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Time-dependent patterns in atomistically simulated convection
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Periodically varying roll patterns have been produced in molecular-dynamics simulation of two-
dimensional Rayleigh-Bénard convection using a hard-disk fluid in a square container with nonslip
walls. In order to achieve the sufficiently high Rayleigh numbers required for clearly resolved
time-dependent behavior the calculations involved systems containing almost 6X 10* particles, an
order of magnitude greater than the number needed to observe stationary convection patterns.

The past few years have witnessed the advent of the ab
initio approach to computational hydrodynamics: Rath-
er than attempting to describe flow phenomena in terms
of conventional continuous fields—that ignore the
atomistic nature of matter—the new method approaches
the subject from the viewpoint of microscopic molecular
dynamics (MD), in which the trajectories of the constitu-
ent particles are followed in full detail and the fields de-
duced by coarse-grained averaging over suitable space
and time intervals. Although it is computationally inten-
sive, MD simulation provides the opportunity to examine
the collective motion underlying hydrodynamics in
unprecedented detail, and avoids the empiricism inherent
in the more traditional approach to fluid dynamics. Ex-
amples of flow problems which have been studied to date
using MD —all in two dimensions—include eddy forma-
tion in flow past an obstacle,' the appearance of rolls in
thermal convection,?”* and flow at moving two-fluid in-
terfaces.’

In this Brief Report, an observation made in the course
of a series of two-dimensional MD simulations of thermal
convection in a Rayleigh-Bénard system® is described,
namely the appearance of time-dependent flow structure.
Previous MD studies of this problem? * have described
the appearance of transient roll patterns and stable and
metastable patterns, as well as a quantitative comparison
between the results of MD and the predictions of contin-
uum theory for stationary flow patterns. The results
presented here, obtained at higher Rayleigh numbers
than previously, which in turn necessitated simulations
based on significantly larger systems, show clear evidence
of temporal periodicity. Periodic behavior in Rayleigh-
Bénard systems is well known, and has been studied ex-
perimentally,’ by theoretical stability analysis,® and com-
putationally’ (within the conventional continuum frame-
work). Furthermore, confidence that the time-dependent
MD results are a consequence of realistic hydrodynamic
processes is justified by the fact that the actual values of
the periods obtained from the MD and continuum calcu-
lations are in reasonable agreement.

The actual simulation that is the subject of this Brief
Report involves a system of N =57 600 hard-disk parti-
cles in a square container—the aspect ratio is '=1-at a
mean number density of p=0.4. In the units used here
the disks are of unit diameter; an indication of the micro-
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scopic size of the system follows from the fact that if the
disk diameter is assigned a characteristic atomic value of
3 A, then the container edges are of length 1140 A. A
hard-disk system has no intrinsic energy scale, so that if
the disk mass and Boltzmann constant are both set to
unity, a temperature 7 =0.5 corresponds to unit thermal
velocity.

The container is bounded by nonslip walls; while there
are various ways of prescribing wall-disk collision rules to
achieve a nonslip effect, in this case each wall is divided
into segments of length similar to the disk size and the
collision rule alternates between specular reflection and
velocity reversal for successive segments. The top and
bottom thermal walls are maintained at temperatures
T,=1 and T, =16, respectively, and the magnitude of the
disk velocity following a collision with these walls is al-
tered to correspond to T for that wall (the nonslip condi-
tion removes the need to compensate for bulk flow). No
heat transfer occurs across the lateral walls, and a col-
lision with either of these walls leaves the velocity magni-
tude unchanged; there is therefore no tendency for roll
nucleation to occur at these walls. A gravitational field,
g =AT/d, acts to oppose the buoyancy produced by the
thermal gradient, where d is the distance between the
thermal walls and AT =T, —T,; this choice of g equates
the potential-energy change to the nominal kinetic-
energy difference between the thermal walls. Initially the
system is at uniform temperature gradient and density.

Macroscopic observables are extracted during the
course of the simulation by means of spatial and temporal
coarse graining. In this work these quantities include the
flow velocity, temperature (adjusted to remove the effects
of convective flow), and density fields. Typically a
50X 50-cell grid is used for the spatial averaging, while
time averaging employs intervals that are shorter than
the time scales over which significant changes in the flow
patterns occur. Other technical issues involved in carry-
ing out hard-disk MD calculations in an efficient manner
have been described elsewhere.!?

Unlike continuum numerical fluid dynamics, which, in
the Boussinesq approximation,'! employs the Rayleigh
number Ra=agd’AT/vk and Prandtl number
Pr=v/k—where «, v, and k denote the thermal-
expansion coefficient, kinematic viscosity, and thermal
diffusivity—as freely adjustable inputs that define the
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FIG. 1. Sequence of contour plots of the stream function at different stages in a single roll-oscillation cycle.

problem (together with the specification of the container
walls), the MD approach is more akin to experiment,
where, for given AT and d, the values of Ra and Pr are
determined by the nature and state of the fluid. Follow-
ing arguments used in the earlier quantitative compar-
isons,* the values of Ra and Pr applicable here are readily
estimated; the calculation uses transport coefficients de-
rived'? from Enskog theory!? together with an empirical
hard-disk equation of state.'*

Substituting the Enskog formulas for viscosity and
thermal conductivity into the definitions of Ra and Pr
leads to functional forms Ra=f,(p)AT/T)*N /T and
Pr=f,(p), where f, and f, are known functions*; T and
p are ‘“‘average” values, and are taken to be (T}, +T,)/2
and p, respectively. The resulting estimates are
Ra=7.8X10* and Pr=0.45; this value of Ra is approxi-
mately 20 times larger than in an earlier MD study® dur-
ing which stable rolls developed (in that simulation,
I'=4, and a combination of slip and periodic boundaries
were used). These estimates are subject to considerable
uncertainty, not only due to the unreliability of the un-
derlying theory'’ at moderately high p, but also as a
consequence of such uncontrollable details as the extreme
inhomogeneity of the system and the dependence of
viscosity on density and shear rate; they nevertheless
serve as rough guidelines to the kind of behavior that
might be expected on the basis of the corresponding con-
tinuum analysis. (For reasons such as these, the utility of
the dimensionless numbers of hydrodynamics, e.g., Ra,
for classifying the behavior observed in MD simulation
has yet to be established.)

A series of contour plots of the stream function show-
ing typical states from the oscillatory phase appear in
Fig. 1 (if density variations are ignored—see below—
then the contour lines can be regarded as streamlines).
Space constraints prevent us from presenting the full his-
tory here, which can be summarized thus: two counter-
rotating rolls of almost equal size appear in the initial
transient phase, eventually they fill the container, and
then, throughout the remainder of the run, the boundary
between the rolls oscillates in direction about the vertical.
The line marking the boundary also undergoes transla-
tional oscillation, so that the rolls usually have different
areas.

Figure 2 shows the time dependence of the angle be-
tween the extrema of the stream function—points lying
close to the centers of the two smallest rings in the con-
tour plots (this direction tends to be roughly perpendicu-

lar to the inter-roll boundary); the duration of the run
covers two full cycles and the graph strongly suggests
periodicity. The actual period can be estimated from the
graph, and will be discussed below. In Fig. 3 the temper-
atures measured by four probes inserted into the system
at symmetrically placed points a distance d /3 from the
closer walls are shown; the same periodic behavior is
again evident.

The possibility that the observed periodicity is merely a
transient phenomenon cannot of course be excluded, and
several more cycles of the roll oscillation would help
strengthen the case for sustained oscillation. The prob-
lem is one of computational resources—the present simu-
lations required some 300 h of IBM 3090E processor time
(2X10° collisions at a rate of ~7X10° collisions per
hour, by far the longest simulations of this kind carried
out so far)—and the opportunities for conducting even
longer runs, though desirable, are limited. For the same
reason, at the time of writing, only a single realization
(i.e., initial state) of a system of this size has been studied.

From the expression for Ra given above it is clear that
there is an upper limit for a given N, irrespective of AT,
with the clear implication that achieving larger Ra values
requires even greater numbers of particles. The value of
AT used here is essentially the limit beyond which little
variation in behavior was noted during studies of smaller
systems. In a system with N~2X10* and I'=1 (since p
and I' are unchanged, Ra < N) only the barest hint of per-
sistent time dependence could be detected, and prior to
the present study it seemed reasonable to associate this
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FIG. 2. The angle (in degrees) between the two extrema of
the stream function (which occur at points close to the roll
centers) as a function of time (MD units).
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FIG. 3. Time dependence of the temperature (MD units) as
measured by four probes (positioned as described in the text).

with random noise. In runs with even lower N (e.g., 10%,
with I'=1), different initial states (the random initial ve-
locities of the disks) led to distinct stationary single- or
two-roll final states. Needless to say, further work on
these systems is in progress (including a run with 10°
disks that shows preliminary evidence of even more pro-
nounced oscillatory behavior).

Additional information emerges from examination of
the detailed temperature, velocity, and density distribu-
tions. For example, a large fraction of the overall tem-
perature variation occurs in regions close to the thermal
walls: Over a distance 0.06d from the bottom wall the
horizontally averaged temperature drops to T),/2,
whereas over a similar distance from the top wall it grows
to 2T,. The maximum convective flow velocity is mea-
sured to be =80% of the thermal velocity corresponding
to the cold-wall temperature (7,). Density plots show
the degree of compressibility of the system; there is a
smooth =~ *5% variation in density over most of the con-
tainer when averaged across horizontal slices of thickness
0.02d, but an abrupt density increase of ~50% occurs in
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a region of approximate width 0.04d abutting the cold
wall.

As indicated earlier, periodic behavior is familiar from
both experimental and (continuum) computational stud-
ies of Rayleigh-Bénard systems. The most appropriate
comparison is with a two-dimensional numerical solution
for T=1 carried out over a series of Ra and Pr values.’
For values of these quantities not too distant from those
estimated above for the MD simulation (viz., Ra=10°,
Pr=0.71), a strongly oscillating pair of rolls
materialized—the boundary between the rolls actually
oscillated around the horizontal rather than the vertical
direction, but in view of the rich variety of flows exhibit-
ed by Rayleigh-Bénard systems in general,®”% it is the
mere existence of time dependence rather than differences
in the details of the flow patterns which should attract at-
tention at this exploratory stage. Given the non-
Boussinesq nature of the hard-disk fluid under the condi-
tions of the simulation and the strong variation of the
transport coefficients across the system (due to varying p,
T, and flow shear rate) such deviations are tolerable.

A quantitative comparison between the oscillation
periods of the MD and continuum systems can be made if
both are expressed in terms of the characteristic
thermal-diffusion time 7=d?/k. The estimated periods
are approximately 0.47 and 0.27, respectively, a level of
agreement that is reasonable in view of the reservations
expressed earlier.

By way of conclusion, while it is impossible to predict
what future studies of convection and other hydrodynam-
ic problems based on the ab initio molecular-dynamics
approach will reveal, the results obtained so far strongly
suggest that this is an avenue worth pursuing. Expected
improvements in computer performance and cost (in op-
posite directions) will, in due course, permit a detailed
mapping of the parameter space of this rich and fascinat-
ing problem.
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