

n m. (n m. + a)

(n a+a )
—Ra

=0.
/l Odd

(10)

Allowed R values can be found from (10) by iteration.
Extension of Jeffreys's method to more complicated

problems' is straightforward provided all the boundary
conditions except one involve only even derivatives. The
reason is that even derivatives of the Fourier series in (8)
vanish at the boundaries, allowing the B s to be deter-
mined independently of the c„'s.

However, in a binary Quid two boundary conditions in-
volve odd derivatives. Nield' was successful in applying
Jeffreys's technique to stationary convection in a double-
diffusive system but the algebra is very complex, the re-
sult being expressed in the form of a determinant. It is
questionable whether this technique would work in the
presence of the cross coupling induced by the Soret and
Dufour effects; certainly the amount of algebra involved
would be prohibitive. Instead we return to the original
expansion (5) and avoid problems due to higher deriva-
tives diverging by integrating over the layer. Two un-
determined constants appear; one is removed by an ap-
peal to homogeneity while the other is determined from
the exact solution of ( lc).

It will prove convenient to recast Eqs. (1) in the form

(D —a )(D —a iso)w =—R, 8+Rzq,
[( I e)(D a)—oico]8—= —w—+.yg,
(D a vari co/A, )ri= (D— a—)8/A, , —

(1 la)

(11b)

(1 lc)

where R, =Ra (1+S), R2=RSa2, A, =(1+A )L,
e= A /(1+ A ), and @=zoic' In what foll.ows it is un-
derstood that all sums are over odd n Equations .(11) are
multiplied by 2 sin(nnz) and integrated from 0 to 1. In-
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tegr ation by parts if used repeatedly until all the
difFerential operators operate on sin(nvrz) rather than
io, 0, and il. Only then are the series expansions (5) in-
serted, to give

X F)an + ~~0 =R ~bn +R2I,
F2b„=a„—yI,
F3I—4n m.g0 =X b„ /k

where we have introduced the notation

and

Qo 2

X,=g N

n 2m-2X2 X&'Fi

EF3 R2

A,c tanh( —,'c )L'=
4RSa

(21)

(22)

F, =+2+i~,

F2=(1 e)N —+oicp.,
F3=N +cricp jA, ,

(13)

The boundary condition Dw =0 at z =0, 1 applied to (11)
with a„given by (15) gives the required relation for R and

and
II=2I sin(nm. z)gdz,

0

X =n m +a

2 2n m

n Odcl

+2+ ~
+mO F2 —

X =0.

(23)

ceo'=D tpl =o (=D wl =i by symmetry),

go = ii(0) [ =g(1) by symmetry] .

Elimination of I results in

(14)
Writing X3 for the left-hand side of (23) one can quickly
solve for R and ~ using two-dimensional Newton-
Raphson iteration. With initial guesses R0, co0 for R, m:
to first order

4n m.

an
2

1I yX
7)o(R ~F2 l R i ) iu p F2F3 + X3(Rp+ 4R, cop+ b, co)

bz = [gp(R2 yN F, ) —F3—wp' ]

with

(15) ar, (R„~,) ar, (R„~p)
=23(Rp, cpp)+hR +bee

QR Bco

(24)

6=N' F)F2F3 RF4+ PN F& /A

F~=a (1+S)F3+N Sa IA, .
(16)

The problem is homogeneous, so we fix a scale by choos-
ing m0' = —R2. It only remains to calculate g0. Intro-
ducing c =a + cubi co/1, , the even solution of (1 lc) is

00

b„si (nnvrz)+B cosh[c(z —
—,')] . (17)

The constant B is found from the boundary condition
Dq=0 at z =0, 1

1 nmX
A.c sinh( —,'c) „, F3

using (11)and (12). Hence

The partial derivatives can easily be calculated from (23).
Equating real and imaginary parts of (24) to zero fixes h, R
and Ace,' now R0+ hR and co0+ hen are better approxima-
tions to R and co. Iterating gives second-order conver-
gence to the solution of (23). Thus we have obtained an
exact solution for the Rayleigh number at the price of
evaluating three infinite series. The slowest of these to
converge is the first term in (23) which converges like
n . [Remember that N =n vr +a . Note also that
(15) verifies the claim made earlier that a„-n for large
n. ] The convergence can be radically improved, by using
the standard technique of adding and subtracting a series
whose sum is known. ' Using the identity

2 2

„,dd (n vr +a )(n ~ +b )

go=B cosh( —,'c )=, g b„.1 n mcV

A,c tanh —,'c „ i F3
(19)

1
[a tanh( —,

' a ) b tanh( —,
' b ) ]—4(a —b )

and selecting b =a + i'co we have

(25)

Substituting (15) in (19) yields an equation linear in iso,
which when solved gives

X)
IO

2

where

2 2n

nadd & F&

1
[b tanh( —,'b ) —a tanh( —,'a )]

—:K& say . (26)
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7T (F2F3+yX /A, )
n ocic1

TABLE I. Critical Rayleigh number as a function of 3 and S
for o.=0.75, L =0.04.

n ~ (F2F3+yN /A, )

X Fl 2F3 —RF4+yX Fl /1,

n +ElXFl

—0.25
—0.5
—1.0
—1.5

2 162.6
2 629.6
4 472.6

10 900.6

2 163.2
2 630.2
4 473.8

10903.8

2 163.7
2 630.9
4 475.0

10907.1

2 164.1

2 631.5
4 476.3

10910.3

A =0.005 A =0.01 3 =0.015

n aRF4
„,dd (X F,F2F3 RF4+yX F, /A, )K F,2

(27)

Similarly, the second term in X2 can be made to converge
like n "by adding and subtracting

and the convergence is now like n rather than n
1

K2 =—
1 —e

n 77

F2
3

8c(1—e)
[tanh( —'c)+ —'c sech ( —'c) j . (28)

\

14000 ~

10000

Further improvements in convergence stem from apply-
ing the formula

2 2

„,dz (n 7r +e )(n rr +b )(n vr +c )

e tanh( —,'e ) b tanh( —,'b )

4 (b e)(c e—) (e—b)(c b—)—
c tanh( —,'c)

(e ' c')( b ' c—')—
6000 and an associated formula which comes from

differentiating (29) with respect to e.

III. RESULTS

I

—1.2
I

—0.8

100

80

—1.6

FIG. 1. (a) Critical Rayleigh number and (b) oscillation fre-
quency as a function of separation ratio S for
o.=0.75, L =0.04, 2 =0. Solid lines denote the exact solution;
dashed lines, the pseudovariational approximation.

The critical Rayleigh number is found by minimizing
R as a function of wave number a. We first consider the
case where the Dufour effect is neglected. This special
case was solved previously in Refs. 2 —4 using numerical
(although still exact) techniques. Results of the sine
series calculation are plotted in Fig. 1 for negative values
of S. The parameter values selected are typical of liquid
He- He mixtures. Also shown in the figure are the re-

sults of the pseudovariational method. These are in good
agreement with the exact calculation, differing by about
10% at S= —1.6. Since the Dufour effect is small in nor-
mal liquid helium mixtures (A 0.01) its inclusion has
little effect on calculated values for R and co as can be
seen from the data presented in Table I.

Thus discrepancies observed between theory and exper-
iment"' are probably due to differences between the ex-
perimental system and the theoretical model. For exam-
ple, if the bifurcation to convection were backwards,
noise of finite amplitude could trigger a transition to con-
vection at a Rayleigh number smaller than that predicted
by linear theory.

We have also performed a sine series calculation for
the onset of stationary convection. For S values just
belOw zero, R stationary & oscillatory and stationary convec-
tion should be observed. The converse applies at large
negative S. For o.=0.75, I =0.04 the crossover from
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w =Re g a„sin(n~z)exp(idiot) cos(ax) .
n

This can be rewritten

w =
I ~a, ~cos(cot+/, )sin(~z )

+ ~a3 icos(cot+$3)sin(3~z)+ icos(ax ) .

(30)

(31)

stationary to oscillatory convection occurs at
5 = —0.000 87 with a jump in wave number from
a =3. 1491 (stationary) to a =3.0686 (oscillatory). The
oscillatory branch continues to exist until S= —0.000 84,
at which point the frequency vanishes. These results are
consistent with Knobloch and Moore and the revised
calculations of Zielinska and Brand.

The eigenfunctions can be constructed from (5). Rein-
stating the dependence on horizontal coordinate x and
time t gives for a standing wave solution

Rea;. In general ~a& j) ~a3~ ) ~az~ . Therefore it is
clear that when cot+/, is close to a multiple of 2~, the
velocity will appear to be proportional to sin(3~z). This
explains the three cell structure found in the calculations
of Ref. 3 ~

Inclusion of the Dufour effect is illustrated in Fig. 2 us-
ing the parameter values o.= —,', I =0.64, A =0.25 con-
sidered appropriate to binary gas mixtures in Ref. 8. The
jump in wave number at the crossover from oscillatory
(a=2.49) to stationary convection (a=3.50) is now
much greater. Again, the pseudovariational approxima-
tion is in relatively good agreement with the exact results.
Figure 3 demonstrates the effect of varying the Dufour
parameter 3, with the other parameters held fixed. For
small 3, the critical Rayleigh number increases approxi-
mately linearly with A. However at large A, the Ray-
leigh number can actually decrease as 3 increases.

The phase angles p; are determined by tang, ™a,/ Iz CQN&ECTIQN DRIVEN QQ THE DUFQUR FFFFCT

4000'

I ', l

Linz' considered a rather different system in which
there is still a concentration difference Ac between top
and bottom boundaries but the temperature difference
AT is set to zero, in an attempt to enhance concentration
effects relative to thermal effects. The disadvantage of
this setup is that the condition of zero mass Aux through
the boundaries can no longer be satisfied, except for the
trivial case Ac =0. Instead the permeable boundary con-
dition g=0 at z =0, 1 was imposed. In our notation, the
governing equations for this system are

(D —a )(D —a —ice)w =R,a (1+1/S)B+R,a g,

3000 —0.5 —0.3 —0.1

(D a ai co)B=eA——(D a)g, —

(D a cri co IA.—)g =——w IA, + (D a)BIA,— .

(32)

500

20

0.3 —0.1
0.5 2.0

FIG. 2. (a) Critical Rayleigh number and (b) oscillation fre-
quency as a function of separation ratio S for cr = —,L =0.64,
A =0.25. Solid lines denote the exact solution; dashed lines,
the pseudovariational approximation. The dotted line denotes
the threshold for stationary convection.

FIG. 3. The change in critical Rayleigh number relative to
its value at A =0. The curves are labeled with the value of S.
The other parameters were held constant at o. = 3, L =0.64.
The two lowest curves terminate when co=0.
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derive the following expression determining E., and co:

n m (FzF3 eI—iI")

n odd X Fl(F2F3 —eX ) R,—a [(1+1/S )E1V +F2 /A ]

=0, (34)

-1.0 —06 -0.2

b)

where F2 =N +o.i m and the other symbols are as
defined previously. Linz made the further approximation
of replacing the boundary condition Dm =0 by the free-
boundary condition D w=O. Results from his expres-
sions are compared with the exact solution (34) in Fig. 4.
Good agreement for the Rayleigh number is achieved
only if it is scaled by its value at S=0, i.e., 657. 5L, for the
approximate solution and 17081. for the exact solution.
Note that following Ref. 16 we work at fixed Q

—= A /S
rather than Axed A.

V. CONCLUSION

—1.0 -0.6 -0.2

where R, is the solutal Rayleigh number, together with
boundary conditions

w =Du =O=q=O at z=0, 1 . (33)

Using the techniques of Sec. II, it is straightforward to

FICx. 4. (a) Reduced critical Rayleigh number P and (b) oscil-
lation frequency for Dufour driven convection with o.= 1,
L =0.5, and Q = 10. R is obtained by dividing R by its value at
S=0: R =R /1708 for the exact solution (labeled E);
P =R /657. 5 for the approximate solution (labeled A).

The sine series expansion provides a simple means of
obtaining an exact solution for the onset of convection in
a binary Auid subject to the Soret and Dufour effects.
The form of the velocity and temperature eigenfunctions
can easily be visualized. In liquids the Dufour effect is
small and causes only a small increase in the critical Ray-
leigh number. The size of this increase is approximately
proportional to the Dufour coefficient A. In gases, the
Dufour effect again increases the critical Rayleigh num-
ber, but the magnitude of the increase is no longer a
monotonic function of A, if A is sufficiently large. The
extension of the sine series expansion to treat other sys-
tems, e.g., rotating binary mixture should be straightfor-
ward.
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