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Spatially confined states of traveling-wave convection of arbitrary length are studied in
ethanol-water mixtures contained in a narrow annular channel, a geometry that approximates a

one-dimensional system with periodic boundary conditions.

The measured properties of these

states, including the Rayleigh number at which they are observed, the frequency and wave num-
ber of the traveling waves, and the spatial variation of the amplitude and wave number, are in
agreement with recent numerical calculations, leading to a microscopic understanding of these

dynamical, nonequilibrium structures.

In convection in fluid mixtures such as ethanol and wa-
ter, the onset of flow occurs as a subcritical Hopf bifurca-
tion to states of traveling-wave convection.! ~> In this sys-
tem, a wide range of spatiotemporal behavior has been ob-
served and studied, including states of confined traveling
waves of both arbitrary?™ and fixed*® length, in which
traveling-wave (TW) convection coexists stably with con-
duction separated by fronts which are stationary in the
laboratory frame. These confined states, which are exam-
ples of a manifest breaking of the spatial symmetry in a
nonequilibrium system in the presence of a subcritical bi-
furcation, are analogous to the coexistence of different
phases in an equilibrium system. Although there has re-
cently been considerable theoretical attention paid to
these states,® % there has, until now, been no adequate
microscopic understanding of these observations. Puz-
zling characteristics include the observed frequency,
which is about a factor of 2 lower than the Hopf frequen-
cy but a factor of S larger than that of uniform traveling-
wave states at the same Rayleigh number, and the fact
that these states have fronts between conduction and con-
vection which are stationary in the laboratory frame.

In this paper, we compare measurements of the proper-
ties of the confined states with the results of recent, finite-
difference numerical calculations.® The calculations as-
sume the Oberbeck-Boussinesq approximation of the fluid
equations, two-dimensional flow perpendicular to the roll
axes, rigid impermeable boundary conditions at the upper
and lower plates of the container, and periodic boundary
conditions in the other dimension. The agreement be-
tween the calculations and experiment, described in this
paper, points to the microscopic mechanism by which the
fronts between convection and conduction are locked in
the laboratory frame. In particular, the numerical calcula-
tions® show that the concentration and velocity fields are
phased such that there are lateral currents of concentra-
tion which steepen the concentration gradient in front of
the traveling waves, thereby stabilizing this conducting re-
gion and preventing the invasion of convection. This
mechanism is likely to be important in understanding oth-
er aspects of the spatiotemporal behavior observed in this
and similar nonequilibrium systems.
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In a binary fluid mixture, the separation ratio y, which
is proportional to the Soret coefficient, parametrizes con-
centration-driven fluid density changes.! For y <0, the
lighter component diffuses toward the colder region,
thereby stabilizing the fluid layer against convection, and
the Rayleigh number at onset is larger than that for a
pure fluid. In this paper, all Rayleigh numbers r will be
normalized by the onset Rayleigh number, R, of convec-
tion in a pure fluid with the same thermal properties as the
mixture; thus in the mixtures studied here, r=R/R. > 1
above onset.

The experiments are conducted in a narrow annular
channel with a rectangular cross section which provides
periodic horizontal boundary conditions in the direction of
the TW propagation, as in the numerical calculations.
The apparatus and the properties of the fluid mixture are
identical to that used in a recent study '® of uniform states
of traveling-wave convection. The convection cell has a
copper bottom plate and a sapphire top plate. The vertical
walls are machined plastic (ULTEM polyetherimide) of
height d =0.309 £ 0.002 cm. The cell is a narrow annulus
with dimensions, in units of d, 1.288 in width by 67.09 in
mean circumference. The working fluid is a mixture of
8.00% by weight ethanol in water. The top-plate tempera-
ture is set to 25.00°C and regulated to 0.7 mK. Stable
confined states are observed in a narrow band>3 of
bottom-plate temperatures centered around 29.72°C. At
the confined-state Rayleigh number, the average tem-
perature is 27.36°C, and the fluid parameters are y
= —(.258, P=9.21, and L =0.008, where the Prandtl
number P and the Lewis number L are defined in the usu-
al way. ! The vertical thermal diffusion time, 7,=d ¥/x, is
74.2 s, where « is the thermal diffusivity.

The flow is visualized from above with the shadowgraph
method. A two-lens, afocal optical system is used.'? Care
is taken to ensure that the intensity pattern is recorded at
an axial position where the spatial modulation in the opti-
cal intensity I is in the linear regime.'3 In this case

P o9%(x,1)
I(x) e J:) dz—‘—ép— ,
where z is the height in the cell in units of d, x is the coor-
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dinate in the annular direction, and 7i(x,z) is the index of
refraction modulation, which can be written

i(x,z)=alc(x,z) +b6(x,z)1,

where ¢ and 6 are the modulations in concentration and
temperature fields. For the fluid described above, b
= —0.919 using the units of ¢ and @ given in Refs. 9 and

14.

Convection begins at a Rayleigh number r,, =1.80 with
a subcritical Hopf bifurcation. This evolves to a nonlinear
state of traveling waves with a frequency w, which is ap-
proximately 45 times smaller than the Hopf frequency at
the same Rayleigh number. If the Rayleigh number is
then decreased, TW convection persists with w increasing
by a factor of 10 until a saddle-node bifurcation is reached
at r,=1.62. If the Rayleigh number is reduced below r;,
convection dies away, but not uniformly around the an-
nulus. If the Rayleigh number is raised into a relatively
narrow “locking” band in r near r =1.68 before convec-
tion ceases everywhere, the region or regions of TW con-
vection that remain are found to coexist stably with re-
gions of zero flow for arbitrarily long times.?® These
confined states are composed of traveling waves which are
generated at one end of the convecting region and disap-
pear at the other, with boundaries between conduction
and convection which are stationary in the laboratory
frame. If r is raised above (lowered below) the locking
band, the spatial extent of the confined state grows
(shrinks); returning r back into the band then stabilizes
the state at a new length. >3

Shown in Fig. 1(a) is the experimental shadowgraph in-
tensity of a confined state as a function of position around
the annulus. As time proceeds, the waves travel from left
to right with a period of 83 s, while the envelope is station-
ary in the laboratory frame. This signal has been low-pass
filtered to remove spatial frequencies above 1.7 times the
fundamental. In this range of wavelengths, the signal is
dominated by the temperature field 7(x,z). In order to
eliminate nonuniform, time-independent contributions to
the shadowgraph intensity, the data plotted at each spatial
point are the intensity at one time divided by that one-half
period later. For the optical contrast used in these experi-
ments, this procedure introduces nonlinear distortions of
less than 5%, but does not significantly affect the mea-
sured wavelengths. The wavelength of the waves varies
markedly across the confined state. This wavelength, ob-
tained using complex demodulation techniques,'> is plot-
ted as a function of position in Fig. 1(a).

Shown in Fig. 1(b) are the results of recent numerical
simulations by Barten, Liicke, and Kamps9 for the sha-
dowgraph intensity and wavelength of a confined state
which is larger in extent than that shown in Fig. 1(a) by
about half a wavelength. The predicted optical signal in
Fig. 1(b) has been spatially low-pass filtered in the same
manner as that in Fig. 1(a). The wavelength determina-
tion procedures used in Figs. 1(a) and 1(b) were dif-
ferent,’ and the lighter portions of the dashed curves cor-
respond to shadowgraph intensities less than 20% of the
maximum value, where this difference in procedure is ex-
pected to be significant. As can be seen from Fig. 1, the
spatial variation of the amplitude and wavelength shown
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FIG. 1. Solid curves show the shadowgraph intensity as a
function of position for confined states: (a) from experiment,
and (b) as predicted by the numerical calculations of Ref. 9.
The amplitudes have been normalized to the same arbitrary
value. The waves travel from left to right. The state in (b) is
longer than that in (a) by about half a wavelength, thus they are
in phase on the left-hand side and 180° out of phase on the
right-hand side. In (a), the data points are shown, and the curve
is a guide to the eye. The dashed curves show the corresponding
spatial variation of the wavelength. (See text for details.)

in Figs. 1(a) and 1(b) are in good agreement.

The parameters which characterize the confined states
shown in Fig. 1 are compared in Table I. The frequency
of the confined state, wcr, is a factor of 2.5 lower than the
Hopf frequency wg but about a factor of 5 larger than that
of a uniform state at the same Rayleigh number. Experi-
ment and the calculation for wc agree to within about
20%. We might expect that there would be a correction
due to the finite transverse aspect ratio in the experiment
as compared to the infinite, two-dimensional assumptions
of the calculation which would affect w. and wg in a simi-
lar way. When we normalize wcr by wo, excellent agree-

TABLE 1. Parameters that characterize the confined states
shown in Figs. 1(a) and 1(b) are compared. The wavelength A
and the index of refraction modulation 7 are evaluated at the
position at which the amplitude is a maximum.

Confined state Numerical
parameter Experiment calculation (Ref. 9)

wer (units of rad/z.) 5.58 £0.07 4.53

e/ wo 0.404 +0.005 0.403

Aci/d 1.68 1.72

At/ iy 0.74 0.85

ref 1.68 1.25

rs 1.62 1.21

LA 0.33 0.26

Fco ™ 7rs
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ment between the experiment and the calculations is
found. Similarly, the measured index of refraction modu-
lation in the confined state, 7i¢, normalized by that for a
uniform state at the same Rayleigh number, 7,, is in good
agreement with the results of the numerical calculations,
as is the wavelength A./d at maximum amplitude. Com-
parison of the Rayleigh number r, where the confined
states are observed appears to show a similar effect. The
absolute comparison is 1.68 for the experiment and 1.25 in
the calculation, but when the fractional distance in Ray-
leigh numbers between the confined state and the saddle
node, re—rs, is compared with the distance between the
saddle node and the onset of the oscillatory instability,
reo — s, better agreement is obtained (see Table I).

The one prediction of the numerical calculations which
disagrees with our experiments is the observation that, ex-
perimentally, the confined states are stationary in the lab-
oratory frame, but in the calculations they move with a
group velocity which is small but nonzero— 75 of the
phase velocity obtained using the Hopf frequency (.e.,
about 35 of the phase velocity of the waves in the confined
states). It is possible that this discrepancy is due to the
finite transverse aspect ratio of the experimental geometry
as compared with the infinite, two-dimensional assump-
tions of the calculations.” This point warrants further
consideration.

Confined states of arbitrary spatial extent, consisting of
traveling waves propagating in either direction, can be ob-
tained at arbitrary positions in the annulus. Shown in Fig.
2 are experimental data for the envelopes of the shadow-
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FIG. 2. Shown are the envelopes of the experimental shadow-
graph intensity and the corresponding wavelengths of confined
states of various sizes. The amplitudes have been normalized to
the same arbitrary value. The waves travel from left to right.
(See text for details.)
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graph intensity of four confined states of different sizes, at
the same Rayleigh number. Also shown in Fig. 2 are cor-
responding plots of the wavelength as a function of posi-
tion. (In comparing Figs. 1 and 2, d is equal to 5.37°.)
The envelopes and wavelengths shown were obtained by
complex demodulation, as described in Ref. 15. Figure
2(b) is the same state as that shown in Fig. 1(a); and Fig.
2(a) has been reversed so that, in the figure, the waves in
all four states travel from left to right. These states were
obtained in different experimental runs and have been
translated in absolute position [by (a) 110°, (b) 30°, (c)
7.5°, and (d) —72°], so they are roughly centered at 180°
in the figure. Qualitatively, both the amplitude and wave-
length are constant in the interior of the confined state
and vary rapidly only near the ends.'® The maximum am-
plitudes of all states are similar, and the frequencies of all
states are the same to within the error bars quoted in
Table I. Similar behavior as a function of size was report-
ed for the two confined states observed in the numerical
calculations® at this value of y.

The shape of the envelope of the confined states is also
similar to the predictions of Ref. 9. The amplitudes of the
velocity and temperature fields, shown in Ref. 9, increase
toward the leading edge of the confined states, but the
shadowgraph images are weighted by A ~2, where A is the
local wavelength. This factor makes the shadowgraph in-
tensity larger near the trailing edge, as is observed in our
experiments.

The measurements described here and the calculations
described in Ref. 9 point out the similarity of these states
of arbitrary length, to those described in Refs. 4 and 5,
which were observed in a different parameter regime (.e.,
w==—0.08). These latter states were observed to be fixed
in length and of a size similar to the state shown in Fig.
2(a). In both cases, there is a similar and marked change
in wavelength across the convecting region,*>° and the
frequencies of these states, relative to the Hopf frequency,
are also very similar. The mechanism for confinement is
likely the same for the states discussed here and those de-
scribed in Refs. 4 and 5.°

In this paper, we have described a quantitative compar-
ison between recent two-dimensional numerical calcula-
tions of the fluid equations and experimental measure-
ments of confined TW states of arbitrary length. The fre-
quency, amplitude, wavelength, and spatial variation of
the wavelength in the confined states are in good agree-
ment, even though most of these quantities are distinctly
different than those for either uniform linear or fully
developed nonlinear states of traveling-wave convection.
This agreement gives us confidence in examining the most
puzzling aspect of the confined states, which is the mecha-
nism by which these states are locked, or, in the case of
the calculations, move slowly in the laboratory frame.
The answer® is that the phasing of the time-dependent
concentration and velocity fields produces lateral, dc con-
centration currents which result in the steepening of the
concentration gradient in front of the confined state,
thereby stabilizing this region with respect to the invasion
of traveling-wave convection. Thus this stabilization
mechanism is an intrinsically dynamical phenomenon.

The agreement between the calculations and experi-
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ment for these confined states gives us hope that, by the
combination of numerical calculations and laboratory ex-
periments, we can achieve a detailed understanding of the
other spatiotemporal phenomena?~> observed in this
dynamical, nonequilibrium system. The results described
above may also provide insight into the minimum amount
of complexity required for a reduced (e.g., a model equa-
tion) description of these phenomena.
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