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von Weixsacker coefficient for high-temperature electron plasmas
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The coefficient of the von Weizsacker term in the Thomas —Fermi —von Weizsacker energy func-

tional is determined within a perturbation framework for high-temperature plasmas. A notable de-

viation in comparison to the corresponding zero-temperature result is found.

There is a renewed interest for using classical density-
functional theory (CDFT) in problems that have an in-
trinsic many-body nature. An interesting example is the
problem of atoms in plasmas. ' CDFT is conceptually
simple and does not require a preliminary calculation of
the individual electronic wave functions. On the other
hand, the applied direct approximations to the kinetic en-

ergy, or Helmholtz's free energy at nonzero temperature,
need theoretical justifications in CDFT.

The standard Thomas —Fermi —von Weizsacker (TFW)
approximation for the kinetic energy in question contains
a parameter A. . The determination of this A, parameter is
based on different physical requirements.

In the present Brief Report we determine the A, param-
eter by using a perturbative description for the energy
change caused by an effective screened external potential
V (r) in high-temperature electronic plasmas.

According to the result of Meyer, Wang, and Young
the second-order energy change [bE' ~] is as follows:

bE~~'= — I (4~q dq) V(q)l II(q)
2 (2~)'

in which V(q) is the Fourier transform of V(r) and II(q)
is the screened response function (or free electron polar-
ization propagator) of the noninteracting system (see also
Refs. 10 and 11). The exact random-phase approxima-
tion (RPA) response function is

n
no

kT 8kT „o2n+1 n! 8kT

(2)

in the examined high-temperature limit, where n, 0 is the
density of the host system, T is the temperature, and k is
the Boltzmann constant. To deduce Eq. (2) we have used
the so-called real-space RPA response function'

no 1II (R, T) = —exp( —2kTR ),
R

for high temperatures. It is easy to show that (i)
II '=II in the short-wavelength (q~ ~ ) limit, and
(ii) II = II at q =0 independently of A, .

If the approximate method [see Eq. (4)] is to give the
exact energy change [see Eqs. (1) and (2)] in the weak-
coupling limit, then the natural requirement is the follow-
ing:

I dqq [II (q, T) II (q—, T)]lV(q) =0.
Here we specify the effective potential V(r) as a simple
Yukawa type, given by

V(r)= —e
r

and solve Eq. (5) for the optimal A, value. Because we are
interested in the asymptotic behavior (see next para-
graph) the noninteracting picture of the system and the
use of a Yukawa potential are fully satisfactory. The
same result holds in the Hartree self-consistent-field
description.

The integration can be performed without difficulty
due to the fast convergence of the series in Eq. (2). The
results that we have obtained for the A, parameter are
plotted in Fig. 1 as a function of the reduced variable
x =a /4kT For very hig. h temperatures (x ~0) the op-
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where R = lr —r'l, and we have performed a Fourier
transformation for it.

In the TFW A, approximation the response function is
given by'
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11'(q, T)=
kT 1+A(q /4kT)

(4)

FIG. 1. The values of the von Weizsacker coefficient A, as a
function of the reduced variable x =cz /4kT. For x~oo
tends to unity. See the text for further details.
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timal value, predicted by the applied constraint [see Eq.
(5)], is about A, =0.393. This Coulombic limit value is
roughly two times bigger than the corresponding zero-
temperature result ( A, =0.205 ) of Meyer, Wang, and
Young. [The forms of II(q) are different at T=0; see
Ref. 9.] It is worth mentioning that a required
equivalence of Eqs. (2) and (4) for small-q values gives the

3
value, as it is wel l known. ' In conclusion, in the

high-temperature limit the mentioned restrictions predict
nearly equivalent A, values.

We have to stress, however, that the outlined theoreti-
cal framework is a perturbative method, for the second-
order energy change b,E' '. In the limiting case [T is
very high, therefore a-(no/kT)'~ ] the leading first-
order energy change (b,E"') is independent of the A,

value, namely AE"'-no/[II(q =0)], and only A, = l is
compatible with the nuclear-cusp condition. '

We finish our consideration by writing an integral-
representation form for II (q, T). Using the notation
s =q /8kT and observing that the series in Eq. (2) refers

to the &F&( —,', —32, s ) confiuent hypergeometric function, we
arrive at the desired result

no, 2 l „2IIR'~(q, T)= e ' — du e"
kT s 0

The expression in Eq. (6) is the so-called Fried-Conte
function. ' For practical applications powerful two-sided
Pade approximants of the above function are available. '

It turns out that the first nontrivial two-sided Pade ap-
proximant of Nemeth, Ag, and Paris' (determined on
mathematical grounds) is equivalent to our physical re-
sult given by Eq. (4) for A, = l.

The authors gratefully acknowledge partial financial
support by Gipuzkoako Foru Aldundia, Eusko Jaurlarit-
za and Euskal Herriko Unibertsitatea. One of us
(P.M.E.) acknowledges help and support by Iberduero
S.A.

*Permanent address: Quantum Theory Group, Institute of
Physics, Technical University of Budapest, Budapest,
H-1521, Hungary.

A. M. Abrahams and S. L. Shapiro, Phys. Rev. A 42, 2530
(1990).

F. A. Gutierrez and M. D. Girardeau, Phys. Rev. A 42, 936
(1990).

F. Perrot and N. H. March, Phys. Rev. A 42, 4884 (1990).
4R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689

(1989).
5C. F. von Weizsacker, Z. Phys. 96, 431 (1935).
R. M. More, Phys. Rev. A 19, 1234 (1979).

7K. Yonei, J. Ozaki, and Y. Tomishima, J. Phys. Soc. Jpn. 56,
2697 (1987).

8E. Engel and R. M. Dreizler, J. Phys. B 22, 1901 (1989).

A. Meyer, G. Wang, and W. H. Young, Z. Naturforsch. 31, 898
(1976).

W. Jones and W. H. Young, J. Phys. C 4, 1322 (1971).
C. O. Almbladh and L. Hedin, in Handbook on Synchrotron
Radiation, edited by E. E. Koch (North-Holland, Amster-
dam, 1983), p. 651.

' W. Jones and N. H. March, in Theoretical Solid State Physics
(Dover, New York, 1973), Vol. II, p. 988.

' I. Nagy, A. Arnau, P. M. Echenique, and K. Ladanyi, Phys.
Rev. A (to be published).

i4F. Perrot, Phys. Rev. A 20, 586 (1979).
~5B. D. Fried and S. D. Conte, in The Plasma Dispersion Func-

tion (Academic, New York, 1961).
G. Nemeth, G. A. Ag, and Gy. Paris, J. Math. Phys. 22, 1192
(1981).


