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Partially coherent propagation-invariant beams: Passage through paraxial optical systems
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The cross-spectral-density function characterizing a general propagation-invariant wave field
satisfies the associated (planar) paraxial equation. Building on this result, we solve exactly the prob-
lem of the passage of such fields through arbitrary lossless optical systems characterized by their
ABCD matrices. It is shown that the wave field remains shape invariant in all such systems, but
that the property of strict propagation invariance is conserved only if the system is afocal.

Diffraction-free fields' are exact solutions of the
Helmholtz equation that propagate in free space without
any modification of the transverse intensity distribution.
Well-known examples are the extremely narrow Jo beams
and other nondiffracting Bessel beams. The passage of
such coherent fields through first-order optical systems
characterized by their ABCD matrices has been investi-
gated in Ref. 4 using group theory; paraxial optical trans-
formations belong to a metaplectic group that is iso-
morphic to the symplectic group of geometrical-optics
ray-transfer matrices. ' A conclusion of Ref. 4 was that
diffraction-free beams remain nondiffracting in all such
systems. A fundamental difhculty arises, however, from
the fact that the nondiffracting fields are not solutions to
the parabolic equation as is required by wave propagation
in ABCD systems. In Ref. 4 this difticulty is handled by
taking in free flight the paraxial approximation of the
diffraction-free beam, i.e., by approximating the disper-
sion surface, a sphere of radius k, by a paraboloid of the
same curvature. This procedure creates an extraneous,
beam-width-dependent phase factor for the field, though
naturally it will not affect the beam intensity.

In recent papers we have investigated the extension of
the concept of propagation invariance into the domain of
partially coherent optics. We made use of the newly
developed theory of partial coherence in the space-
frequency domain and derived, in particular, an explicit
expression for optical wave fields that are characterized
by a cross-spectral-density function that remains invari-

ant in any plane transverse to the propagation direction.
The main purpose of this Brief Report is to investigate
the passage of these propagation-invariant partially
coherent fields through ABCD optical systems. The
transfer operators of such systems are canonical trans-
forms' that form a metaplectic group and admit, in gen-
eral, an integral representation that is identical to the
generalized Huygens-Fresnel integral. ' ' " Hence, in
essence, this work extends the results of Ref. 4 into sto-
chastic wave fields in terms of familiar laser-physics tech-
niques. ' It turns out also that the fundamental difticulty
mentioned above vanishes (even in the fully coherent
case) when we consider the propagation of the cross-
spectral density.

Within the context of second-order coherence theory,
the free-space cross-spectral-density function of a statisti-
cally stationary (scalar) wave field obeys the coupled
Helmholtz equations '

~(pl p2'z)= ~(pl p2'0)

for all values of z ~ 0, must necessarily be of the form

(2)

(VJ+k )W(ri, r2)=0, j =1,2

where r=(p, z}=(x,y, z), k =co/c is the wave number,
and the explicit dependence on the frequency co w'ill be
omitted throughout. It was shown in Ref. 7 that the
solutions to Eqs. (1), which moreover satisfy the condi-
tion of propagation invariance

2&

W(r„r2)= f f ff S(f,8„82)expIi(z2 —z, )[k —(2mf) ]'~2]
o

X exp [i2m'f (x2cos82 —x, cos8, +y2sin82 —y, sin8, ) ]dfd 8,d 82, (3)

where S (f, 8 i, 82) is an arbitrary function. We note that
Eq. (2) poses an invariance condition on both the trans-
verse intensity and the transverse spatial (spectral) coher-
ence distributions. '

The general expression (3) contains as special cases the
usual coherent diffraction-free fields' with cross-spectral
density of the factored form' W(ri, r2)= U*(ri)U(r2).
Setting
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S(f,gi, 02)=(2m la) F*(gi)F(02)5(f a—/2')
we readily find from Eq. (3) that

U(r)=exp(ipz) f F(0)exp[ia(x cosg+y sing)]dg,

where F(0) is arbitrary and the condition a +P =k
must hold for U(r) to be a solution of the Helmholtz
equation. Expression (3) also contains nontrivial partially
coherent solutions such as the Jo Bessel-correlated field'

IV(r„r2) =exp[iP(z2 —z, )]Jo(a~p, —
p2~ )

gate operators). Canonical-operator theory has been ex-
tensively studied in connection with first-order optical
systems that may contain gain and loss, misahgnments,
tilts, and anisotropic media (see, for example, Refs. 6, 12,
and 16). For axial-symmetric optical systems the action
of the transfer operator may be expressed in a form that
is mathematically identical to the extended Huygens-
Fresnel integral

U(p, zo)= — e'" f f U(p', 0)exp (Dp 2p p—
'

2mB 2B

[choice S(f,gi, 02)=(2m/a) 5(f —a/2m)5(gi —gz) in Eq.
(3)], which has a constant intensity but a sharply peaked
transverse-spatial-correlation profile. Propagation-
invariant wave fields that possess rapidly varying profiles
of both the optical intensity and the spatial coherence
also exist: one example is [cf. Ref. 7(b)]

IV(ri, r2)=exp[iP(z2 —zi)][JO(alpi —p2l)

where

I. = f n(0, z)dz
0

+Ap' ) d p',

(7)

~0(a Ipi+p21)]

which is obtained from Eq. (3) with S (f, 0„02)= (2n/a) 5(f —a/2n) [5(gi —02) —5( gi —gz+ vr) ].
The propagation of an optical field from the input

plane z=O of an arbitrary ABCD optical system to the
output plane z =z0 is governed by a canonical transfer
operator' (a linear similarity transformation that
preserves the commutation relation of canonically conju-

is the on-axis optical length of the system [n (p, z) is the
refractive index]. Although Eq. (7) is valid also for sys-
tems with gain or loss, ' we shall simply consider lossless
systems that are embedded in air; consequently all of the
elements A, B, C, and D are real parameters and
AD BC= l. —Interpreting U (p, z) as an appropriate
space-frequency domain field realization, it then follows
from the definition of the cross-spectral-density function
(after some rearrangement) that

W'(p „pz,zo ) = (AB) exp — (p, —p2)
—2 lkD 2 2

oo

& f f f f IV(p'i. p';0)-p —", [(pi)' —(p2)'] -p '"
(pi pi —

p2 p2') d'pid'p2

With the help of this and the previous expressions we

may now readily elucidate the problems surrounding
rigorous solutions (such as the Bessel beams) and paraxial
approximations in optical ABCD systems.

The main problem stems from the fact that while the
general coherent diffraction-free field (4) is an exact solu-
tion of the Helmholtz equation, it does not satisfy the
corresponding parabolic equation ( Vi+ 2ik 8 /Bz ) V (r )

=0, where V(r) = U(r)exp( —ikz) and Vi=8 /Bx
+0 /By . This latter equation, on the other hand, is
mathematically equivalent to the Fresnel diffraction in-
tegral' and governs the free-Aight propagation in ABCD
systems. Stated more specifically, Eq. (4) is not expressi-
ble in the form of Eq. (7) when 2 =D= 1, B =zo, and
C=O. The problem can be avoided (cf. Ref. 4) by consid-
ering only the paraxial approximation of the diffraction-

I

free field; this amounts to expanding p= k —a /2k in Eq.
(4). Hence the price to be paid is a phase factor that de-

pends on z and on a (which determines the beam size),
but physically the phase has no effect on the optical in-
tensity. More generally, we observe that these phase fac-
tors cancel when calculating, for example through statist-
ical averaging of the diffraction-free beams, ' the cross-
spectral-density functions needed in expression (9).

Owing to the specific form of Eq. (9) and the condition
(2) of propagation invariance, it is in fact appropriate to
consider here directly the planar cross-spectral-density
function IV(p„p2, z), i.e., to set z2=z, =z. For general
propagation-invariant wave fields (which include any
correlated ensembles of the usual diffraction-free beams )

this function is, according to Eq. (3), simply

2'
IV(pi,'p&,'z)= f J ff S(f,gi, 02)exp[i2mf(x&cosg~ —xicosgi+y2sin02 —yisingi)]dfdgidg~ .

0

(10)
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The free-space propagation of the planar cross-spectral-density functions associated with paraxial partially coherent

wave fields is governed by the differential equation'

2 2 a
V u V—~t 2—ik W(p„p2;z) =0 .

az

On substituting Eq. (10) into Eq. (11) we see that the cross-spectral-density function of a general propagation-invariant

field, which is an exact solution to a pair of coupled Helmholtz equations, is in any transverse plane remarkably also a
solution to the associated (single) paraxial equation. Therefore, no formal dilliculties arise when dealing with the

problem of partially coherent wave propagation through arbitrary A8CD optical systems. We emphasize that the

description of coherent wave fields with the aid of separable planar cross-spectral-density functions'

W(ri, r2) = U (pi, z) U(pz, z) solves the dilemma even in the fully coherent case.
We are now in a position to evaluate the expression that results when a propagation-invariant input field traverses a

lossless ABCD optical system. On substituting Eq. (10) (which, in fact, is independent of z) into the integrand of Eq. (9)

and performing the necessary integrations, we arrive at

tk C
W(p„pz, zo) = A exp — (p, —p2)2 A

277
k /27I- 2X f S(f,8„0 )2e px[i2 fear(x2cosOz —x, cos6, +yzsin&z —y, sin8, )/A)dfd8, dOz .

0
(12)

Clearly, the integral still represents a propagation-
invariant wave field similar to the incident field up to a
scaling factor of 1/A. In addition, however, an exponen-
tial term is introduced that corresponds to a spherical
wave front with the radius of curvature R = 2 /C.
Strictly speaking, therefore, a propagation-invariant field
is generated in the output plane of the system only if
C=O, which in turn implies that the system is afocal,
with magnification A. Our definition (2) of propagation
invariance reduces to the original intensity condition
I (p, z) =I (p, 0) given in Ref. 1 for arbitrary fully
coherent difFraction-free fields, and thus the conclusion
obtained above also holds for these wave fields, including
the J0 Bessel beam discussed in Ref. 4.

Assuming that the A8CD system is a combination of
some optical system characterized by a matrix 3 '8'C'D'
and a free-space propagation over a distance d, the com-
bined matrix elements are 3 = 3'+dC', 8 =8'+dD',
C =C', and D =D'. It is now seen from Eq. (12) that the
partially coherent propagation-invariant field behind the
output plane cannot satisfy the condition of propagation
invariance unless C'=0; although the spatial correlation
properties and the intensity distribution across any trans-
verse plane after the fixed optical system are equal —up

to a scale factor —to those of the input beam, this scale
factor depends on the propagation distance d. Such be-
havior is characteristic, for example, of the classic
Hermite-Gaussian laser modes' and (in variable-
coherence optics) the so-called Gaussian Schell-model
beams (see, e.g. , Ref. 19). These beams are normally not
considered diffraction free, but merely shape invariant.

In conclusion, using the well-known methods of physi-
cal optics, we have extended the results of Ref. 4 to cover
the passage of all (coherent or partially coherent)
propagation-invariant wave fields through arbitrary (loss-
less) ABCD optical systems. In particular, we have
shown that in plane-to-plane propagation such wave
fields do not distinguish between exact and paraxial evo-
lution, and that these fields can remain propagation in-
variant only if the optical system is a focal.
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