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An apparent connection between integrability and the existence of a periodic solution of the vari-
ational equations around the straight-line solutions of planar Hamiltonian systems has been suggest-
ed [F. T. Hioe, Phys. Rev. A 39, 2628 (1989)]. Such solutions always exist if the gradient of the
second integral and the Hamiltonian are independent on the straight lines. In any other case, the
existence of such periodic solutions can be shown only if the second integral satisfies certain condi-
tions.

In a recent paper, ' Hioe suggests an apparent close re-
lation between the existence of a periodic solution of the
variational equations around the straight-line solutions of
a planar Hamiltonian system (termed "stability of type
1")and integrability. More specifically it is found that in
the system of two coupled quartic oscillators,

V(x,y)= —,'(Ax +By )+Dx"+2Cx y +Ey
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such solutions exist only in the six known integrable
cases, while in the Henon-Heiles system,

V(x,y) =
—,'( Ax +By )+Cx y ——y
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they exist in two of the three known integrable cases and
also in six cases which are presumably nonintegrable.

In this Brief Report we demonstrate the exact relation
between the existence of a second integral of motion and
a periodic solution of the variational equations and pro-
vide a straightforward interpretation of the results ob-
tained by Hioe in all except one of the integrable cases.

We consider a planar Hamiltonian system

H =
—,'(x +y )+ V(x,y)

and suppose that it admits

(3)

y =y(t), y=j(t), x =x=0

as a straight-line solution (SLS). Let $„$2,(,, $2 be the
variations to x,x,y,y, respectively, around the above
SLS. The corresponding variational equations (VE) are
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(ii) The monodromy matrix b, T of the TVE is symplec-
tic and possesses a pair of unit eigenvalues.

(iii) (DTH )o is an integral of the TVE.
Theorem (i) explains why in every case periodic solu-

tions of the TVE have been found by Hioe. Let AT in the
basis g; be

c 2 Q
(10)

with a (2—a) bc = l. If t—o in (5) is selected such that
j(to) =0, then by acting b, T on the integral (iii) we obtain

where g=(g, gz) and g=(g, gz) . The following
theorems are known.

(i) The TVE admit a periodic solution

g'=co(V TH )o=((p —
Vyo)

with

ki =4 4= —V„oui (5a) [g,(to)(a —1)+$2(to)bi Vro=0

(2= —V,oui (5b)

where a subscript x or y denotes partial di6'erenetiation
and 0 denotes that the corresponding quantity is comput-
ed on the SLS (4).

Equations (5a) are the tangent (TVE) and (Sb) the nor-
mal variational equations (NVE). We define the vector
operators

and since g;(to) are arbitrary initial conditions and
V o%0 we obtain a = 1, b =0 and the corresponding
periodic solution is g&=kg(t) with k =const, which is

exactly the one obtained in all cases by Hioe.
Let I(x,y, x,y) be a single-valued analytic integral of

motion of system (3), such that VI is independent of VH
on the SLS. Then concerning the NVE, the following
theorems are also known.

43 7043 1991 The American Physical Society



BRIEF REPORTS 43

(iv) /=co(V~I )p is a periodic solution of the NVE.
(v) The monodromy matrix 5& of the NVE is symplec-

tic and possesses a pair of unit eigenvalues.
(vi) (DNI)p is an integral of the NVE.
This latter integral is nontrivial since (D&I)p=0 im-

plies linear dependence between VI and VH on the SLS.
If moreover I„0=0 or I.0=0 at t0, then by the same
reasoning it can be shown that 6& is triangular. This re-
sult covers cases I, II, and IV for the quartic oscillator
(the parameter relationships for A:8:C:D:Eare 1:1:1:1:1
for case I, 1:1:3:1:1for case II, and 4:1:6:16:1for case IV)
and case 6 for the Henon-Heiles system ( A /8 = 1,
C/D = —1) (numbering of cases refers to Tables I and II
of Hioe).

In the remaining integrable cases, VI is dependent on
TH or zero on the SLS and these cases need a separate
treatment. The integrable case of the Henon-Heiles sys-
tem which does not admit a periodic solution of the NVE
and case III (A:8:C:D:8=1:4:6:1:16)of the quartic os-
cillator correspond to VI =0 on the SLS, while in case VI
(A:8:C:D:E=0:0:3:8:1)VI depends linearly on VH on
the SLS, namely VI = 8h VH where h is the energy of the
SLS. These cases however can be treated together since in
the last case we may form another integral of motion by
the relation '

I'=I —8h (H —h) (12)

(13)

with ad —bc = 1 the monodromy matrix of the NVE.
Let I;~ stay for the (i+j)th partial derivative of I, i

times with respect to x and j times with respect to x,
computed on the SLS at t0. By acting 6& on the integral
(D&I)p and taking into account that I&& =0 in all cases
into consideration, we obtain the relations

(a —1)I2p+c Ip~=0,

abI20 +cdI02 =0

b I2p+(d —1 )Ip~ =0 .

(14a)

(14b)

(14c)

In case VI of the quartic oscillator I02 =0 also which im-
plies a =d =1, b =0 so that 6& has two unit eigenval-
ues and a periodic solution of the NVE exists. In the cor-
responding case of the Henon-Heiles system, I2pIp2%0
and Eqs. (14) yield a =d and

such that V'I'=0 and at least some of the second-order
derivatives of I or I' are dift'erent from zero on the SLS.
In the following we omit the prime but we work with the
new integral (12). We will use the following theorem. '

(vii) (D&I )p is an integral of motion of the NVE, where
m is an integer such that all the derivatives of I of order
n (m are zero on the SLS. If (D~I)p=0 then another
integral of the NVE, homogeneous in the g,. of degree
k & m can always be found. In our case however this in-
tegral is nontrivial.

For the cases mentioned above m =2 while in the
remaining cases V and 1, m =4. We will refer to these
cases later. Let

a =1 c2 2 02

«20
(15)

From (15) we may find that if

h & 2 (4A —82)/8C2 (16)

then a & 1 and the solutions of the NVE are exponential-
ly unstable which is the case in the example given by
Hioe in his Fig. 1. In case III of the quartic oscillation
IpzI2pAO also and one cannot show the existence of a
periodic solution of the NVE by the known integral of
motion. These two potentials belong to a sequence of in-
tegrable potentials which may superposed without des-
troying integrability, found by Ramani, Dorizzi, and
Grammatikos.

In the last integrable cases, case V ( A:8:C:D:E
=0:0:3:1:8) and case 1 ( A /8 = 1/16 and C/D
= —1/16), all the derivatives of I up to the third order
are zero on the SLS and the corresponding integral is
(D~I)p. By acting hz on this integral and taking into ac-
count that I&3 =I» =0 we obtain the relations

(a —1)I~p+6a c I22+c Ip4=0,

a bI4p+3(ad +bc)acI22+c dIp4=0,

a b I40+6abcdI22+c d «04=0,

ab I4p+3(ad+bc)bdI22+cd Ip~=O,

b I4p+ 6b d I22+ (d —1 )I~=0 .

(17a)

(17b)

(17c)

(17d)

(17e)

In cases (a) —(c), b, ~ equals the identity and the NVE have
periodic solution. Case (d) must be excluded since the in-
dependent equations of (17) yield in this case

b 3«22 «04

C «40 3«22
(18)

and this last equation is not true for the particular in-
tegrals. The quartic oscillator admits also a SLS along
the x axis. On this SLS the same results are obtained by
virtue of the symmetry of the potential (1).

The remaining six cases of the Henon-Heiles system
are presumably nonintegrable but the monodromy matrix
of the NVE in real time happens to be resonant ' so that
these equations admit a periodic solution. Hioe mentions
that cases 7 and 8 (A/8 =1 and 4, C/D = —5/2 and
—5/2, respectively) have been proved to be nonintegr-
able by Yoshida. This is not correct. Yoshida actually
proved nonintegrability for the homogeneous Henon-
Heiles system

Vz(x, y)=Cx y Dy /3—

The rank of the matrix of (17) must equal 2 which yields
the following possibilities

(a) a =d"=1, b =c =0,
(b) a =d =0, c = —1/b,
(c) a = —d, abed%0,

(d) a =d, abed%0 .
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for C/D = —5/2 by showing the existence of two non-
resonant, noncommuting monodromy matrices of the
NVE along the SLS,

X
x /y =2+D/C . (20)

In order to apply Yoshida's theorem for the nonhomo-
geneous potential (2), the above SLS must persist when
the quadratic terms are added in the potential (19) which
is not the case. The only SLS admitted by the full poten-
tial (2) is (4) and one cannot show the existence of two
nonresonant monodromy matrices on this SLS for the
above value of C/D It .may however be shown that no
polynomial invariant exists in these cases, by a corollary
of Hietarinta (p. 96).

Cases 2 and 3 ( A /B = 1/16 and 9/16 and
C/D = —5/16 and —5/16, respectively), and cases 7
and 8 seem to be nonintegrable since narrow chaotic
zones are present in the surface of section. In Fig. 1 we
show a surface of section for case 3. In case 4 ( A /B =0,
C/D = —1/2), all orbits are unbounded while no chaos
appeared in case 5 (2/B =1, C/D = —1/2). This case
seems to be a good candidate for integrability, although it
does not possess the Painleve property since a logarith-
mic term enters in the expansion.

We may note in conclusion that the existence of a
second integral of motion I results in a periodic solution
of the VE around a SLS if V'I is independent of VH on
the SLS. Otherwise, the existence of such a periodic solu-
tion can be shown only if I satisfies certain conditions. In
any case, Hioe's results provide a good demonstration of
the fact that one cannot disprove integrability by the

0-

-2
-O. 8 0.8

real-time monodromy matrix of the NVE only, since this
matrix may or may not be resonant, independently of the
existence of a second integral of motion. Nonintegrabili-

ty may be proved by Ziglin's theorem ' ' ' if at least two
independent monodromy matrices in the complex domain
are known.

FIG. 1. Poincare section for the generalized Henon-Heiles

system for A =9, 8 = 16, C = —5, D = 16, and h =2.58.
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