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Nonequilibrium gas flow in the transition regime: A molecular-dynamics study
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The microscopic dynamics of nonequilibrium gas Aows in the transition regime (Knudsen number
—1) is studied using novel molecular-dynamic (MD} simulations. The Knudsen number depen-
dence of the shear viscosity, temperature jump, slip length, and the entropy production is investigat-
ed. It is shown that the assumption of local equilibrium breaks down in supersonic fIows. A good
agreement of the MD simulation results with available experiments and other theoretical studies is
found.

I. INTRODUCTION

Experiments conducted by Somoluchowski' and Knud-
sen at the turn of the century revealed that a class of
nonequilibrium Aow and heat transfer problems, in which
the mean free path of gas particles is comparable with the
geometric dimension of the Aow system, cannot be de-
scribed by continuum hydrodynamics. These Aows,
characterized by the Knudsen number (K„)-1,exhibit a
velocity and temperature slip, and are encountered in
diverse fields such as high-altitude aerodynamics, isotope
separation techniques, aerosol dynamics, vacuum-pump
operation, energy transfer in molecular collisions, and the
attainment of millikelvin temperatures by Aow cooling.
Despite numerous studies, the microscopic and macro-
scopic description of the transition regime Aow phenome-
na remains an intriguing problem, requiring the extension
of the methods of the kinetic theory of dilute gas and
nonequilibrium thermodynamics.

The search for a corn;::lete theory of transition regime
gas Aows has progressed along three different paths. The
first approach, advanced by Grad, concerns itself with a
new method for solving the Boltzmann equation. In his
13-moment method solution of the Boltzmann equation,
Grad argues that the nonequilibrium transport phenome-
na of gas Aows in the transition regime can be described
by a set of generalized hydrodynamic equations, where
the well-known Navier-Stokes and Fourier laws are re-
placed by a new set of constitutive equations incorporat-
ing the nonlocal heat and stress relaxation phenomena in
addition to the dissipative effects arising from spatial
nonuniformities of field quantities. The full potential of
the neoclassical hydrodynamics embedded in the 13-
moment method has, however, not been realized, firstly
because of the lack of appropriate boundary conditions
needed to solve the heat and stress evolution equations,
and secondly due to the recognition that unlike the
Navier-Stokes equations, these new transport equations
do not admit solutions for all Aow parameters. For ex-
ample, in the particular case of a one-dimensional shock

wave in a monoatomic gas, although the Navier-Stokes
equations would admit a solution for all values of Mach
number, the hydrodynamic theory based on Grad's equa-
tions would break down at a critical Mach number of
—1.65. Recently, in the framework of extended irreversi-
ble thermodynamics, Grad's theory has been generalized
to the nonlinear domain. This theory predicts that in
the transition regime the transport coefFicients depend on
the heat Aux and shear stress which can give rise to sharp
boundary layer at the wall. A second approach to the
transition regime Aow is due to Dorfmann and van
Beijeren and is based on the extended Boltzmann equa-
tion wherein the collision dynamics of gas-surface in-
teraction is explicitly incorporated. In a somewhat
different third approach, Wood has applied the mean-
free-path theory as initiated by Maxwell and obtained an
expression for the heat Aux vector and pressure tensor
valid for all values of the Knudsen number. The merit
of the mean-free-path theory is that it relies on the actual
physical mechanism of transport and does not require a
kinetic equation for the velocity distribution function.
However, the conclusions derived in the framework of
Wood's theory are likely to be rigorously valid only for
the hard-sphere molecules for which the concept of a
mean free path is unambiguously defined.

In the absence of a well-accepted analytical method for
solving the Boltzmann equation for the transition regime
gas Aows, the current approach is to solve the equation or
its approximations numerically. ' The most widely used
algorithm is the one proposed by Bird. " In his direct-
simulation Monte Carlo (DSMC) method, Bird simulates
the physics of the transport process occurring in a
rarefied hard-sphere gas by uncoupling molecular
motions and intermolecular collisions over small time in-
tervals and cell sizes. The DSMC algorithm of Bird is
based on the Kac master equation and is computationally
efFicient. A slightly difI'erent DSMC method based on the
Boltzmann equation has been proposed by Nanbu. '

Meiburg has shown that the DSMC method does not
conserve the angular momentum and hence may not ac-
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curately describe a high-vorticity flow problem. ' How-
ever, Nanbu, Watanabe, and Igarashi argued that if cell
sizes are suKciently small, then the angular momentum is
almost conserved. ' Moreover, since the vorticity is only
related to the linear momentum which is conserved in the
DSMC method, the method should be applicable for
high-vorticity problems. '"

The present paper outlines a new approach for study-
ing the microscopic dynamics of nonequilibrium heat and
momentum transport in the transition regime (K„—1).
Using the molecular dynamics (MD) method, ' we ex-
plicitly solve the dynamical equations of gas particles
confined between two thermal walls. Two problems are
considered. First we study the heat transfer in argon gas
between parallel plates and compare our results with ex-
periments and the analytical solutions of the linearized
Boltzmann equation. Then we analyze the three-
dimensional channel low problem and report some new
results on the velocity slip, and the distortion of the non-
equilibrium velocity distribution function in a supersonic
Aow. The density variation of the shear viscosity in the
channel Aow is also examined and compared with the
ones obtained using the DSMC method. Our MD com-
putations indicate that the Maxwell model of slip phe-
nomena breaks down in the transition regime and that
the assumption of local equilibrium, which is central to
the classical theory of irreversible thermodynamics, is not
valid in supersonic transition regime Aows. In Section II
we outline the computational algorithm of our simula-
tion. Section III discusses, and compares with other
available experimental and theoretical data, results of the
simulations of Aow and heat transfer in a three-
dimensional channel. Section IV is for final conclusions.

II. COMPUTATIONAL ALGORITHM

In our simulation, the dynamic evolution of Auid parti-
cles is studied using the molecular-dynamic method. A
few thousand Auid particles are enclosed in a three-
dimensional channel. The Auid particles interact via a
truncated Lennard- Jones potential:

—12

4e
V(r) = '

0, Vr)r, .

V~ =+—2k+ T ln(g2)/I sing&,

V, =Q —2k&T ln(g2)/m cosg3,

(3)

(4)

where gi, gz, g3 are random numbers between 0 and 1, and
m the mass of the particle. The stochastic boundary con-
ditions used here are analogs to the one proposed by
Tenenbaum, Cicotti, and Gallico. ' Periodic boundary
conditions are employed in the y and z directions. The
time step of the simulation was 10 ' sec. To maintain a
nonequilibrium Aow, an acceleration field of strength g is
applied in the y direction (i.e., every particle is subject to
a constant force mg in the y direction). By manipulating
the strength of the acceleration field diA'erent Aow re-
gimes can be realized in the channel. An imposed ac-
celeration field is analogous to a gravitational field. How-
ever, to establish an ordered Aow profile in a channel of
microscopic dimension the magnitude of the acceleration
is orders of magnitude larger than the gravitational field.
A limited number of experiments were also performed in
the plane Couette Aow geometry wherein the flow can be
induced in the system by moving the upper plate. We
have checked that various predictions of our simulations
did not depend on the specific way that the Aow was in-
duced, but depended solely on the parameters such as the
Knudsen number and the Mach number characterizing
the Aow system.

The calculation of the interparticle interaction is the
most time-consuming part of any molecular-dynamics al-
gorithm. Since the interaction potential used in our
simulation is short ranged, a "link-cell" method' was
used for calculating the interaction forces among the
Auid particles. In this approach, before starting the cal-
culation of the interaction forces, we divide the simula-
tion system into small cells such that each side of the cell
is greater than the cutoA' distance r, . Each atom is as-
signed to a cell and is linked to two atoms in the same
cell through pointers. That is, cell i first points to atom
k, then points to the next atom in the same cell, I, which
in turn points to the other atom n, . . . . . , ete. The calcula-
tion of the interaction forces proceeds in the following
ways.

chosen randomly from the Maxwell-Boltzmann distribu-
tion at the wall temperature T:

V, =Q —2kiiT 1n(g, )/m

This potential is short ranged; i.e., there is no interaction
for any atomic pair that is more than r, apart. The poten-
tial parameters are chosen to represent the argon gas.
Thus we set o.=3.4S A and @=119.8k&, where k~ is the
Boltzmann constant. Newton's equations of motion are
solved by a sixth-order Gear's predictor-corrector
method. ' ' Thus the evolution of the dynamical system
is studied by analyzing the vector ro which represents a
set of particle positions and its five successive time deriva-
tives. ' Thermal walls placed in the direction perpendic-
ular to the x axis act as heat reservoirs. When a particle
hits one of the two walls, it gets thermalized and the par-
ticle is returned to the system immediately with a velocity

(1) We choose a cell and pick up the particle appearing
in the headlist (which shows the first particle in the given
cell). The interaction of this particle with all other parti-
cles oeeupying the same cell is calculated utilizing the
linked list.

(2) The interaction of the chosen particle with the par-
ticles residing in the adjacent cells is calculated. A care-
ful application of Newton's third law reduces the compu-
tations of the interaction force among the particles.
However, this necessitates searching the adjacent cells in
a particular order.

(3) After all possible interactions of the chosen particle
(from a chosen cell) have been calculated, we move to the
next particle (using a linked list) and then repeat the pre-
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vious two steps. This process is repeated until all the par-
ticles in the chosen cells are exhausted.

(4) We now move to the next cell and repeat the pro-
cedure until all cells in the simulation system have been
considered.

In the "link-cell" approach, the computational and the
memory allocation requirements for evaluating the in-
teraction forces scale roughly as N. This is very useful,
and may become necessary, whenever the number of
simulated particles is sufficiently large.

To make a connection with the continuum hydro-
dynamics and experiments we divide the simulation sys-
tem into three-dimensional boxes and calculate the aver-
age values of the velocity, number density of particles,
and the kinetic energy of Quid in each box at each time
step. These average quantities are collected for a few
thousand time steps, then new statistics are obtained by
time-averaging the dynamical information contained in
each box. In the transition regime, the dissipative effects
become weaker as the Knudsen number is increased.
Therefore, in order to correctly compute the steady-state
Aow properties, the simulations in some cases were con-
ducted for one million time steps. The reported "macro-
scopic" velocities, densities, and temperatures were all
collected by dividing the simulation box into cells of size
50:1:1 and averaging over 20000 time steps. An initial
stage of relaxation was first carried out for about 30000
time steps and the statistics were collected for the next
700000 time steps to obtain a total of 35 samples of ve-
locities and densities. These samples are used to make
sure that steady state has indeed been reached and to cal-
culate the standard deviations of the reported macroscop-
ic properties.

To realize such a long simulation as required by infre-
quent collisions of a dilute gas system, we have used the
parallel processing facilities available in an IBM
3090/400 computer. The structure of the parallel algo-
rithm is as follow. If the number of available processors
in the system is k, then in the predictor (or corrector)
step the total number of molecules is divided into k
different segments and each processor is assigned the
computation of a given segment. In this step there is no
overlap between the computations undertaken by the
processors. For calculating the interaction force between
the Quid particles, the total volume of the Auid system is
divided into k parts, and each processor is assigned the
computation of the interaction forces of the Auid parti-
cles occupying the volume segment assigned to the pro-
cessor. Since the Quid particles in the boundary of the
chosen volume segment can also interact with the Quid
particles which belong to the other processor, a certain
amount of the information has to be exchanged between
the processors. Using four processors it was possible to
speed up the computation by 3.6 times. Here we might
add that the molecular-dynamics algorithm, as the one
discussed here, can also be efficiently implemented in a
massively parallel computer system, using special
hardware.

Preliminary results on the molecular-dynamic simula-
tion of nonequilibrium Qow and heat transfer in a very di-

lute gas have been reported earlier in a letter. ' These
simulations examined the Aow behavior in a two-
dimensional geometry, in the slip How regime (IC„-0.1).
The consistency of the molecular-dynamics results with
the experiments of Kundt and Warburg and the solution
of the linearized Boltzmann equation was given. The
present paper investigates the three-dimensional non-
equilibrium flow in the transition regime (K„—1).
Several new results such as the deformation of the none-
quilibrium velocity distribution function in supersonic
Bows, temperature rise at the wall due to viscous heating,
and the consistency of the MD simulation and the DSMC
method are discussed.

III. RESULTS AND DISCUSSION

In the first simulation, designed to understand the heat
transfer process in a very dilute gas, the dynamics of 8000
particles was studied. The thermal walls were 564 A
apart and kept at 288 and 368 E, respectively. The
Knudsen number
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FIG. 1. Comparison of the different density profiles for fluids
confined between two parallel thermal walls at K„=0.758. x
is a scaled coordinate across the system (:—x /L ) with the origin
at the center of the system.
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where A, is the mean free path of the gas particle as given
by simple kinetic theory, n the number density, o. the
Lennard-Jones parameter signifying the particle diame-
ter, and L the length of the simulation cube, for the Aow
system was 0.758. The statistical error in the calculated
density profile is less than 3%. Figure 1 compares the
density proNe obtained through the MD approach with
the moment method solution of the linearized Boltzmann
equation by Gross and Ziering and the experimental
measurements by Tegan and Springer. Even though
the Knudsen number in the MD simulation and the ex-
periment is the same, it should be noted that they are
achieved in two different ways: In the simulation the gas
is dilute and the How system has a microscopic dimension
(5.64X10 cm), whereas in the experiment the size of
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the flow system has a macroscopic dimension (0.13 cm)
and the gas density is in the rarefied regime. The good
agreement among the simulation, the experimental, and
the theoretical results indicates that the underlying dy-
namics of the nonequilibrium heat transport phenomena
studied in the former two methods is the same as the one
embodied in the Boltzmann equation.

We now turn our attention to analyzing the velocity
slip in the channel Aow. We have studied seven different
Aow configurations, as shown in Table I. An acceleration
field of strength g=1X10 cm/sec was applied in the
—y direction which produces subsonic flows (Mach num-
ber varies from 0.5 to 0.99). The Knudsen numbers
characterizing these Aows are in the transition regime.
The thermal walls were kept at 300 K. The velocity slip
at the wall increases with an increasing Knudsen number.
However, at all levels of the Knudsen number, the rnea-
sured velocity profiles agree remarably well with the solu-
tion of the Navier-Stokes equation with the velocity slip
condition. According to Maxwell's theory of slip phe-
nomena, for a small Knudsen number, the dimension-
less slip length, '

l, =
L (dv/dx)„

is proportional to the Knudsen number. Here v is the
slip velocity at the wall, and is determined by calculating
the velocity of the Quid in the statistical cell adjacent to
the wall. Our earlier simulation had confirmed that
Maxwell theory is indeed true as long as the Knudsen
number is in the slip Row regime (K„(0.05). ' However,
as is shown in Fig. 2, in the transition regime the slip
length scales as the log of K„. This result also indicates
that the recently proposed velocity slip model by Co-
ron, using the Chapman-Enskog solution, would break
down in the transition regime.

To analyze the effect of viscous heating on the velocity
slip at K„=2.79, we increased the strength of the ac-
celeration field and studied Aows at Mach number (M) of
1.68, 2.76, and 4.0S. It was found that the velocity slip is
proportional to the square root of the average gas tem-
perature, while the velocity difference between the center
and the wall scales as the acceleration field, as predicted
by the Navier-Stokes equations.

In the framework of linear irreversible thermodynam-
ics, ' the linear transport equations are derived on the
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FIG. 2. The variation of slip length with the Knudsen num-
ber obtained from MD simulations.
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assumption of local equilibrium. The assumption of local
equilibrium implies that even though the dissipative sys-
tem is globally in a nonequilibriurn state, the irreversible
system can be partitioned into small cells which remain
in a state of thermodynamic equilibrium such that the
nonequilibrium entropy change is governed by the Gibbs
equation. Since except for a small region very close to
the wall, the temperatures are almost constant across the
channel, we might anticipate that the velocity distribu-
tion is sufficiently close to the local Maxwellian distribu-
tion in our channel flows. This is indeed the case for sub-
sonic Rows as shown in Fig. 3. However in supersonic
Aows, also shown in Fig. 3, the presence of a high shear
significantly distorts the shape of the velocity distribution

TABLE I. Parameters used in the molecular-dynamics simu-
lation of three-dimensional channel flow (the total number of
particles is 4096) ~

~ I ~ ~ ~ ~

Run number Length of box (A) 0.5 1.5 5.5

208.44
300.63
392.31
459.53
559.66
647.69
767.92

0.20
0.42
0.72
1.00
1.48
1.98
2.79

12.24
37.08
82.95

134.95
243.25
376.63
629.22

FIG. 3. Nonequilibrium velocity distribution functions at
K„=2.79 for a subsonic flow (M= 0.99) and a supersonic
(M= 4.05) flow. The solid line represents the equilibrium
Maxwell velocity distribution function. U* is a scaled dimen-
sionless velocity defined as v/+2k~ T/m. T for the subsonic
and the supersonic flows are 423.68 and 1731.74 K, respectively.
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function, and a deviation from the local Maxwellian dis-
tribution function is observed.

Liu and Lees have proposed a method for solving the
transition regime gas Aow problem, which consists in ex-
pressing the nonequilibrium distribution function as a su-
perposition of two Maxwellians. It was noticed that
the theory of Liu and Lees breaks down above a critical
Mach number, which for the Couette Aow geometry is
approximately 3.1. In view of our simulation, it is clear
that the limitation of the theory of Liu and Lees lies in
the fact that it fails to represent the nonequilibrium
effects in the velocity distribution function encountered
in supersonic Bows.

To analyze the organization of the dissipation in the
system, we have calculated the Rayleigh-Onsager dissipa-
tion function, which in the framework of the linear ir-
reversible thermodynamics represents the entropy pro-
duction in the system. Consistent with the experiments
of Sody and Berry, we found that the dissipation in the
system decreases monotonically with decreasing density,
and that most of the dissipation takes place in a thin
boundary layer, the thickness of which decreases with the
increasing Knudsen number.

We have also studied the variation of the shear viscosi-
ty of argon with the Knudsen number. The viscosity has
been calculated at the center of the channel from the
measured velocity profile. ' ' ' In the limit of a very low
Knudsen number (K„=0.05), we have calculated the
shear viscosity at 316.7 K with 8000 particles and found
the result, g=(2.70+0.05) X 10 g/(cm sec), in good
agreement with the analytical result of 2.58 X 10 g/(cm
sec) obtained for hard-sphere particles at the same tem-
perature. Using the DSMC method Lengrand and
Fadili have calculated the shear viscosity for the variable
hard-sphere model. ' Figure 4 shows the Knudsen num-
ber dependence of the shear viscosity, obtained using the
MD and DSMC methods. Both simulations predict that
the shear viscosity of the argon gas decreases with the
Knudsen number. The difference between the two simu-
lations is mainly due to the difference in the interaction
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potentials. The importance of the potential should di-
minish as the gas gets more rarefied. Thus the two
methods should give the same viscosity in the limit of a
high Knudsen number. Figure 4 seems to indicate that
this is indeed the case.

One of the objectives of the simulation of the transition
regime gas How problem was to analyze how the tempera-
ture jump at the channel wall depends on the Knudsen
number and the speed of the Aow. As is well known
when a high-speed space vehicle (such as a space shuttle)
reenters the atmosphere it experiences a severe thermal
stress due to viscous heating. To design an appropriate
thermal protection system one needs an accurate estimate
of the heating load at the surface. In Fig. 5 we have
shown how the temperature jump varies with the Knud-
sen number. It appears that in the transition regime the

FIG. 5. The variation of the temperature jump ( T, —T )/T
with the Knudsen number in subsonic Aows. The wall tempera-
ture is represented by T, while T, denotes the temperature of
the Quid next to the wall.
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FIG. 4. Comparison of the Knudsen number dependence of
the shear viscosity.

FICx. 6. The variation of the temperature jurnp (T, —T )/T
with the Mach number at a Knudsen number K„=2.78.
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temperature jump at the wall varies linearly with the
Knudsen number. This result is consistent with the one
obtained by Cuda and Moss with the DSMC method.
Figure 6 shows the Mach number dependence of the tem-
perature jump at a K„=2.78. It is evident that at a high
Mach number viscous heating contributes to considerable
thermal stress at the surface of a supersonic vehicle.
Since continuum hydrodynamics does not provide any in-
formation on the temperature jump, our results outline
the importance of molecular-dynamic simulations in
studying the viscous heating problem in high-altitude
aerodynamics.

IV. CONCLUSION

The flow behavior in the transition regime depends on
the Knudsen number. The Knudsen number is the ratio
of the mean free path of the gas particle to the charac-
teristic length of the flow system. The Knudsen number
can be large if the mean free path of the gas particle is
large or if the characteristic length of the flow system is
sufficiently small. The first situation is encountered in
dealing with high-altitude flow problems. Much of the
current interest in studies of the nonequilibrium trans-
port in the transition regime stems from its advanced ap-
plications in space engineering, in particular the design of
aeroassisted orbital transfer vehicles that achieve payload
economy by passing through the Earth's atmosphere to
change orbit and hypersonic aircrafts that may require
propulsion by supersonic ramjets. ' Transition regime
flow phenomena can also be encountered in the
identification and the analysis of the small particle trans-
port mechanism in combnstion environments which is an
essential element in understanding particulate depositing
rate. Another example of transition regime transport
phenomena arising from the second situation is the prob-
lem of the removal of heat from the integrated chips used
in supercomputers. In general, these flows cannot be

studied in the framework of continuum hydrodynamics.
A particularly interesting evidence of this was recently
shown by Rosner. While analyzing film growth by va-
por transport in a microgravity environment, he found
that the familiar Stokes-Fourier-Ficks laws governing the
evolution of fluxes of m.omentum, energy, and mass are
inadequate even when the Knudsen number is as small as
10 . Advances in computer technology have o6'ered a
unique opportunity to address these flow problems at a
molecular level. In the present paper we have shown that
nonequilibrium flow problems in the transition regimes
can be studied using molecular dynamics. We note that
unlike the DSMC or the lattice gas dynamics method,
the MD method discussed in this study does not make
any further approximation in the collision dynamics of
Iluid particles besides a simple potential form (which in
principle can be made as realistic as it can). The latter
can therefore be used to investigate some fundamental
problems of the transition regime flow, such as the efFect
of the molecular constitution and the physical state of the
thermal walls on the structure of the nonequilibrium
Knudsen layer. It may also enable one to study complex
nonequilibrium flow problems in a polyatomic fluid, in
particular to analyze the eFect of interatomic potential
on the rotation-translational energy transfer, which is
presently studied within the DSMC method using very
simple models. We are currently investigating these
problems.
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