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Stationary convection in a binary mixture
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We present an experimental study of stationary convection in a binary mixture at positive values
of a separation ratio. The interplay between the Rayleigh-Benard and the Soret mechanisms of in-

stability and the corresponding boundary conditions gives us the possibility to observe a transition
from large- to small-scale structures as well as a transition between patterns with different sym-
metries. We also investigate an inAuence of lateral boundaries and the cell geometry on the pattern
selection.

I. INTRODUCTION

During the last several years it has been shown both
experimentally and theoretically that convection in a
binary Quid is a convenient and easily controllable con-
tinuous system exhibiting a rich variety of pattern forma-
tion and dynamical phenomena in the vicinity of onset. '

The interplay between heat and mass diffusion is respon-
sible for the richness of dynamical behavior and provides
several significant advantages of the system compared to
other nonequilibrium pattern forming systems such as
Rayleigh-Benard convection in a pure Auid. First, the
convecting binary Quid shows both stationary and oscilla-
tory behavior near onset, depending on the values of the
control parameters. The control parameters are the Ray-
leigh number R =agATd /v~ and the separation ratio
0'= —(kz. /T)(a/P) that defines a coupling between tem-
perature and concentration variations [here
a= —( l/p)(t)p/t)T) is the thermal expansion coefficient,
P= —( 1 /p )(t)p/t)c ) is the concentration expansion
coefficient, AT is the temperature difference, g is the
gravity acceleration, d is the cell height, a. is the thermal
diffusivity, v is the kinematic viscosity, and kz- is the
Soret coefficient. 4 is controlled externally by varying
the mean temperature and concentration of the sample.
The physical mechanism responsible for the coupling is
the Soret effect by which an externally imposed tempera-
ture gradient in a mixture establishes a concentration
gradient in a mass-conserving system. Most of the recent
theoretical developments and experimental observations
were devoted to oscillatory convection and multicritical
behavior near the convective onset, which have not been
observed in another system previously. This type of bi-
furcation occurs at negative values of V. At positive
values of %', both the temperature and concentration gra-
dients destabilize the heat conduction state. This leads to
a stationary convection. The second experimentally at-
tractive advantage of the convection in a binary mixture
is that one can control the relative importance of the

temperature or solute gradient in the instability mecha-
nism by varying R and %. Thus in the case of stationary
convection in a binary mixture there exist two regimes of
stationary convection, each of which is characterized by
a different dominant driving mechanism of instability.
Close to onset the instability is dominated by the solute
gradient (for large enough values of 4) and this regime is
defined as the Soret regime. At %L '))1 the critical
temperature difference for the convective onset 6T, is re-
duced considerably compared with the critical tempera-
ture difference for onset of convection AT in a pure fluid
with the same thermophysical properties as a binary
Quid. (Here L =D/tc is the Lewis number, the ratio be-
tween mass and thermal diffusivities. ) Convective Row
above AT is defined as the Rayleigh regime. When the
critical temperature differences for both regimes are very
different, the two regimes can be isolated unambiguously.

The intriguing feature of the two regimes is the strik-
ing differences in nonlinear behavior both in heat trans-
port and in pattern and wave-number selection. The
main results of these experiments presented previously
(Ref. 2) are the following. Heat transport in the Soret re-
gime is drastically reduced compared with the Rayleigh
regime, as manifested by very different values of the ini-
tial slope 5 of the Nusselt number versus AT for the two
regimes where the Nusselt number N is the effective heat
transport. Depending on the value of 4 the heat trans-
port is suppressed drastically so that the initial slope S is
reduced up to several orders of magnitude compared to
that in the Rayleigh regime. This inefficiency in the heat
transport occurs for two reasons. First, due to the Soret
mechanism the temperature perturbation amplitude in
the convective Row is L/'0 times smaller than in the
Rayleigh regime. Secondly, the boundary conditions for
concentration are zero mass Aux due to the impermeable
boundaries. As realized a long time ago the impermeable
boundary conditions for concentration lead to a decrease
of the critical wave number of the pattern selected as +
increases. This cellular structure with large horizontal
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extent is similar to that which has been predicted in the
case of the Rayleigh-Benard convection in a pure Auid
with low thermally conductive boundaries. In the latter
case it was shown theoretically that the convective heat
transport across the layer is proportional to the square of
the critical wave number, i.e., it reduces considerably
when the wave number decreases; similar functional
dependence should, probably, exist in the Soret regime.
Thus at large enough values of 4' both small wave num-
ber of the pattern and small amplitude of the temperature
perturbations reduce the convective heat transport in the
Soret regime compared with the Rayleigh regime.
Another consequence of the impermeable boundary con-
ditions for concentration is that the preferred pattern in
the Soret regime is found to be a square pattern instead of
the roll pattern in the Rayleigh regime. Therefore, a
binary mixture provides a convective system where the
impermeable boundary conditions are equivalent to insu-
lating boundaries in a convective pure Quid.

As a consequence this system gives us a rare opportun-
ity, by tuning the control parameter 4, of varying the
"thermal" boundary conditions from good conductivity
at 0=0 to perfectly insulating at %L &) 1, and to study
linear and nonlinear properties of the pattern selected.
By tuning the second control parameter R at a given
value of %' & 0 one can pass from the Soret to Rayleigh re-
gime and study pattern competition and switching which
is achievable only in the stationary convection of a binary
mixture.

We reported previously also the observation of a
large-scale structure in the Soret regime close to onset
and a transition to a small-scale square pattern at larger
R (but still in the Soret regime). The dynamics of this
transition as well as detailed studies of oscillations in a
crossover region between Soret and Rayleigh regimes are
discussed in this paper. The paper is organized as fol-
lows. A review of theoretical and experimental results on
stationary convection in a binary Quid is presented in Sec.
II. In Sec. III we describe the experimental procedure.
Section IV consists of the experimental results, and we
conclude in Sec. V with a discussion. In the Appendix an
estimate of the spatial resolution of the shadowgraph
visualization is given.

kind of physics that is going on. In the Soret regime the
system is an exact analog of convection of a pure Quid in
a cell that has perfectly insulating boundary conditions at
top and bottom. This is because the boundary condition
on the concentration field at the vertical boundaries is
one of no-Aux, impermeable boundaries. This corre-
sponds to the case of no heat Aux, or insulating, condi-
tions for the temperature field. The result of k=O is one
that has been obtained for the case of the Rayleigh re-
gime with insulating boundary conditions. Intuition for
the large structure is more apparent in the insulating
boundary case. Since heat cannot be transferred from the
bottom plate to the top plate through the boundaries, the
heat Aux must be convected to infinity.

Since the temperature and concentration gradients
cooperate to destabilize the system, the critical Rayleigh
number is reduced. It begins at 1708 for /=0 and de-
creases as a function of P. Reference 6 gives a formula
for this decrease that depends on the critical wave num-
ber. For k=O, Ref. 4 showed that the behavior goes as
R =720L/P. For the Lewis numbers relevant to our ex-
periment k=0 occurs at /=0. 03. Figure 1 shows the
phase diagram with the critical R curve relevant to our
values of the Lewis number, along with a summary of our
experimental results. Circles denote the first point at
which we visually resolve the convective structure in the
1:4:12cell, and squares denote the point at which rolls
appear in the same cell. For /=0. 21 we present the
division into the various regimes described below. The
data incorporate information from several different cells,
and the separating lines are intended mainly as a guide to
the eye.

The main prediction of theoretical works in the past
regarding the Soret regime lies in an evaluation of the
Nusselt number (N) behavior. The convection is ex-
trernely ineffective in transporting heat. The initial slope
of X versus e=(R —R, )/R, is given for the unrealistic
case of free-free boundaries as

II. REVIEW OF THEORETICAL
AND EXPERIMENTAL RESULTS

A. Theory
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The predictions of linear theory have been given in the
early works ' for realistic boundaries. More recent work
has added detailed numerical results for the rigid-rigid
boundaries. ' The critical wavelength of convection at
/=0 beings at a value of 3.117, the wavelength of con-
vection in a pure fluid. At /=0 there is almost no range
of R for which the convection is in the Soret regime.
Then the wave number decreases as a function of g till it
reaches a value of 0 (for infinite layer). The decrease to
zero occurs at a value of g where the convection is in the
pure Soret regime.

The phenomenon of k ~0 gives an indication as to the
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FIG. 1. (P, R) phase plane with the critical R curve for
I =0.66 X 10 . Circles {squares) denote the first point of
squares {rolls) in the 1:4:12cell. The division into diA'erent re-
gimes is for measurements at /=0. 21.
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S—: =2[1+/(1+L )][1+/(1+L +L )]

For Lewis numbers relevant to our experiment this value
is predicted to be on the order of 10, versus about 1.4
for the Rayleigh mode in an infinite system of pure water
(this changes to S=0.7 for water in the finite cells we
use).

Numerical simulations of a five mode truncation simi-
lar to the three mode truncated Lorenz model have
shown that a marked change in the effective heat trans-
port occurs once the Rayleigh regime is reached. ' At
AT, the temperature difference where convection due to
thermal modes would occur for a pure fluid with similar
thermophysical properties, S changes over to a value
similar to that of the Rayleigh mode for that Quid.

Since until recently no treatment of the pattern select-
ed in the Soret regime existed in the literature, we used
the analogy with thermally insulating boundaries to ob-
tain information on the preferred states. It was
shown" ' that for perfectly insulating boundaries the
long wavelength can be used to evaluate the stability of
the various patterns. The usual roll pattern becomes un-
stable to perturbations at a right angle to the roll, to a set
of perpendicular rolls. This square structure was shown'
to persist for boundaries that are not perfectly insulating.
The insulation is measured by the Biot number 8, the ra-
tio of the boundary's thermal conductivity to that of the
fluid's. This work predicted a transition from the state of
square patterns to that of the usual roll one as a function
of 8 and P. For the Prandtl numbers relevant to our ex-
periment this transition occurs just above the value of
8=1 (for low P the rolls are preferred down to very low
values of 8). Even more important, a transition was
shown to occur as a function of 8, from R, = 1708 and

k, =3.117 at 8=100 to R, =720 and k, =0.6 at 8=0.001
(and of course k, ~0 as 8 —+0). If we were to ramp 8 up
in a continuous way from 0 to ~, at 8= 1 we can expect
a square pattern, but with large (k =2.6) wave number.
We should add here the obvious caveat that k cannot go
below l ', where l is the cell length, and by k ~0 we nat-
urally mean the lowest k available in the finite system.

Returning to convection in binary mixtures, the above
discussion gives the picture we should expect as we go
from the Soret to the Rayleigh regimes. We associate the
Soret regime with the 8=0 limit (no-flux, impermeability
insulation), and the Rayleigh regime with the 8 —+ oo lim-
it (experimentally 8 = 100 for the top plate and 8 =1000
for the bottom plate). We should see a square structure
of large extent for the Soret regime, and a transition to
smaller wavelength and a roll structure as we cross over
to the Rayleigh regime. A binary mixture gives us a
unique opportunity in two respects. First, we can realize
the analog of perfectly insulating boundaries that can
never be achieved for convection with thermal boun-
daries. Second, we can make a transition from the limit
of zero B to the limit of infinite 8 in two distinct ways:
first, by raising R continuously for one given (large
enough) g, and second, by staying close to threshold
(small constant R) and changing l( from very large and
positive to zero.

The recent interest in binary mixtures has spurred
theoretical approaches to the problem of planform and
heat transport in the positive 4 case. Silber and Kno-
bloch' used a classification of the allowed planforms to
show that the impermeability is necessary for the square
pattern to appear. This actually confirms our original
idea.

Miiller and Lucke' used a ten mode truncation in a
Lorenz-like model to incorporate the possibility of a
second, perpendicular set of rolls. They give a compar-
ison of the amplitude of the thermal and concentration
modes, and show that the field that is linked to concen-
tration is dominant in the Soret regime. In the Rayleigh
regime the temperature mode becomes stronger by orders
of magnitude. They were also able to reproduce the oscil-
lations between rolls and squares. This work also gave
results on N, the form of the oscillations, and their fre-
quency, which correspond reasonably well to the results
we present below.

A controversial point that Muller and Liicke make is
that the squares are unstable to rolls, and that a forcing
from the horizontal boundaries (a fieldlike term in the
equation) is necessary to stabilize the square pattern.
This result is questioned by Knobloch, ' who uses bifur-
cation theory to show that, at least on a square lattice,
the square rolls are indeed stable. Knobloch also notes
that the top and bottom boundary conditions need to be
symmetric, but this is indeed our case, since non-
Boussinesq effects in the Soret regime should be very
small.

B. Experiment

Traditional experiments that have probed the region of
stationary convection in binary mixtures have all come
up with similar results. These experiments can be
characterized as basically heat-flow measurements, and
they focus on monitoring the transition to convection
through its effect on X. Early attempts are reported in
Ref. 3 where no sign of the transition to the Soret regime
is found. More recent experiments' ' on He- He
mixtures confirmed this result, with much better resolu-
tion on S. These experiments found the transition to
large S at the critical temperature AT of the Rayleigh
mode of a pure fluid with similar thermophysical proper-
ties. They found a small slope leading to the transition at
AT, but this slope was only a precursor to the Rayleigh
regime. It did not appear along the full Soret regime, nor
was it observed at onset of the Soret mode as theory pre-
dicts. Reference 20 reports a variety of transitions along
the Rayleigh regime, such as we will see can be attributed
to their use of a cylindrical cell. This geometry is partic-
ularly susceptible to pattern changes due to the mismatch
between the induced square pattern and the cylindrical
symmetry of the boundaries.

Experiments have also been conducted to test the pat-
terns selected by insulating boundaries for the Rayleigh
mode in the pure Quids. In an experiment on mercury '

with boundaries of resin 8=4.7, a medium initial S lead-
ing to a changeover to the usual S was observed. Spatial
information was obtained by a grid of 25 bolometers,
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from which evidence of a three-dimensional structure was
reconstructed. Although not a square structure, this is a
pattern of large extent (filling Ref. 21's cell of aspect ratio
4). Downflow occurs at midcell, while flow at the boun-
daries is modulated on the scale of the cell length.

The introduction of visualization using the shadow-
graph technique in an experiment on silicon oil for
B=7 and 250 gave surprising results when a square pat-
tern was observed for these values of B. This pattern had
a characteristic size of the usual Rayleigh regime (k =sr).
A transition to the usual roll pattern occurred via period-
ic alternation in amplitude of the two perpendicular sets
of rolls that comprise the small square structure. The os-
cillations became m.ore and more asymmetric, till only
one of the two sets of rolls remained, and the convection
pattern was dominated by one set of rolls. Since the sil-
icon oil used is a multicomponent liquid, we now under-
stand these phenomena as stemming from the effect of
the binary mixture rather than from that of the insulating
boundaries.

A confirmation for the existence of the large-scale
structure can be found in a laser Doppler velocimetry
(LDV) study of convection in a water-isopropanol mix-
ture. When heated from above the convection is always
solely driven by concentration gradients and is in the
pure Soret regime. In this region of phase space the re-
sults of Platten, Villers, and Lhost point to a large-scale
structure, on the order of the cell size (although it is dis-
cussed in that work in terms of two large rolls). In the re-
gion of g) 0 and heating from below they found a small
slope 5 for the order parameter (velocity in the x direc-
tion). The slope is about three orders of magnitude less
than that in the Rayleigh regime.

Following up on this, Lhost and Platten have measured
the horizontal component of the velocity in the Soret re-
gime, showing it to be significantly different from zero,
while the vertical component was within their noise.
This velocity was extremely small, and compatible with
the amplitude, expected from the large-scale Aow in the
Soret regime. This seems to indicate that they are view-
ing the large structure k=l ' that we have observed
near onset.

A further work that probes the structure of the How at
positive 4 is that of Bigazzi, Ciliberto, and Croquette in
a mixture of tetrachlorocarbon and methanol. In this
work the large-scale structure is not observed. The
square cellular structure is picked up when the wave vec-
tor is at the peak corresponding to k =k /2 (as described
below). They study in detail the evolution beyond this
stage, and give a full description of the oscillations in the
Rayleigh regime. They identify the mechanism leading
to the oscillations as a propagating wave, a mode predict-
ed theoretically by Linz et al.

III. EXPERIMENTAL PROCEDURE

cells of different geometries. Most of the heat-transport
measurements reported and part of the pattern observa-
tions were done in a quasi-1D (one-dimensional) rec-
tangular cell 2.98 mm high, 12.0 mm wide, and 36.0 mm
long (the aspect ratio is 1:4:12). This cell of rectangular
dimensions gives preference to the set of rolls perpendicu-
lar to the long direction. Thus we could see behavior in
which competition was suppressed. To give equal
strength to both sets of rolls we used a large square cell
with d=1.8 mm and aspect ratio I =24 (I =I/d). A
small square cell with d=2.2 mm and I =8.9 was used to
determine the stability against long-wavelength perturba-
tions. The effect of a mismatch between the symmetry of
the pattern and the symmetry of the cell was observed in
a circular geometry cell with d=1.8 mm and aspect ratio
20. The use of relatively thin cells gave excellent resolu-
tion in shadowgraph measurements. In the large square
and in the circular cell we were even able to see by eye
the convection patterns for values of AT at which roll
patterns were observed. However, the small height also
had the effect of decreasing the resolution in heat trans-
port. This is because the bath water that stabilizes the
cell temperature has to Aush away the heat Aux that
passes through the cell, and this is proportional to
(I /d)'.

We use recently measured data on P and D along
with data found in the literature (see references cited in
Ref. 27 to estimate L and P). We find that L varies from
7X10 at 29.6% to 4.5X10 at 40%. P varies from 23
at 29.6% to 27 at 40%. Values of g extrapolated from
Ref. 27 are t/i=0. 015 (29.6%, 25'C), /=0. 050 (31%%uo,

25 'C), /=0. 128 (35%, 25 'C), /=0. 230 (40%, 25 C), and
t/)=0. 210 (40%, 30'C). These values for f are 50—100%
larger than our previous estimates, which were based on
existing data in the literature. The values of L are small-
er by a factor of about 3 than our estimates based on the
same literature. The L dependence is important, since
the critical R and k show singularities at small L, .

IV. RESULTS

We divide this section into five parts. First, we demon-
strate the division into the Soret and Rayleigh modes by
looking at the Nusselt number behavior. We then
proceed to deal with the existence of a large-scale struc-
ture close to onset of convection, deep in the Soret re-
gime. We follow this by describing the appearance of the
small-scale structure, which enhances in strength as the
Rayleigh mode becomes dominant. The fourth part deals
with the oscillations that occur at the transition from the
Soret regime to the Rayleigh one. These oscillations are
inherent to cells with symmetry under rotations of 90 .
Finally, we discuss the implications of a restrictive
geometry. The region of pure roll structure deep in the
Rayleigh regime is dealt with only in passing.

The experiments were done on ethanol-water mixtures
with weight concentrations 29.6%, 31%, 35%, and 40%
of ethanol at a top plate temperature of 25'C. The ap-
paratus has been described previously. ' Since the insta-
bility is dominated by spatial features we used several

A. Heat-transport measurements

In Fig. 2 we show the results of heat-transport mea-
surements in the rectangular cell for all samples and for
the large square cell with aspect ratio I =24. For all
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FICx. 2. Convective contribution N —1 to heat transport as a
function of the temperature difference AT across the rectangu-
lar cell: (a) squares, 40 wt. %; (b) crosses, 35 wt. %%uo, (c)soli dcir-
cles, 31 wt. %; (d) triangles, 29.6 wt. % of ethanol. In the upper
left corner sample of 40 wt. % in the large square cell. Arrow
points at set-in of oscillations.

curves we observe an essentially zero initial slope of N
versus bT. We relate this region of negligible slope in
N —1 versus e with the domination of convection due to
concentration, i.e., the Soret regime. The slope changes
dramatically at values of AT that correspond to the crit-
ical temperature difference AT for a pure Quid with the
same thermophysical properties. The slope we measure is
S=0.74—0.77. The exact value of the S depends on I,
and these are the values we observed for these aspect ra-
tios when using water as the convecting Quid. The ex-
pected transition temperatures AT, for the Soret regime
for d=0.298 cm and T =25'C are approximately 0.5 K
(29.6%%uo), 0.2 K (31%), and ~0.05 K (35% and 40%).
For d=0. 18 cm, C=40% and T=30 C, AT, is about
0.15 K.

The best test of the slope can be obtained in the large
square cell, where we see no deviation from zero slope
along up to about 7 K. A slope as small as 10 over 6 K
with a crude estimate of AT, = 1 K would give a change
of 0.006 in N —1, well within our measurement capabili-
ties. However, due to uncertainties in the calibration of
the thermal conductivity of the high density polyethylene
(HDP) cell over the range of 7 K, we give an upper limit
on S ~ 0.02. These uncertainties stem from the nonlinear
dependence of the thermal conduction of HDP on tem-
perature, on the small range of temperature along which
we can be sure that we are in the conduction state and
measure the thermal conductivity of the mixture, and
from an uncertainty in the data from the literature on the
temperature dependence of the thermal conductivity of
our mixtures and cell material.

We can use the results of Fig. 2 to extract b, T . We
find for the rectangular cell ET~=1.95 K (C=40%,
T=25'C), b, T =2.06 K (C=35%, T =25'C),
AT =2.18 K (C=31%, T =25 C), b, T =2.25 K
(C=29.6%, T =25 C), for the I =24 square cell
b, T =8.02 K (C=40%, T=30 C), for the I =8.9 square
cell b T~ =4.82 K (C=40%, T =27'C), and for the
I =20 circular cell b, T =8.2 K (C=40%, T=30'C),
with T the mean ambient temperature. Deviations be-
tween the circular and square d=1.8 mm cell can be at-
tributed to the imprecision in estimating the transition
point due to the rounding near the transition, and to
slight difFerences in the pressure used to seal the cell,
leading to differences on the order of 1% between the
height of the two cells. The results above give agreement
to about 2% with the theoretical value for the critical
Rayleigh number in pure Auids R, =1708. In what fol-
lows for clearer representation and easier comparison we
use this result to measure all b, T in units of r =R/1708.

Although we can give only an upper limit on S for the
Soret regime, we have been able to observe in the sha-
dowgraph images patterns very close to the convective
threshold (see below). This strengthens the idea that we
are observing convection in which concentration is dom-
inant, and the amplitudes to be monitored are not those
of temperature. This suggests that the right estimate for
S should be from a direct measurement of the amplitudes,
via laser Doppler velocimetry or a related local measure-
ment technique of the velocity and concentration, as done
in Ref. 24. Using the results of Ref. 24 in a crude transla-
tion from order parameter to N would indicate that the
actual slope is of order 10 ", which would lie far below
our upper limit, and could explain why we do not observe
it.

B. Large-scale structure

In dealing with the signals of the Soret regime we must
remember the limitations of our measuring system. The
Aow is dominated by motion of the concentration, and
the temperature field contributes very little to the convec-
tive motion. Therefore the shadowgraph technique is our
only tool, and this signal is dominated by changes of den-
sity due to concentration alone. The shadowgraph signal
is proportional to the second derivative of the field of the
refraction index, and for a sinusoidal signal this implies
that the signal of small wave number k is suppressed (by
a factor of k ). For an estimate of the possible resolution
in our measurement, see the Appendix.

Secondly, we must take into account the characteristic
time needed for the concentration gradient to relax. This
time is extremely long for the large cells we use. For ex-
ample, at an aspect ratio of 24 and I.=4.5X10 the
horizontal diffusion time scale rI, D =I d /D is about 48
days. This should be compared with about 5 h for the
horizontal thermal relaxation time ~I, &=I d /~. Obvi-
ously we did not wait anything near these times between
successive steps in the temperature difference. However,
when we talk about vertical diffusion times at d= 1.8 mm
(as is the case for the I =24 cell) then r, D is 2 h. This is,
in our opinion, the reason the large-scale structure did
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FIG. 3. Flow patterns in the I =24 square cell at low r. (a) 40 wt. %%uoof ethano 1r=0.012(AT=0. 1 1K). (b)4Owt. %%uo of ethanol
r=0.16 (AT= 1.43 K). (c) Image of (b) after filtering by a truncation in Fourier space.

not in all cases dominate the symmetry of the small-scale
structure that followed.

We present first evidence for the large-scale structure
in the large square cell (I =24), where the structure was
seen by going up in small (hr —0.011) steps through the
Soret regime. Figure 3 shows this structure. First we
show for comparison [Fig. 3(a)] the image that the sha-
dowgraph picks up from the conductive state at r=0.012.
The image is seen to be smooth, with no apparent struc-
ture. We follow this by an image [Fig. 3(b)] taken at
r=0.16, where a large-scale structure can be discerned,
especially when compared with the image taken in the
conductive state. We stress that the left and center im-
ages have received exactly the same treatment in the way
of image enhancement (i.e. , division by a reference pic-
ture, a rough elimination of linear trends, and gray sha-
dow rescaling according to the statistical distribution of
intensities in the image). To further enhance the signal of
Fig. 3(b) we use a truncation in Fourier space, using the
information obtained from the spectra of these images
(these spectra are shown in Fig. 4). Figure 3(c) was ob-
tained from Fig. 3(b) by eliminating all spectral power
above the peak centered at k /2, half the wavelength of
convection in a pure Iluid (k is equivalent to the wave-
length expected for the Rayleigh mode). The large-scale
structure now becomes very prominent. We see a large
structure in the center of the cell, whose exact shape is
nuclear and may have been distorted slightly due to the
extreme enhancement of the signal. The dark signal in
the center of the cell signifies downflow. This dark path
is surrounded by a ring of smaller cells, giving a spokelike
structure around the center of the cell. We note that the
same procedure for the signal in Fig. 3(a) gave no
coherent structure whatsoever.

To estimate the spectrum of the images we plot the ab-
solute value of the Fourier components [obtained by a
fast Fourier transform (FFT) algorithm]. We have
transformed to polar coordinates and integrated over the
angle, as a form of portraying the 2D information
(k„,k ); Fig. 4(a) shows the spectral power of the image
of the large-scale structure. We note an enhancement at
low ~k~ ( =k~/8) and one around

~
k~ = k~ /2. The form of

the peak at k /2 is sensitive to the exact procedure of
analysis, and we can only be certain of its position, not of

C. Appearance of small-scale structure

We first follow the appearance of the small-scale struc-
ture in the small aspect ratio (I =8.9) square cell. This is
because due to the smaller time scales involved we hope

(b) (c)
I I I

I
I 1 I

S

0 I I I I I I I

0 kp 2k'
0 —:
0 kp 2k'

0
kp 2k'

FICi. 4. Spectral power estimates obtained from the squared
amplitude of the Fourier components. Square cell, I =24. (a)
40 wt. % of ethanol, r=0 15 [see image in .Fig. 2(b)]. (b) 40
wt. % of ethanol, r=0.012 [see image in Fig. 2(a)]. (c) Pure wa-
ter, r=0.10 (AT=1.47 K).

its exact shape. Also, in the images of Fig. 3 an asym-
metry between the x and y directions is apparent, and is
due to a misalignment in the optical components. This
has been corrected for in the spectral analysis, but does
increase the uncertainties in describing the peaks. As a
control we show two spectra. Figure 4(b) shows the spec-
trum obtained from the image of the Fig. 3(a), in the con-
ductive state. No peaks are apparent, and the spectrum
is dominated by the k (= ~k~) dependence we can expect
from integrating a constant over an area segment kdO.
The enhancement at low k is completely missing. Notice,
though that the noise at high k is lower than that in Fig.
4(a). This is due to the effect of larger fluctuations in the
bath temperature on the signal. To see this we show in
Fig. 4(c) the spectrum obtained from a measurement of
water in the same cell, at r=0.10 (ET=1.47 K, com-
pared with b, T=1.43 K for the mixture). The level of
noise is now the same as that in Fig. 4(a). However, the
peak at low k is seen to be smaller, narrower, and at
lower values of k than that of Fig. 4(a), and we attribute
its appearing at all mainly to faulty removal of the linear
trends. There is no sign of any peaking near k /2, nor do
we expect any.
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FIG. 5. Sequence of flow patterns for the I"=8.9 square cell, T =25 'C, 40 wt. % of ethanol: (a) r=0.80, (b) r=0.82, {c)r=0.93, (d)
r=0.96, (e) r=0.98, {f) r=1.00, {g) r=1.02, (h) r=1.04, (i) r=1.07, (j) r=1.15, (k) r=1.14, (1) r=1.12. This sequence is shown after
about one ~z T in the following time steps in ~„T. (a) 0, (b) 2.5, (c) 7.5, (d) 10, (e) 12.5, (f) 15, (g) 17.5, (h) 20, (i) 22.5, (j) 27.5, (k) 32.5, (1)
39.

to see the evolution of the small-scale structure directly
on top of the large-scale structure. In Fig. 5 we show 12
shadowgraph images of the patterns that appear as we
consecutively change the temperature diff'erence across
the cell. The images at low values of r are too poor to be
well discerned even after enhancement. Traces of the
large-scale structure can be seen in Figs. 5(a) and 5(b),
and immediately precede the appearance of the small-
scale structure. Figures 5(c) and 5(d) show a seemingly
disordered pattern of small scale (k-k ). However, if
we remember the signal in the large square cell, we can
follow the symmetry of a spokelike pattern, with the sig-
nal in the center of the cell obscured, but the ring of
smaller cells very clear [this is especially clear in Fig.
5(d)]. Figures 5(e)—5(j) show the slow appearance of a full
small-scale pattern, and an orientational transition in the
ordering of the small convection cells. We can attribute
this transition to a changeover from the symmetry im-
posed by the large-scale structure that is dominated by
the center of the cell with its surrounding spokes, to that
of a square grid. This annealing procedure is a slow one,
and the rate at which we change the temperature
diA'erence does not allow for complete relaxation of the
pattern. This is apparent from Figs. 5(k) and 5(l) where
we lowered r slightly, yet the aligning procedure contin-
ues. Note the pattern in Fig. 5(j), indicating that the an-
nealing transition occurs through a focus defect situated

at the top left corner of the cell.
Although the shadowgraph images obtained in the low

Soret regime in the process depicted in Fig. 5 yield no ob-
vious information, their respective spectra give a much
clearer picture of what is going on. This is shown in Fig.
6. We show in column II of this figure the 3D informa-
tion of the 20 spectrum in a landscape format. To sup-
plement this we use in column I a projection onto the
k, k plane, and use 17 gray scales to portray spectral
power on a linear scale. In this way angular distributions
that may be hidden by the peaks in the landscape figures
can be resolved. In column III of the same figure we
show the power integrated over the angle in polar coordi-
nates.

Already at r=0.17 a signal appears, similar to the one
that appeared in the large square cell. An enhancement
at low k along with the beginning of a peak at k /2 is
seen in Fig. 6(a), and is most clear in column III. If we
follow the development shown in column III we see that
the peak at k /2 broadens and enhances, till at r=0.46
[Fig. 6(e)] it starts to overshadow the peak near k=O.
The peak continues to broaden, and at r=0.82 it extends
just beyond k . A sharp transition occurs in Figs.
6(h)—6(j), accompanied by an increase in the amplitude by
orders of magnitude. This transition is connected to the
appearance of the small-scale structure. At this stage the
peak at k /2 disappears, and the spectrum is dominated
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by the peak at k .
The orientational transition can be followed in column

I. The initial orientation is in the diagonal of the cell
[Figs. 6(a)—6(e)]. Then the other directions enhance [Figs.
6(f) and 6(g)]. By the time the structure with wave num-
ber k comes in, the pattern is almost symmetric around
the center of the cell (this is the spokelike structure).
Then comes the transition to the square lattice, charac-
terized by four prominent peaks in the spectrum.

In Fig. 7 we show for the I =20 circular cell the effect
of bypassing the large-scale structure, going directly to
the small-scale one. Figures 7(a)—7(c) show the evolution
of a random initial pattern [Fig. 7(a)] obtained by step-
ping in short time steps to r =0.72. This pattern evolves
to the one in Fig. 7(b) at r =0.99. The pattern in Fig.
7(c), at r=1.ll is a stable one. The mismatch of the
square grid and the circular boundaries is very pro-
nounced, and the number of various defects is large. The
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FIG. 6. Spectral power estimates obtained from the squared amplitude of the Fourier components. Square cells, I"=8.9,
T=25 C, 40 wt. jo of ethanol: (a) r=0.17, (b) r=0.21, (c) r=0.24, (d) r=0.40, (e) r=0.46, (f) r=0.74, (g) r=0.82, (h) r=0.96, (i)
r=1.07 (') r=1.12. 1, j) r= . . Column I is a projection onto the (k, k~ ) plane of the spectral power. Seventeen gray scales are used in a 4X4
matrix for each (k„,k~ ) point. Column II is a landscape representation of the same data. The scales in columns I and II are identical.
Each row is scaled separately. Column III is the result of an integration of the 2D data (in polar coordinates) over the angular vari-

able. Again each row is scaled separately, and the numbers on the S axis display the power scale for each graph.
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symmetry around the center of the cell that appeared in
the smaH cell is not manifested here, since we did not give
enough time for the large-scale structure to develop as an
infrastructure.

A different approach is used in Figs. 7(d)—7(f). Here we
induced a set of concentric cylindrical rolls by quenching
the system, going to a very high input of power [Fig. 7(d)
was obtained with 3.75 times the power used in Figs. 7(c),
7(e), and 7(I)]. At this temperature difference we were ac-
tually able to see the convection rolls by eye. We waited
a few minutes, ensuring the pattern had the required
symmetry, then reduced the power till it coincided with
that of Fig. 7(c). Figure 7(e) shows the pattern after

—
iran T, while the relaxed pattern is that of Fig. 7(f), tak-

en after —13~h T. We note two things. First, the relaxa-
tion times for the orientational ordering are larger than
the times we typically used between steps in temperature
difference, and second, the patterns obtained in the two
processes are very different. We have not attempted a
classification of the annealing processes that lead to the
final patterns, or of the defects that appear in these final
states in any of the cells used.

Figure 8 shows the evolution of the small-scale pattern
in the I =24 square cell. An initial random aggregation
of squares is seen in Fig. 8(a), and more and more cells
appear as r is raised. In Figs. 8(e)—8(g) we observe the an-
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(e)
FIG. 7. Flow patterns in the I =20 circular cell at T =25 C, C=40 wt. % of ethanol. (a)—(c) are sequential in time, as are (d)—(f).

(a) Heat input q=1 (arbitrary units), r =0.72. (b) q=1.4, r =0.99. (c) q=1.6, r =1.10. (d) q=5, temperature not relaxed. Time t=0.
(e) q=1.6, t —1&a, T- (f) q=1.6, t —137' T.

nealing process, whose onset occurs when the convection
cells begin to touch each other, and to feel the inhuence
of one another. The annealling process is not completed
until the pattern of Fig. 8(1). This image is taken at a re-
gime where a new phenomenon appears, that of oscilla-
tions between the two sets of rolls that comprise the
square pattern. The stable pattern is in this case a square
grid rotated with respect to the borders of the square cell.

D. (Oscillations between the two perpendicular sets of rolls

At the transition region to the Rayleigh regime we ob-
served oscillations of the type seen in Ref. 22. The square
structure at the point in which oscillations set in has the
k wavelength, and can be viewed as two perpendicular
sets of rolls. The oscillations are between domination of
one or the other of these sets of rolls. In between dom-
ination by each set of rolls the system goes through a
state of equal strength of both sets of rolls, i.e., the pat-
tern is a square one.

Figure 9 shows the oscillatory behavior in the shadow-
graph images of the circular cell. Figure 9(a) depicts the
initial square pattern, for r below the onset of oscillations.
The pattern is divided into many domains that do not an-
neal, due to the mismatch with the boundaries. The full
cycle [Figs. 9(b)—9(e)] lasts about 42', T, and we show the
state at 10.5r„T intervals, using video slicing (two gray
scales only) to enhance the contrast. We see, for exam-
ple, in the domain in the left center of the image, the cy-
cle: horizontal rolls [Fig. 9(b)], squares [Fig. 9(c)], verti-

cal rolls [Fig. 9(d)], squares [Fig. 9(e)], and back to verti-
cal rolls [Fig. 9(f)]. The oscillations are dominated by the
domain structure. The roll structure that gains domina-
tion begins to do so at the boundaries of the cell, forms a
front that propagates into the cell, moving till it stops at
the domain boundaries. Therefore the exact time depen-
dence in each domain depends on its shape and size, and
we conclude that for studying the details of the oscilla-
tions we must use a coherent structure.

To do so we followed the example of Ref. 22, using the
induction of a structure by using a grid of external heat-
ing. Even so, due to the large AT at which we worked
in these thin cells, we were only able to induce approxi-
mately symmetric structures. We could then use square
cells, where the natural tendency for annealing produced
perfect square grids that we could use. We used intermit-
tent external heating (to avoid overheating) by an in-
frared lamp through a grid of vertical strips of width d,
and simultaneously raising the temperature di6'erence
continuously from conduction to the regime of small
squares (i.e., r —1). We then left the structure to anneal
over a period of 4.4wz T. The result is shown in Fig. 10(a)
for the I =24 square cell.

In Fig. 10(b) we show, as an aside, the same pattern
after raising 4T to about twice the temperature
diII'erence, in order to force the system into the roll pat-
tern. We note that although one set of rolls is somewhat
more vivid in Fig. 10(a), it is the perpendicular set that
dominates the far Rayleigh regime in Fig. 10(b). Also,
while this set dominates the cell following the end of the
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(c)

FICr. 8. Sequence of Aow patterns for the I =24 square ce11 at T =25 C, 40 wt. % of ethanol: (a) r=0.67, (b} r=0.74, (c}r=0.81,
(d) r=0.89, (e) r=0.96, (f3 r=1.02, (g) r=1.12, (h) r=1.21, (i) r=1.25.

oscillations, the other set of rolls can still be discerned for
quite a span of r. Referring back to Fig. 2, the arrow
points at the onset of oscillations, and along the points
till the end of the graph square pattern are to be found
(compare this with the rectangular cell below). The pure
roll formation lies in a region not included in the scale of
Fig. 2.

Figures 10(c)—10(e) show half a cycle of the oscillations.
We start with a set of horizontal rolls in Fig. 10(c). The
vertical set of rolls starts to dominate at the two opposite
horizontal boundaries, from where they propagate into
the cell in the form of a spearhead front [Fig. 10(d)], till
the two fronts meet at midcell [Fig. 10(e)]. As r is in-
creased the oscillations become relaxational. They are
highly nonlinear, and the transition from one set of rolls

to the other is very fast, followed by a relatively long
period of domination by one of the rolls. In this case the
square pattern is very quickly swept through, and the sys-
tem lies most of the time in the ro11 patterns. A complete
analysis of these oscillations can be found in the work of
Le Gal.

The details of the oscillations are shown in Figs. 11—13.
Figure ll shows the shadowgraph signal at one chosen
point in the cell. As noticed also in Ref. 16, this results
in an arbitrary addition of the amplitudes of the two sets
of perpendicular sets of rolls. The point we have chosen
lies close to, though not exactly on, a point where the two
amplitudes are symmetric (such points form a grid rotat-
ed by 45 with respect to the grid of the convective pat-
tern). In fact, close to the onset of the oscillations the
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FIG. 9. Flow patterns in I =20 cylindrical cell at T =25 C. 40 wt. % of ethanol: (a) ordered square pattern at r —1.10; (b)—(f) pic-
tures of oscillating square patterns at r =1.19. The time sequence for pictures during the cycle is t=0 for (b), t =10.5~, T for (c),
t=21 ~, T for (d), t =31.5~, T for (e), and t =42~, T for (fI.

stronger of the two amplitudes in the signal is the one
which will later die out.

The main features of the oscillations are apparent in
this figure. The amplitude of the oscillations grows con-
tinuously, while the frequency sets in at a finite value. At
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onset the oscillations are symmetric, almost sinusoidal,
and then become more and more anharmonic as their
amplitude grows. Finally, they become very asymmetric
and relaxational, with very short transition times between
states of domination by the opposing sets of rolls.

Figure 12 shows the corresponding r measurements for
the four upper curves in Fig. 11. Oscillations appear with
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FIG. 10. Flow patterns in I =24 square cell at T =25 C, 40
wt. % of ethanol: (a) induced "perfect" square grid at r=1.07;
(b) roll pattern at r =2.6, (c), (d), (e) sequential pictures of the
oscillating structure at r=1.19. The time difference between
pictures is 12.5~„T.

FIG. 11. The light intensity of the shadowgraph at a chosen
location in the large square cell with 40 wt. % of ethanol for Ave
different values of r. The numbers given on the figure are aver-
aged values of r.
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scales. Shown are the oscillations that occur when we use
a perfect grid in the I =8.9 square cell. Figure 14(a)
shows the initial pattern before the onset of oscillations.
Figures 14(b) and 14(c) are video sliced images of the os-
cillating patterns, with the time between then 12~, T. We
see that although the horizontal scales are different, the
time scales remain in the same vicinity. We note that in
Ref. 22 the time scales were much longer, comparable
only to the horizontal thermal diffusion time, while in the
numerical simulation of Ref. 16 the time scales were
shorter by about a factor of 10. We tend to tie the oscil-
lation frequency with properties of the Quid, not with the
geometry of the cell. A further interesting feature of
Figs. 14(b) and 14(c) is the fact that only a small part of
the pattern oscillates, the central rolls in each of the two
sets of perpendicular rolls, while the rest of the pattern is
fixed, probably by the boundaries.

FIG. 12. The time dependence of the bottom plate tempera-
ture in the large square cell with 40 wt. %%uoethano l fordifferent
values of averaged r that correspond to the data in Fig. 11. (a)
r=1.255, (b) r=1.212, (c) r=1.166, (d) r=1.119.

double the frequency as the corresponding one in Fig. 11,
for each curve respectively. As suggested in Ref. 16 we
can try to estimate the degree of experimental asymmetry
of the two sets of rolls from their effect on the Nusselt
number (in this case N is proportional to r '). This
effect is largest at the minima of AT, when the rolls are at
their (respective) maxima. A slight drift that is much
higher than our long time measured drift exists in the
data, but even so a systematic effect does appear, where
the minima corresponding to the one set of rolls (the one
that will die out) are consistently lower (i.e., the convec-
tion in this direction is by about 10%%uo more effective).

In Fig. 13 we give the measured frequencies for the
same cell and mixture. We cannot characterize the func-
tional dependence of the frequency as stemming from a
known model. An interesting point is that of the time
scale characterizing the oscillations at their onset. This
time scale lies in between the vertical and horizontal
thermal diffusion times ( -27'„T or -0.04rI, T ), and can
probably not be attributed to either of these time scales.

The data in Fig. 14 strengthen this view on the time

0.25

E. Effect of a restrictive geometry

The effect of asymmetry on the square pattern can be
checked by giving one roll direction an advantage. This
can be done in a cell with one long and one short bound-
ary (the rolls will try to orient themselves perpendicular
to the sides). Figure 15 shows three typical patterns ob-
served in a rectangular cell with aspect ratio 1:4:12. The
first pattern [Fig. 15(a)], a random square one, we ob-
served close to AT, but still in the Soret regime. The
second pattern [Fig. 15(b)] reflects the transition to rolls,
and occurred in the region of the transition to large S
corresponding to the Rayleigh mode. The third pattern
[Fig. 15(c)] clearly shows the usual Rayleigh-Benard con-
vection roll structure and was observed very close to
AT, but already in the Rayleigh regime. Note that in
the I =24 square cell a square pattern was still observed
for values of N —1 as high as 20 times the value corre-
sponding to this pattern.

All three types of patterns are stationary, and oscilla-
tions were not observed in these cells at all. We find that
the geometry of the rectangular cell puts strict limitations
on the competition between mechanisms. For this
geometry the transition to the Rayleigh mode brings with
it the transition in patterns. The fact that we did not see
any large-scale structure can be attributed to the height
of the cell, which reduced our resolution in the shadow-
graph. However, the fact that no annealed structure was
observed, that there was no oscillation region, and that
the roll structure almost immediately became the pre-
ferred one, indicates that the selection of one set of rolls
by the cell geometry has a profound eff'ect on the nature
of the pattern selection and competition.

V. DISCUSSION

0
1.08 I.I 5 l.22 I.29

FIG. 13. The frequency {in dimensionless units) of light in-
tensity oscillations as a function of r.

This work is basically a case study of pattern selection
due to the effect of horizontal boundary conditions. Al-
though this is hidden within the interplay between the
two mechanisms of convection and in the Soret effect, we
are actually watching a system that undergoes a gradual
transition in the boundaries that affect it as we raise the
Rayleigh number. Thus the large-scale structure that we
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FIG. 14. Flow patterns in I =8.9 square cell at T =25 'C, 40 wt. % of ethanol: (a) square lattice at r = 1.09; (c) oscillating struc-
ture at r = 1.11. The time difFerence between pictures is 10 min.

observed at onset is linked to a small "e8'ective Biot num-
ber. " The transition to smaller cells at larger amplitudes
can be viewed as a change in this "efI'ective B." The
work of Ref. 16 on the relative amplitudes of the thermal
and concentrationlike fields supports this view of the
transition in scales. However, in Ref. 16 the wave num-
ber is taken to be constant, at k, so the direct compar-
ison can be made.

The spectrum of the wave numbers in the large-scale
structure is dominated by an enhancement at low k, and
a smaller single broad (within our resolution) peak at
k =k /2. It symmetry seems to be closer to that of rota-
tions round the center rather than the expected D4 sym-
metry. We cannot follow the development of the large-
scale structure, as the signal is too small for a detailed
enough study. We pick up the trail when the transition
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FEG. 15. Flow patterns in rectangular cell for 35 wt. % of ethanol: (a) squarelike pattern at r=0.95; (b) pattern in crossover region
at r= 1.01; (c) roll pattern at r= 1.07.



43 STATIONARY CONVECTION IN A BINARY MIXTURE

to squares with length scale of order 2'/k~ comes in, ac-
companied by larger amplitudes. The appearance of the
small-scale structure leads to an annealing process that
lasts over times scales of ~h z-. A similar transition in
length scales has been seen in the recent work on
cyclohexane-methanol.

As we cross over into the Rayleigh regime, a Hopf bi-
furcation occurs, leading to oscillations between the two
perpendicular sets of rolls that comprise the square struc-
ture. The oscillations are symmetric and sinusoidal at
onset, then become more and more nonlinear. We found
no intrinsic way to characterize the time scale of the os-
cillations. These oscillations have been reproduced in a
numerical simulation, and shown to be inherent to the
transition in binary mixtures from the square patterns of
the Soret regime to the roll patterns that occur in the
Rayleigh regime. We speculate whether this mechanism
is more general, in cases where two identical but rotated
patterns coexist. The Hopf bifurcation may provide a
general route by which one of these two patterns can win
out and dominate the system.

We have seen that the behavior in rectangular, quasi-
1D cell is markedly different, inhibiting an ordered grid
and the oscillator behavior, and forcing an immediate
transition to the roll structure. This stresses the impor-
tance of the side walls, as recognized in Ref. 16, but
seems to indicate that the infinite unrestricted system will
tend to squares, as suggested by Ref. 15.

Finally, in the Rayleigh regime we retrieve the pure
fluid behavior in the Nusselt number. The pattern takes
longer to adjust, and the remnants of the square pattern
remain till deep in the Rayleigh regime, where the roll
structure eventually dominates, as in the pure Quid.

Here n'(x, y, z) is the perturbation of the refractive fiel
due to convective Aow. This problem is generally a non-
linear one since the optical path is defined by a nonlinear
equation. However, if an image plane is located far
enough from the caustic point, so that l/R ))1, the
problem can be linearized and one gets

AI
&

B B Jd n'(x, y, z)
d (A3)

IO gx2 gy2 0 nO

b, U, +62[(1+%)6+(]

a U, +P U„, U„U, )

ae+R U, = +(Uv)e,
at

r

56=L —+(UV)gBg
az

(A4)

It is obvious from Eq. (A3) that the shadowgraph visuali-
zation corresponds to a local lens effect with a local focal-
ization distance F being equal to the local curvature of
the refractive field. For //F 1 the light intensity distri-
bution is mapped by the nonlinear transformation of the
initial light intensity and a numerical procedure should
be used. At this point in order to calculate the resolu-
tion of the shadowgraph according to Eq. (A3) one needs
information about the refraction field perturbation
n'(x, y, z) due to the convective flow. This perturbation
results from the temperature and concentration field per-
turbation which can be obtained from the convection
equations for binary mixtures. These equations can be
written in a nondimensional form as
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APPENDIX

Io
(Al)

where Io is the light intensity distribution of the incident
beam before passing through an inhomogeneous refrac-
tive field, and F is the focalization distance of the pattern:

B B J d n'(x, y, z)
(A2)

Qy~ 0 n0

In order to estimate what is the maximal size of the
large-scale structure that can be detected by the shadow-
graph visualization technique let us estimate first the gray
scale resolution of the optical signal achievable by an
eight-bit digitizer.

As is well known the measured light intensity distribu-
tion of the shadowgraph image at a distance / from the
convective Quid layer is given by '

The scaled units here are d, d /k, v~/agd, va. /Pgd,
and g=C —%6, R =ETugd /vv, 4= —(kr/T)(P/a),
I' =v/k, L =D /v, and b z

=B /Bx +B /By . Boundary
conditions are U, =BU, /Bz=e=B(/Bz=O at z =+—,.
The linearized problem of stationary convection is de-
scribed by the left-hand side of Eq. (A4). In the Soret re-
gime 4L '))1 (which corresponds to the case we con-
sider) and one can use g=(P/L)6, reducing the problem
exactly to the problem of convection in a pure Auid with
thermally insulating boundaries with the eigenvalue
R =E.4/L where R, =720 and k, =0 for an infinite hor-
izontal plane layer (in an infinite geometry k, = I'
where I is the aspect ratio). The corresponding non-
linear problem provides the expression for the concentra-
tion perturbation at small k as"

g(x,y, z)= AR, k&ef (z)co—sk x cosk y

where the coefficient 3 is on the order of one.
In the case of %L ')) 1 the refractive index perturba-

tion can be written as

Bn vKn'(x, y, z)= g(x,y, z) .
Bc /3gd

Then the expression for the amplitude of the shadow-
graph resolution looks like
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AI
I

ampl

1—Bn /Bc
=l

—Bp/t) c1

P

L v/C

'+ gd

Here e = (R —R, ) /R„and we have used

—J f (z)dz =1 .
1 d

0

The ratio (p/n)(Bn/t)c)/(c)p/t)c)], in principle, can be
estimated from the Clausius-Mosotti relation for both
gases and liquids which expresses a relation between the
refractive index and the density in terms of molecular
constants. However, the coefficients in this relation are
available only for gases. In general, one can conclude
that the ratio is proportional to polarizability, and is
smaller for gases and larger for liquids but sufficiently

close in values.
We can now use Eq. (A7) to estimate what size of a

large-scale structure (or what the smallest wave number
k =3.117/m) we are able to detect by the shadowgraph
technique with an eight-bit digitizer. The minimum sen-
sitivity in one gray level corresponds to AI/I=0. 004.
Using values of the geometrical and physical parameters
from our experiment of 40 wt. %% ethanol-water mix-
ture at 25'C ~=0.93 X 10 cm /sec, v=2. 5X10
cm /sec, D =0.42X 10 ~ cm /sec, L=0.0045, P=27,
P=0.02, 4=0.23, (1/n)(t)n/t)c)=2. 75X10, d=0. 18
cm, 1=200 cm, I =24, and a=1, we obtain that the
minimal wave number we can detect is k =3.117/I
where m =8. This is consistent with the observation of
the low peak in our experiment. Since in our experiment
@=7 we observed a peak at k;„with even higher resolu-
tion than one gray level.
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