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Onset of convection for autocatalytic reaction fronts: Laterally unbounded system
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The linear stability of exothermic autocatalytic reaction fronts that convert unreacted fluid into a
lighter reacted fluid is considered using the viscous thermodynamic equations. For upward front
propagation and a thin front, the discontinuous jump in density at the front is reminiscent of the
Rayleigh-Taylor problem of an interface between two immiscible fluids, whereas the vertical
thermal gradient near the front is reminiscent of the Rayleigh-Benard problem of a fluid layer heat-
ed from below. The problem is also similar to flame propagation, except that here the front propa-
gation speed is limited by catalyst diffusion rather than by activation kinetics. For a thin ascending
front and small density changes in a laterally unbounded system, the curvature dependence of the
front speed stabihzes perturbations with short wavelengths A, (A,„whereas long wavelengths are
unstable to convection, indicating that the density discontinuity dominates over thermal gradients.
Simple analytical results for the critical wavelength A,, for onset of convection, the growth rate near
onset of convection, and the maximum growth rate are found. Agreement with experiments on
iodate —arsenous acid solutions in vertical tubes motivates linear and nonlinear calculations in cylin00

drical geometries.

I. INTRODUCTION

Recent experiments observe steady axisymmetric con-
vection' near iodate —arsenous acid reaction fronts in
long vertical tubes. In these experiments, a thin autoca-
talytic reaction front converts the unreacted aqueous
solution into a reacted solution of lower density, so that
upward propagation of a horizontal front is potentially
unstable under the action of gravity. Indeed, data for up-
ward propagation in long vertical tubes indicate that con-
vection becomes increasingly important as the tube diam-
eter increases. For diameters less than a critical diameter
d, of about 1 mm, the upward propagation speed is the
same as the downward propagation speed and the front is
Qat, indicating the absence of convection. Whereas the
downward propagation speed is independent of tube di-
ameter, the upward propagation speed and the corre-
sponding curvature of the front (Fig. 1) increase with the
tube diameter as the diameter is raised above the critical
diameter, indicating increasing amounts of steady con-
vection. This steady convection can become unstable at
diameters larger than about 5 mm. Existing reaction-
diffusion theory for such systems omits convection.

The goal of this paper is to develop a theory of convec-
tion for autocatalytic fronts. Of particular interest is to
investigate how this problem fits into the class of fluid
problems exhibiting transitions to chaos. Since the react-
ed and unreacted Quids have different densities in general,
the problem is similar to the classical Rayleigh-Taylor
problem of the stability of a horizontal impermeable in-
terface between two immiscible fluids of different densi-
ties. The difference is that the front interface for autoca-
talytic fronts is permeable; the conversion of unreacted to
reacted Quid at the front requires that Quid pass through
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FIG. 1. Schematic representation of the front shape for (a)
ascending and (b) descending autocatalytic reaction fronts in a
vertical tube of diameter greater than the critical diameter for
the onset of convection. For exothermic reactions, the final

temperature T& of the reacted fluid exceeds the initial tempera-
ture To of the unreacted fluid, leading to potentially unstable
density gradients for upward propagation. Density gradients
due to both thermal expansion in the unreacted fiuid and to
differences in composition of the reacted and unreacted fluids
are represented schematically by the density of dots.

the front. Since the chemical reaction is typically exo-
thermic, upward propagation also produces a vertical
thermal gradient in the vicinity of the front, leading to a
potentially unstable density gradient [Fig. 1(a)). This gra-
dient might drive thermal convection reminiscent of
Rayleigh-Benard convection of a fluid layer heated from
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below. ' The problem is also similar to Qarne propaga-
tion, " ' the principal difference being in the mechanism
for propagation of the front. Flame propagation occurs
only when the temperature of the gas near the flame is
sufficiently high, so that nonlinear activation kinetics and
thermal diffusion typically determine the fame speed. In
the present problem, the slow diffusion of the catalyst
species limits the front speed, ' implying a chemically
thin reaction front and significant thermal diffusion into
the unreacted Quid. Free convection produced by a dense
solution diffusing downward into a less dense solution in
a vertical tube ' ' ' (such as for a salinity gradient) in-
volves a uniform density gradient which is absent in auto-
catalytic systems.

In this paper, we introduce and justify a thin reaction
front approximation similar to approximations used in
fame propagation" ' and a uniform-density approxi-
mation analogous to the Oberbeck-Boussinesq approxi-
mation' for Rayleigh-Benard convection. These include
a temperature gradient jump (boundary) condition at the
front similar to a condition used in solidification theory.
In the thin-front approximation, we find that all chemical
kinetics can be subsumed into a temperature difference
and a planar front speed available from experiments, so
that an equation for molecular diffusion is unnecessary.
Using the resulting theory, we study the linear stability of
an ascending flat front in a laterally unbounded

geometry. Finally, we compare the results with experi-
ments on iodate —arsenous acid systems and motivate the
extension of the theory to cylindrical geometries. The
theory presented here may also be relevant to convection
in iron(II) —nitric acid reaction fronts, ' liquid-liquid
phase transitions, and convection during solidification.

II. FLUID DENSITY AND FRONT STRUCTURE

Small density changes in the Quid arise from thermal
expansion and from differences in chemical composition
between the reacted and unreacted Quids. Since these
changes are small, we can write first-order Taylor expan-
sions in the unreacted Quid,

p(»=pi+ Bp
aT, ,

=p, [1—a(T —T, )],
and in the reacted Quid,

p(T)=p, [1—a(T —T, )] .

Here p1 and p1 are the densities of the unreacted and
reacted Quids at a reference temperature T1, taken to be
the final temperature of the reacted fiuid (Fig. 1), and
a= p, '(dp/dT)z is—the classical thermal expansion

coefficient at constant pressure, taken to be the same in
the reacted Quid as in the unreacted Quid. An isothermal
fractional difference between these densities

61 Pl~Pl

is defined so that 61)0 if the unreacted Quid has the
higher density. We also define an overall fractional densi-

ty difference involving the unreacted Quid density po far
ahead of the front at initial temperature To (Fig. 1);

6o=Po~P1 —
&

=5,+( I+5, )ahT

=6,+ahT .

The second equality follows by substituting Eq. (1) for
po=p(TO) and by defining an overall adiabatic tempera-
ture difference AT = T1 To.

The equations of state [Eqs. (1) and (2)], the assumption
that a is the same in the reacted and unreacted Quids,
and the third equality in Eq. (4) are all valid to first order
in the thermal and compositional density corrections
ahT and 6,. These are well justified for iodate —arsenous
acid systems where 5, =ah, T=1X10 (Table I). We
note that in such systems, both the correction 61 due to
density differences between the reacted and unreacted
Quids and the correction czhT due to thermal expansion
are positive. Positive 6o=61+ahT therefore places the
lighter reacted Quid below the heavier Quid for upward
propagation in these systems, leading to potential insta-
bility and convection under the action of gravity, whereas
downward propagation leads to no instability. Below,
these small density corrections are neglected consistently
except where they modify gravity, that is, except where
they provide the essential gravitational instability leading
to convection. A separate calculation, which includes
all of the composition-induced density corrections, yields
results that differ by less than 0.1% from the results ob-
tained below. The general theory developed in this paper
also applies to other systems where 61 and aAT can have
either sign.

It is helpful to consider the thickness of the reaction
front separating the reacted Quid from the unreacted Quid
in autocatalytic systems such as the iodate —arsenous acid
system. In contrast with fame propagation" ' where
the unreacted Quid must be heated before reaction can
occur, the front propagation speed in autocatalytic sys-
tems is limited by the slow diffusion of a catalyst species
into the unreacted fluid. Since the thermal diffusivity Dz
is typically much larger than the catalyst molecular
diffusivity D& in these systems, the heat produced in the
chemical reaction front difFuses well ahead of the reaction
front into the unreacted Quid, thereby producing thermal
gradients in a layer of thickness ' dz-=D~/co, where
the planar front speed co is limited by catalyst
diffusion. ' For iodate —arsenous acid systems (Table I),
the reaction front thickness d„=Dc/co=7 X10 cm is
small compared to the thermal front thickness d&=0. 5
cm. Furthermore, the reaction front is also thin com-
pared to typical experimental tube diameters d =0. 1 cm.
In contrast with Rayleigh-Benard convection ' and
Taylor-vortex Qow, ' the thermal length scale dz- is in-
dependent of any externally imposed boundaries.

A thin-front approximation that treats the reaction
front as a surface separating the reacted and unreacted
Quids is useful when the reaction front thickness is small
compared to other length scales in the problem. In this
approximation, we can define a time-dependent height
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z =H (x,y, t) of the front and a unit vector n pointing
normal to the front into the unreacted Iluid (Fig. 2). In
the uniform-density approximation, the quid velocity V is
continuous at the front. Consequently, the normal front
velocity relative to the moving Quid,

n nB&c =n-z —n. VI~z=H (5)

involves the normal Quid velocity at the front n.V,
and the normal front velocity n zBH /t)t in the laboratory
frame.

The relative normal velocity c gives the volume of un-
reacted Quid consumed per unit front surface area per
unit time, which depends on the curvature K according
t026

c =co+DgIC

called the eikonal velocity. Here K is measured as posi-

tive where the center of curvature is in the unreacted
Quid. Thus, for ascending fronts with the unreacted Quid
above the reacted Quid, positive curvature increases the
front speed c where the front is concave upward (in val-
leys) and negative curvature decreases the front speed
where the front is concave downward (at peaks). This
curvature dependence of the front speed therefore tends
to flatten nonplanar reaction fronts with time. As will be
seen, this effect stabilizes short-wavelength perturbations
about Aat fronts, and is therefore crucial to the under-
standing of onset of convection in autocatalytic systems.

A useful relation between the unit front normal vector
n and the (horizontal) front gradient VH(x, y, t),

(z —VH ) (z VH )—
iz —VHi (I+iVHi')' ' '

follows from the observation that n has a slope of magni-
tude VK~ ' in the vertical plane containing both n and

TABLE I. Parameter values relevant to convection in iodate —arsenous acid systems.

Parameter

TQ

Tl
AT = Tl —To
CX

50=+AT
Pl
Pl
po
~l =pl/pl —1

~Q=Po/P l
—1

=5l+69
cp

Cp

DT
Dc
d7- —D7- /CQ

d„=Dc /cp

9 =gVCp
2)T =DT/v
+c=Dc/v
P—2)T
L =2)T/2)c
%—6092)T

=gab Td7-/DTv

I3escription

initial temperature of unreacted quid
final temperature of reacted Auid

overall temperature difference
thermal expansion coefticient
dimensionless temperature difference
density of reacted Quid at Tl
density of unreacted Quid at T,
density of unreacted Quid at Tp
density difference at T&

overall density difference
isobaric specific heat
Aat-front propagation speed
thermal diffusivity
catalyst diffusivity
thermal front thickness
chemical reaction front thickness
kinematic viscosity
acceleration of gravity
dimensionless acceleration of gravity
dimensionless thermal diffusivity
dimensionless catalyst diffusivity
Prandtl number
Lewis number

Rayleigh number

Value

25 'C

0.40'C '
2.57X 10 /'C
1.03 X 10
1.00 g/cm

0.87 X 10

1.9X 10
1 cal/'Cg
2.95 X 10 cm/s

45X10 ' cm's
2.0X10 cm s
0.49 cm
6.8X 10 cm
9.2X10 cm s
980 cm/s2
3.51 X 10
0.158
2. 17 X 10-'
6.34
72.5

898

'Follows from Eq. (11) with latent heat L = —AH[IO3 ], enthalpy AH= —80 kcal/mol (Ref. 1, Sec.
3.4.2), iodate molar concentration [IO, ]=5.0X10 M [Table 3 of Ref. 3 (corresponding to Table 3.1

of Ref. 1), reaction mixture A, where M signifies moles per liter of solution], and values ofp, =p, and c~
from this table. The corresponding chemical concentrations are [H3As03] =29. 8 X 10 M,
[KIO, ]=5.0 X 10 ~M, [H+ ]= 10.0 X 10 3M, and [I ] (0.0001 X 10 3M (Table 3 of Ref. 3).
Reference 28.

'This value for reaction mixture A follows from Table 3 in Ref. 3, based on the value 5& =1.3 X 10 for
reaction mixture D deduced from Fig. 4c of Ref. 3 (corresponding to reaction mixture F and Fig. 3.6 of
Ref. 1) and the assumption that 5, is proportional to the iodate concentration.
From Table 4 of Ref. 3 (corresponding to Table 3.4 of Ref. 1).

'Reference 1, Sec. 3.4.3 (or Ref. 3).
'Reference 1, Sec. 3.4.3 (or Ref. 3), for iodate catalyst.
Interpolated from Table VI, Ref. 9.
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fluid (-)

1 VP+vV' V,
PI

+V-VT=D V T+@,T
at

V' V=O .

frame moving with the front:

av +(V V)V= — gz-p
at pi

(Sa)

(Sb)

(Sc)

z=H(x, y, t) reacted fluid (+) Length, time, temperature, and pressure scales d = 1 mm
(the tube diameter), d/co, b, T, and pgd along with values
from Table I imply that the gravity and pressure terms in
Eq. (Sa) are of order 10 —10 relative to the remaining
terms in the equation. Accordingly, we have set p =p,
everywhere except in the gravity term consistent with the
uniform-density approximation. We can neglect heat
generation due to viscous dissipation because the corre-
sponding term

FIG. 2. Coordinate system used in the calculations with a
front surface z =H (x,y, t), a front normal vector n pointing into
the unreacted Quid, and a z axis pointing up.

VH (Fig. 2). Here the + sign accounts for upward prop-
agation (with the unreacted fluid above the front) and the
—sign accounts for downward propagation.

The wave nature of the reaction front implies a slope
dependence of the vertical front velocity. In the absence
of any fluid motion or curvature corrections, the normal
front velocity n zBH/Bt =co is constant and the radius
of curvature of a peak in an ascending front increases
with time as the front propagates farther from the center
of curvature of the peak, in such a way that spherical
waves remain spherical with time in accordance with
Huygen's principle for wave propagation. Accordingly,
the vertical front velocity BH/dt =co(1+ lVH~ )' at
fixed horizontal position increases with increasing slope
~VH~ and takes its smallest value where ~VH~=0. This
slope dependence of the vertical front velocity is distinct
from the curvature dependence of the normal front veloc-
ity discussed above, and is expected to be important in
finite-amplitude convection.

Steady propagation of a nonplanar front means that
aH/at is independent of horizontal position while H, K,
and VK depend on horizontal position. For this situa-
tion, Eq. (5) demands a nonuniform fluid velocity V~,
to balance slope and curvature effects. Thus steady prop-
agation of a curved front cannot be maintained without
Quid convection. As a result, an expansion in the ampli-
tude of the deviations from a planar front is expected to
be equivalent to a convective amplitude expansion famil-
iar in fluid dynamics. We intend to perform such an am-
plitude expansion in subsequent work.

3
N= —(2pc )

' g T,v

in Eq. (Sb) is of relative order 10 ' . Here

av, av,
T = vpi +

Xj X
7

Lc =kT[n VT]+, (10)

where [q]+ =q+ —
q denotes the difference between the

values of a quantity q on the reacted (+) and unreacted
( —) sides of the front. Here

L =p,c hT

is the viscous stress tensor and cz is the isobaric specific
heat of the Quid. The kinematic viscosity v is taken to be
the same in the unreacted and reacted Auids, consistent
with the very small chemical concentrations in the aque-
ous solutions in the experiments (of order 5X10 moles
per liter of solution; see note a of Table I). Furthermore,
experimental data imply negligible temperature correc-
tions to v and DT smaller than 1% for typical room-
temperature experiments with temperature differences
b, T=0.4 K (Table I).

The uniform-density approximation demands continu-
ous Quid velocity V and continuous stress n T; at the in-
terface between the reacted and unreacted Auids, where
the nj are Cartesian components of the unit vector, re-
peated indices are summed, and the stress tensor
T, =P5, +T, inv. olves . the K"ronecker delta function 5,
Continuous stress at the interface implies a balance be-
tween the forces of the reacted and unreacted Auids on an
interface area element d A. Conservation of energy at the
interface requires a discontinuity in the normal derivative
of the temperature,

III. EQUATIONS OF MOTION

The thermohydrodynamic equations of motion ex-
pressing conservation of momentum, energy, and mass '

are invariant under transformations to coordinate frames
moving with constant speed with respect to the laborato-
ry frame. It is convenient to evaluate these equations in a

is the latent heat liberated by the reaction per unit
volume of unreacted solution in the uniform-density ap-
proximation, so that Lc is the energy per unit area per
unit time produced by the moving reaction front. The
quantity kT[n VT]+ gives the corresponding net heat
current density leaving the front by thermal diffusion and
involves the thermal conductivity kT=DTP&c~. Since
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bulk Auid motion does not affect the rate of conversion of
reactants to products, the left side of Eq. (10) requires the
eikonal velocity c =co+Dc% rather than the total nor-
mal velocity n zBH/Bt, which includes Quid motion.
Here we have neglected any differences in cz and Bz- be-
tween the reacted and unreacted fluids, consistent with
the small chemical concentrations in the experiments.
Equation (10) is analogous to the temperature gradient
discontinuity condition required at moving solidification
fronts, except that here the normal front velocity, in-
stead of the temperature, is a known function of the front
curvature. Local thermal equilibrium requires that the
temperature be continuous at the interface, thus cornplet-
ing the necessary interface conditions. A careful analysis
of these interface conditions shows that they are valid
for steady Aows in the frame of the moving front, con-
sistent with steady Aows in the moving frame and with
mildly nonsteady Aows near criticality as long as
co 'BH/Bt « l.

To account for the composition-induced discontinuity
in the density, it is convenient to define a reduced pres-
sure (see Ref. 12, for example)

P„=P+ypigz, (12)

aT+V VT=D V'2T,
at

(13b)

where y = 1 in the unreacted Quid and y =p, /p, = 1 —5,
in the reacted fIuid to first order in 5, . Accordingly, a
complete set of equations governing convection in auto-
catalytic systems in the thin-front and uniform-density
approximations includes the dynamic equations

av +(V.V)V= —yga(T, —T)z — VP„+vV V,
at Pi

(13a)

renders the convectionless front velocity nonuniform,
whereas a stabilizing surface tension term renders the
stress discontinuous in the viscous Rayleigh-Taylor prob-
lem. In contrast to (convectionless) reaction-diffusion
theory, which requires a chemical diffusion equation to
resolve the reaction front, our thin-front treatment
relegates the reaction kinetics to the experimental param-
eters eo and AT, thus simplifying the analysis. In the
thin-front approximation, knowledge of the chemical
compositions of the Auids is therefore unnecessary.

It is convenient to use length and time scales vco ' and
vco to define dimensionless coordinates x' and t* by
the relations x=vco 'x* and t =vco t *. We also define
dimensionless functions by

T(x, t) = T(vco 'x*,vco t*)=a '8(x*,t ),
P„(x,t) =p, cop (x*,t *),
K (x, t) =cov 'a(x*, t*),
V(x, t) =cov(x*, t *),
H(x, t)=vco 'h(x*, t") .

Convenient dimensionless parameters include a dimen-
sionless acceleration of gravity 0=g ve 0, thermal
diffusivity 2)z

=Dr /v, and catalyst diffusivity
2)c=Dc/v. With b8=ahT=50 —5, from Eq. (4), these
parameters can be related to the well-known Prandtl
number P=2)z. ', Lewis number X=2)z./Xlc, and Ray-
leigh number %=6892)z.=gab, Tdz/Drv for convec
tion driven by thermal gradients near the front. Table I
summarizes these parameter definitions and gives typical
values for iodate —arsenous acid systems.

We can now write Eqs. (13) in dimensionless form,
with equations of motion

V-V=O

aan.z =co+DcK+n.vi,at

and the jump conditions

[n.V]+ =0,
[n XV]+=0,

(13c)

(13d)

(13e)

(13fl

+(v.V)v= —y(8, —8)Qz —Vp+V v,
Bt

BO +v V8=2) V 8
at

V v=O,
Bhn.z = }+X)c~+n v

~at z=h

(14a)

(14b)

(14c)

(14d)

[P„]+= 5,p,gH [n, n, T, ]+-, — "

[@;kn n, T„,] =0,
[n VT]+ =Dr 'ET(co+DcK),

[T]+=0,

(13g)

(13h)

(13i)

(13j)

where the jump in reduced pressure depends on the ac-
celeration of gravity and the totally antisymrnetric tensor
e;.k appears in the tangential stress condition, Eq. (13h).
An eikonal velocity (instead of activation kinetics) and
nonzero viscosity distinguish Eqs. (13) from the equations
typically used for Qame propagation. " ' Equations (13)
also differ substantially from a set of equations for
viscous Aarne propagation in a boundary-layer approxi-
mation. ' A stabilizing curvature term in Eq. (13d)

jump conditions

[n v]+=0,
[n Xv]+ =0,
[p]+=—5, Qh —[n, n T;", ]+,
[Ejk njn l Tk! ]—'
[n V8]+ =b.82)z '(}+2)c~),
[8]+=o;

(14e)

(14f)

(14g)

(14}1)

(14i)

(14j)

BUI.
T

Bx-J

aUJ

ax;
(14k)

and corresponding dimensionless forms of the viscous
stress tensor
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and unit normal vector [from Eq. (7)]

(z —Vh)

(1+iV& ')'" ' (141)

perturbations with exponential dependences e'q" '. For
two-dimensional y-independent velocity perturbations
v"'= u "~x+w" +z and the corresponding curvature

where we have dropped the asterisks from the dimension-
less independent variables.

1 d h

(1+IVhl )' dx
(17)

IV. LINEAR STABILITY
OF FLAT HORIZONTAL FRONTS

V = Z(p) (15a)

As is true for the Rayleigh-Benard problem, a la-
terally unbounded system constitutes the simplest non-
trivial geometry in which to study convection for autoca-
talytic systems. The calculation presented below of the
growth rates of small perturbations about an ascending
flat front predicts a critical wavelength for the onset of
convection below which curvature stabilizes the front.
This critical wavelength should agree roughly with the
experimental critical diameter for onset of convection in
vertical tubes (near 1 mm for iodate —arsenous acid sys-
tems). Thus, this calculation provides an important first
test of the theory.

In a coordinate frame fixed to an ascending horizontal
front, we choose z =h =0 as the location of the undis-
turbed front, so that z )0 locates the unreacted fluid. In
this frame, Eqs. (14) yield a steady dimensionless fiuid
velocity and temperature profile for the undisturbed flat
front (with )~'=0)

Eqs. (14) yield

u")=i 'Bw'"

p("=q '(()'+g —q' —o )gw'",

(8 —
q )(8 +8—

q
—o)w"' —

q yQH")=0,

(n,a'+a —X q' —~)O")—[ae")]w"'=0,
w'"~, h

=(o.+2)cq )h'",
[w'"]+=0,
[dw'"]+ =0,
[a2w")]+ =0,
[g3w(1)]+ g 2gh (1)

[ao("]+= —q2~en-'n h'"

[g(1)]+—0

(18b)

(18c)

(18d)

(18e)

(18/

(18g)

(18?i)

(18i)

(18j)

(18k)

These equations govern the time evolution of the dimen-
sionless perturbations about a flat front. Evidently, the
vertical velocity w"' and its first and second normal
derivatives are continuous at the front.

z/'x T
(p) 0p+ 60e, z )0

0„z&0. (15b)

v —v(p)+ v(&)
7

0—0(P)+ 0(&)

p
—p(p)+p (&)

As before, the dimensionless temperature difference
50=0&—0p involves the dimensionless final and initial
temperatures 0& =n T, and 0p =a Tp. Thus, since all heat
is released at the reaction front at z =0, the temperature
0& of the reacted fluid is uniform, and thermal diffusion
yields an exponential temperature profile in the unreacted
fluid with a length scale given by the dimensionless
thermal diffusivity 2)T. Thus 0& is the temperature at the
undisturbed front. Since the dimensionless velocity
v' '= —z is measured in the moving frame in units of the
flat-front propagation speed cp, its value corresponds to
zero fluid motion in the laboratory frame.

We can now study the linear stability of the ascending
flat front by introducing small time-dependent perturba-
tions according to

A. Infinite thermal difFusivity

(8 —
q )(0 +8—

q
—(T)w")=0 . (19)

Consequently, requiring w"'~, + to be bounded dic-
tates the general form of the solution for the vertical ve-
locity,

(1) iqx +o.t)(
k z

Ae q'+Be, z )0
k+zCeq'+De +, z &0,

(20)

Instructive analytical results can be obtained for
X)T—+ oo, where heat currents respond instantaneously to
any thermal gradients, yielding a uniform undisturbed
temperature profile 0' )=8) from Eq. (15). Accordingly,
the fluid density is piecewise uniform, with values p& and

p &
in the unreacted and reacted fluids, respectively.

Hence, for infinite thermal diffusivity, the convective in-
stability is governed solely by a discontinuous jump in
density at the front characterized by the fractional densi-
ty difference 5&=p&/p& —j. , and involves no thermal gra-
dients near the front.

Requiring 9"'~, + =0 (since 8' ) satisfies the temper-
ature boundary cond'itions at z =+~), setting 2)T~ ~,
and using Eqs. (18d), (18j), and (18k) yields 0"'=0 and a
simpler form for Eq. (18c),

Substituting these relations into Eqs. (14) and retaining
terms linear in the perturbations yields a linear homo-
geneous system, implying that we can introduce a pertur-
bation wave number q and growth rate cr and endow the

with wave numbers

k+= —
—,'+( —,'+o+q )'~

satisfying

(21)
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k +k —
q

—o. =O .

We write the perturbed front position as

I (1) ~ iqx+crt

(22)

(23)

To account for all density differences for zero thermal
diffusivity, it is simplest to include the piecewise uniform
temperature in a redefined reduced pressure [see Eq.
(12)],

When substituting Eqs. (20) and (23) into Eqs.
(18e)—(18i), it is simpler to replace jump conditions (18h)
and (18i) with the equivalent conditions

[(g2 q2)w(1))+ =0

and

P„=P+@[1—a(T —T, )]p,gz . (28)

This reduced pressure leads to a factor 6~ instead of 6& in
Eq. (13g) and in all subsequent equations. Consequently,
by replacing 5, by 50 in Eq. (27), we immediately obtain
the eigenvalue condition for zero thermal diffusivity,

(25)

This yields a linear algebraic system for the onset of con-
vection,

[q +20'(q —s)]q509 —4s (o. +Xlcq )(q o2) =—0,
where s = ( —,

' +o. +q )
' ~ as before.

C. Finite thermal diffusivity

(29)

LU=O,

where

0

0

q

0

(26a)

a+2)cq'
0
0

0

(26b)

The problem of finite thermal diffusivity is complicated
because of temperature gradients near the front, which
render the coefficient of u~"' in Eq. (18d) nonuniform and
raise questions about how to account for all density
differences. Although it may be useful to solve the finite-
diffusivity problem, calculated growth rates for infinite
and zero thermal diffusivity are expected to give approxi-
mate bounds on the growth rate for finite diffusivity when
5& and 60 are positive. Furthermore, as discussed below,
these calculations are sufficient to make a successful first
comparison with experiments.

V. RESULTS AND DISCUSSION

C (26c)

By solving Eq. (27) numerically using parameter values
in Table I, we obtain the dimensionless growth rate o. as
a function of the dimensionless wave number q for infinite
thermal diffusivity (Fig. 3, trace a). This growth rate of
small perturbations about an ascending planar horizontal

and we have used Eq. (22) to simplify the fourth and fifth
rows of L. Setting the determinant of L to zero yields an
eigenvalue condition

[q+2o(q —s)]q5, 9—4s(o+2)cq )(q —cr )=0, (27)

B. Zero thermal diffusivity

For 2)T~0, Eq. (15b) implies uniform unperturbed
temperatures 0'"' =Oo and 0' ' = 8& in the unreacted and
reacted fluids, respectively. Thus, in this limit, the tem-
perature is discontinuous at the front, consistent with the
inability of heat to diffuse into the unreacted fluid. Con-
sequently, as for infinite thermal diffusivity, the density
for zero thermal diffusivity is piecewise uniform, with
values po and p& in the unreacted and reacted fluids, re-
spectively. Hence the stability problem is again governed
solely by a discontinuous jump in density at the front,
characterized here by the overall fractional density
difference 6o=6, +60 which includes the contribution
At9 from thermal expansion.

where s =(—'+o +q )'~ . Equation (27) gives the growth
rate o. for a perturbation wave number q, an ascending
front, and infinite thermal diffusivity.
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dirnensionless wave number q
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FICz. 3. Predicted variation of the dimensionless growth rate
o. with dimensionless wave number q for infinite thermal
diffusivity (trace a) and for zero thermal diffusivity (trace b)
given by Eqs. (27) and (29) based on values of physical constants
in Table I. The wave number q of maximum growth rate and
the wave number q, of zero growth rate from Eqs. (36) and (31)
are shown for infinite thermal diffusivity. Asymptotic results
for q~O and q=q, given by Eqs. (41) and (39) are shown for
zero thermal diffusivity (dashed traces). The symbols + locate
the maxima predicted by Eqs. (36), (37), (42), and (43).
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reaction front is relevant when the reacted Quid below the
front is lighter than the unreacted Quid above the front
(5, )0). Indeed, upward propagation is unstable to long-
wavelength perturbations with q & q„where q, = 152 is a
critical wave number for onset of convection. The curva-
ture dependence of the normal front velocity [see Eq. (6)]
stabilizes short-wavelength perturbations with q )q, .
The growth rate in Fig. 3 has the same basic features as
the growth rate for perturbations about a planar horizon-
tal Rayleigh-Taylor interface between two immiscible
Auids, where surface tension stabilizes the interface at
short wavelengths.

The uniform-density approximation omits small densi-
ty changes due to the different compositions of the react-
ed and unreacted Auids except where they modify gravi-
ty. A separate calculation including all such changes
yields no discernible change in Fig. 3.

We have also calculated the growth rate for zero
thermal diff'usivity, obtained from Eq. (29) using parame-
ter values from Table I (Fig. 3, trace b). Clearly, the
larger fractional density difference 5O = 1.9 X 10 for
zero thermal diff'usivity (compared with 5, =0.87 X 10
for infinite thermal diit'usivity) implies a larger band of
unstable wavelengths, with a critical wave number

q, =197 for onset of convection. Critical wave numbers
for finite thermal diffusivity might lie between this value
and the value q, = 152 for infinite thermal diffusivity.

In the absence of an explicit general solution for o.

from Eq. (27), it is instructive to obtain asymptotic solu-
tions in regions of physical interest. For q large corn-
pared with —„', o., and o. near the onset of convection, Eq.
(27) with s =q yields the near-critical growth rate

1/2
i 5, 9q

o.= — (q ~0) .
2

The maximum growth rate o. and the corresponding
wave number q are interesting because a planar hor-
izontal front subjected to random thermal or mechanical
perturbations is expected to select a perturbation wave
number q near q and a corresponding growth rate o.

near o . The values q =13.01 and o. =275.69 ob-
tained numerically from Eq. (27) satisfy cr ))—,',
o ))2)cq, and cr ))q . With these approximations, Eq.
(27) reduces to

(32)

2so. =(s —q)q5, Q, (33)

with s =(o+q )'/, valid for q=q . We can take the
first derivative of Eq. (33) with respect to q and set
do. /dq =0 to find a relation between o. and q

2qm 2 2o =(s —
q )

1

(34)

perturbations of all wavelengths in the limit of zero densi-
ty difference between the fluids, as expected. Clearly, the
ffat front (with X)r~~ ) must also be stable when 5, & 0,
that is, when the reacted Auid below the front is heavier
than the unreacted Quid.

For finite 5„Fig. 3 imphes that the growth rate o van-
ishes in the limit of long wavelengths, that is, as q~0.
Accordingly, using Eq. (27) with o small compared with
—,
' but large compared with q, g)cq, and q, we find that
o. vanishes as the square root of the wave number as
q —+0;

5,Q
o = —2)cq (q =q, )

and the corresponding critical wave number

(30)
where s =(o. +q~ )' . A useful relation for o.

1 1/2—(25,eq }'",
2qm

(35)

1/3

(31)

follows by taking the square root of Eq. (34), solving fors, squaring, and simplifying. It is convenient to set
C

q =a(5,9)' (36)

Substituting values from Table I into Eq. (31), we easily
recover the computed value q, = 152, with corrections to
Eq. (31) of relative order 1/4q, =10 . Small o. near q,
implies that time scales for relaxation of disturbances
near the critical wave number are very long. This
phenomenon of "critical slowing down" near the onset of
convection is familiar in phase transitions and in
Rayleigh-Benard convection.

For an infinite fractional density difference 6& ~ ~ and
upward propagation, Eq. (31) implies that all wavelengths
become unstable to convection. This result reAects the
dominance of buoyant forces over the stabilizing effects
of curvature for large density differences. Since q, de-
creases with decreasing 5&, the approximation q )&—„' in

Eqs. (30) and (31} eventually breaks down for small
enough 5i. As q decreases through the value 4, Eq. (31)
crosses over to q, =(5iQ/ZXlc)' valid for 5i~0, ob-
tained by setting o =0 in Eq. (27) with q « —,'. Thus

q, ~0 as 6,~0, implying that the Hat front is stable to

4a9/2 7(2)1/2a 3+Sa 3 2 2
—i/2 —0 (38)

hence a and b are pure numbers independent of any phys-
ical parameters. Solving Eq. (38) numericaHy produces
the universal values a =0.417 836 60 and
b =0.282 488 40. Consequently, inserting values from
Table I into Eqs. (37) and (36) yields the maximum
growth rate o. =275.98 and the corresponding wave
number q =13.06 ("+"symbol at the peak of trace a,
Fig. 3), in excellent agreement with the values
o. =275.69 and q =13.01 obtained numerically from
Eq. (27).

Owing to the similarity between Eqs. (27) and (29), we

where a is a constant, so that Eq. (35) yields

g )2/3

with 5 =1/2a —(2a)' a function of a only. Substitut-
ing these relations into Eq. (33) yields an expression in-
dependent of 5, and 0,
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can immediately deduce the asymptotic solutions and
critical values for zero thermal diffusivity from their
counterparts for infinite thermal diffusivity, Eqs.
(30)—(32), (36), and (37). Thus

q, =

6pQ'

4q
—2)cq (q =q, ),

' 1/3

i /2

2
(q ~0),

(39)

(40)

(41)

(42)

(43)

X/2—

N

0
C3

L

CD

—X/2—
~ ~

'I

~ ~

where a =0.41783660 and b =0.28248840 as before.
In all cases, approximations used in the preceding para-
graphs to arrive at the results for infinite thermal
diffusivity are equally well or better justified here. In Fig.
3, dashed traces show the asymptotic forms (39) and (41),
and a "+"symbol locates the maximum given by Eqs.
(42) and (43).

It is instructive to compute the velocity field of the in-
stability leading to convection for zero thermal
diffusivity. (Infinite thermal diffusivity yields a similar
field. ) At onset of convection, this can be accomplished
by replacing 5& by 5p, by setting o. =0, q =q, =197.3242,
and E =1, and by eliminating the fifth row in the linear
system, Eq. (26a). The resulting fourth-order inhomo-
geneous system yields the remaining coe%cients
=3.3345X10, B = —3.3261X10, C = —3.3345X10,
and D =3.3430X 10, so that the imaginary parts of Eqs.
(1ga), (20), and (23) give explicit relations for the horizon-
tal and vertical components of velocity and for the front
shape. Figure 4 shows one horizontal period of the re-
sulting velocity field for perturbations of wavelength
A, =A., =2m. /q, =3.18X10 about a planar horizontal
front; the sinusoidal trace represents the position of the
perturbed front.

As is evident in Fig. 4, the Quid velocity vanishes ex-
ponentially with vertical distance from the front, and
Auid motion is restricted principally to the region defined
by —

A, /2(z (A, /2. The fiow forms cells analogous to
Rayleigh-Benard cells, where upfiow (downfiow) tends to
carry the front upward (downward). At onset of convec-
tion where o.=0, this tendency is exactly balanced by the
reduction (enhancement) of the front velocity for upward
(downward) displacements, thus producing a steady
curved front. Without the curvature dependence in the
front velocity [see Eq. (6)] responsible for these reduc-
tions and enhancements, this balance could not be
achieved for infinitesimal perturbations, and all wave-
lengths would become unstable. This can also be seen by
taking 2)c =0 in Eq. (31). The higher curvature associat-
ed with short-wavelength perturbations with A, (A,, and
finite 2)c overwhelms the tendency for the fiuid to dis-
place the front, so that the front remains Aat. These
short-wavelength perturbations decay with time because
a fIat front provides no reduction in the overall gravita-

I I

0 X/2

horizontal (x) axis

FIG. 4. Velocity field at the onset of convection for perturba-
tions of critical wavelength A, =A,, about a Aat ascending hor-
izontal autocatalytic reaction front in a laterally unbounded sys-
tem for zero thermal di6'usivity. The sinusoidal trace represents
the position of the perturbed front.

tional potential energy. Thus the curvature dependence
of the front velocity in Eq. (6) is crucial to the under-
standing of the onset of convection in autocatalytic sys-
tems.

VI. COMPARISON WITH EXPERIMENTS

To allow for comparison with experiments, it is helpful
to write the principal results of the paper in conventional
units. Recalling the length, time, and temperature scales
v/co, v/co, and a ', using the definitions in Table I, and
defining a wave number q =cpv 'q, growth rate
o' =cov 'cr, and wavelength X=2m. /q in conventional
units, we can rewrite the steady temperature profile for
the undisturbed ascending front and arbitrary thermal
diffusivity, Eq. (15b), as

—(z —zo)IdT
( )

To+(T, —T )e0', z )zo
T]y Z (Zp (44)

q, =

6pg
Dcq (q =q, ), —

4vq

5pg

4~DC

(45)

(46)

where z is once again measured in conventional units and
z =zp is the location of the undisturbed front in the mov-
ing frame. We can also rewrite Eqs. (39)—(43) for zero
thermal diffusivity as
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1 /2
50gq

(q —+0), (47)

q =a (48)

' 2/3
5og

1/2 (49)

Carrying out the arguments in Sec. V with this co-
independent condition again yields the limiting forms
(45)—(49).

Figure 5 shows the undisturbed temperature profile
given by Eq. (44) (solid trace) compared with experimen-
tal measurements (data points) from Fig. 3.5a of Ref. 1

for upward propagation and reaction mixture "D." The
thermal length scale dT=DT/co=1 83 mm. giving the
spatial decay of the temperature in Eq. (44) follows from

where a =0.41783660 and b =0.28248840 as before.
Results for infinite thermal diffusivity follow by replacing
50 by 5& in these equations.

None of the limiting forms (45)—(49) depends on the
planar front speed co, indicating that the slow front speed
is unimportant at the onset of convection. Written in
conventional units, the linearized equations depend on co
only through the convective term [V' 'V]V'"
= —coBV'"/Bz. The small magnitude cod/v=3X10
of this term relative to the viscous term vV V"' [see Eq.
(13a)] indicates the insignificance of the convective term,
although the actual corrections due to this term are much
smaller (of order 10 —10;see Sec. V). Neglecting the
convective term and accordingly replacing Eq. (25) with
Eq. (18i) leads to a simpler eigenvalue condition for zero
thermal diffusivity [compare Eq. (29)],

2(o. +2)cq )o
+ —1=0.

( + 2)1/2 |i qg

the thermal diffusivity DT = 1.45 X 10 cm /s from
Table I and the value co=0.00791 cm/s inferred from
Figs. 3.2a and 3.5a of Ref. 1. Fitting Eq. (44) to the exper-
imental points yields the values To =22. 16 'C,
Tj

=23.06 C, and zo =3.4 mm. Clearly, the predicted
temperature profile for a thin undisturbed front (with
discontinuous slope at the front) agrees with the experi-
mental profile for upward propagation except for a small
amount of rounding near the front due to the finite thick-
ness of the front. Perturbations in the temperature
profile associated with the convective Aow near onset
(which have not been calculated since only DT=0 and ~
have been considered) are expected to yield small pertur-
bations about the predicted undisturbed profile near on-
set of convection. The exponential decay of the tempera-
ture ahead of the front is responsible for density gradients
in the vicinity of the front shown schematically in Fig. 1.

When the uniform density of the unreacted Quid is
greater than that of the unreacted Quid in a laterally un-
bounded system, linear stability theory predicts that con-
vection can occur only for upward propagation with
wavelengths exceeding a critical wavelength X, =2m. /q„
with q, given by Eq. (46). For experimental parameters
in Table I relevant to iodate —arsenous acid solutions, we
predict A,, =0.99 mm for dimensionless thermal
diffusivity 2)T=DT/v=0 and A, , =1.29 mm for 2)T~00.
(These values correspond respectively to the dimension-
less wave numbers q, =197 and 152 discussed in Sec. V.)

We expect the critical wavelength for finite X)T to lie near
these values.
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FIG. 5. Experimental (data points) and theoretical (solid
trace) variation of temperature with height in the absence of
convection in a frame stationary with respect to the ascending
front. Experimental data are from Ref. 1, Fig. 3.5a. The
theoretical variation is given by Fq. (44).

FIG. 6. Experimental front propagation speeds for upward
propagation (0) and downward propagation ( X) as a function
of tube diameter for an iodate —arsenous acid solution (reaction
mixture "A," Table 3.4 of Ref. 1 corresponding to Table 4 of
Ref. 3). The dashed line gives the estimated downward propa-
gation speed co=2.95X10 mm/s. The ascending speed first
deviates significantly from the descending speed at a critical di-
ameter for the onset of convection between the diameters 0.94
and 1.78 mm. The arrow heads give the predicted critical wave
numbers X, =0.99 and 1.29 mm for the onset of convection in a
laterally unbounded system for zero and infinite dimensionless
thermal di6'usivity 2)T =DT/v, respectively.
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This predicted critical wavelength can be compared
with the experiments on iodate —arsenous acid systems. '
Measurements of the descending front propagation speed
versus tube diameter ("X" symbols in Fig. 6) imply a
convectionless Sat front speed co=(2.95+0.04) X 10
mm/s (dashed line). Since front propagation speeds in
excess of co imply convection [Eq. (5)], measurements of
the ascending front propagation speed ("O" symbols) ex-
clude convection for d «0.94 mm and imply convection
for d ~1.78 mm. Accordingly, the experiments imply
convection in vertical tubes only for upward propagation
with diameters exceeding a critical diameter d, in the
range 0.94 mm & d, & 1.78 mm. This measured range in-
cludes the predicted range 0.99 mm & A., & 1.29 mm,
whose end points are denoted by arrow heads in Fig. 6.
Hence the predicted horizontal length scale A., for the on-
set of convection in a laterally unbounded system agrees
with the observed horizontal length scale d, for the onset
of convection in vertical tubes.

VII. CONCLUSIONS

A linear analysis of infinitesimal-amplitude convection
near autocatalytic reaction fronts in a laterally unbound-
ed geometry predicts an undisturbed temperature profile
which agrees with experiments and a critical minimum
wavelength for onset of stationary convection. This criti-
cal wavelength agrees with the observed critical diameter
for upward propagation in long vertical cylinders filled
with iodate —arsenous acid solutions. This agreement
motivates calculations for cylindrical geometries, which
are currently under way.

Precise measurements of the critical diameter for the
onset of convection would be very helpful in connection
with ongoing calculations for cylindrical geometries. For
reaction mixture "2"relevant to Fig. 6, this could be ac-
complished by measuring the front speed for several tube
diameters in the range 0.94 mm & d & 1.78 mm. It
should also be helpful to measure the critical diameter for
other reaction mixtures. Since a transition to increased
front speed heralds the onset of convection, the onset of
convection could also be located by a series of measure-
ments of the front speed for constant tube diameter and
varying reactant concentrations.

Measurements of the maximum growth rate o. and
the corresponding wavelength k =2m/q would also be
helpful. The experiments could be carried out by initiat-
ing a reaction at the bottom of a cylinder (or other con-
tainer) and by comparing the width and growth rate of
developing features in the front with A, and o. . For the
data in Table I, Eqs. (48) and (49) predict the ranges 1.2
em&A. &1.5 cm and 0.26 s ' &o- &0.44 s ' based on
values at zero and infinite thermal difFusivity. The
cylinder diameter for the experiments should be large

compared with A, to allow the front to choose its own
length scale independent of the sidewalls.

When the reacted Auid is lighter than the unreacted
Auid, the linear stability of a Aat ascending autocatalytic
reaction front is similar to a Aat Rayleigh-Taylor inter-
face between two immiscible Auids of differing densities:
both interfaces are unstable above a critical wavelength
for the onset of convection. The essential differences be-
tween these problems lie in the nature of the interface be-
tween the Auids. For autocatalytic reaction fronts, the
conversion of unreacted Auid into reacted Auid by the in-
terface necessarily involves a nonzero interface velocity
with respect to the Auids, whereas impermeable
Rayleigh-Taylor interfaces are stationary with respect to
the Auids. As a result, surface tension ~ renders the stress
discontinuous and tends to stabilize the interface only in
the Rayleigh-Taylor problem, leading to a critical wave
number for the onset of convection [(p„—pI )g/r]' that
involves the density difFerence between the upper and
lower Auids. The viscous and nonviscous Rayleigh-
Taylor problems both yield this same critical wave num-
ber, which is manifestly independent of the Auid viscosi-
ty v. In autocatalytic reactions, it is the curvature depen-
dence of the interface velocity that tends to stabilize the
interface, leading to a viscosity-dependent critical wave
number [(p„—p&)g/4p&vDc ]' that involves the catalyst
diffusivity Dc and the buoyancy parameters (p„—p&)g
raised to the power 1/3 rather than 1/2. These
differences clearly distinguish the problem of a propaga-
ting autocatalytic reaction front from the classical
viscous Rayleigh-Taylor problem.

The small calculated variation in the critical wave-
length as the thermal diffusivity goes from zero to infinity
implies that the system behavior is dominated by the
discontinuous jump in density at the front rather than by
thermal gradients (for upward propagation and a reacted
fiuid that is lighter than the unreacted Quid). However,
when the reacted Auid is heavier than the unreacted Auid,
this jump in density stabilizes the front for upward prop-
agation. Thus it may be possible in this case to observe a
transition to convection driven by thermal gradients
analogous to the Rayleigh-Benard instability of a Auid
heated from below. This problem is currently under in-
vestigation.
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